Skip to main content

Advertisement

Log in

Protein levels of clusterin and glutathione synthetase in platelets allow for early detection of colorectal cancer

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is one of the most frequent malignancies in the Western world. Early tumor detection and intervention are important determinants on CRC patient survival. During early tumor proliferation, dissemination and angiogenesis, platelets store and segregate proteins actively and selectively. Hence, the platelet proteome is a potential source of biomarkers denoting early malignancy. By comparing protein profiles of platelets between healthy volunteers (n = 12) and patients with early- (n = 7) and late-stage (n = 5) CRCs using multiplex fluorescence two-dimensional gel electrophoresis (2D-DIGE), we aimed at identifying differentially regulated proteins within platelets. By inter-group comparisons, 94 differentially expressed protein spots were detected (p < 0.05) between healthy controls and patients with early- and late-stage CRCs and revealed distinct separations between all three groups in principal component analyses. 54 proteins of interest were identified by mass spectrometry and resulted in high-ranked Ingenuity Pathway Analysis networks associated with Cellular function and maintenance, Cellular assembly and organization, Developmental disorder and Organismal injury and abnormalities (p < 0.0001 to p = 0.0495). Target proteins were validated by multiplex fluorescence-based Western blot analyses using an additional, independent cohort of platelet protein samples [healthy controls (n = 15), early-stage CRCs (n = 15), late-stage CRCs (n = 15)]. Two proteins—clusterin and glutathione synthetase (GSH-S)—featured high impact and were subsequently validated in this independent clinical cohort distinguishing healthy controls from patients with early- and late-stage CRCs. Thus, the potential of clusterin and GSH-S as platelet biomarkers for early detection of CRC could improve existing screening modalities in clinical application and should be confirmed in a prospective multicenter trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2D-DIGE:

Two-dimensional multiplex fluorescence gel electrophoresis

BHT:

Butylated hydroxytoluene

CLU:

Clusterin

CRC:

Colorectal cancer

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetate

EMT:

Epithelial-to-mesenchymal transition

FC:

Fold change

GSH-S:

Glutathione synthetase

IEF:

Isoelectric focusing

IPA:

Ingenuity Pathway Analysis

IPG:

Immobilized pH gradient

MALDI-TOF MS:

Matrix-assisted laser desorption/ionization time of flight mass spectrometry

PBS:

Phosphate-buffered saline

PCA:

Principal component analysis

PMSF:

Phenylmethylsulfonyl fluoride

PTMs:

Posttranslational modifications

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TBS:

Tris-buffered saline

UICC:

International Union Against Cancer

References

  1. Schiess R, Wollscheid B, Aebersold R (2009) Targeted proteomic strategy for clinical biomarker discovery. Mol Oncol 3(1):33–44. doi:10.1016/j.molonc.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  2. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    Article  CAS  PubMed  Google Scholar 

  3. Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD (2003) Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2(10):1096–1103. doi:10.1074/mcp.M300031-MCP200

    Article  CAS  PubMed  Google Scholar 

  4. Jacobs JM, Adkins JN, Qian WJ, Liu T, Shen Y, Camp DG 2nd, Smith RD (2005) Utilizing human blood plasma for proteomic biomarker discovery. J Proteome Res 4(4):1073–1085. doi:10.1021/pr0500657

    Article  CAS  PubMed  Google Scholar 

  5. Sierko E, Wojtukiewicz MZ (2004) Platelets and angiogenesis in malignancy. Semin Thromb Hemost 30(1):95–108. doi:10.1055/s-2004-822974

    Article  CAS  PubMed  Google Scholar 

  6. Goubran HA, Stakiw J, Radosevic M, Burnouf T (2014) Platelets effects on tumor growth. Semin Oncol 41(3):359–369. doi:10.1053/j.seminoncol.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  7. Sierko E, Wojtukiewicz MZ (2007) Inhibition of platelet function: does it offer a chance of better cancer progression control? Semin Thromb Hemost 33(7):712–721. doi:10.1055/s-2007-991540

    Article  CAS  PubMed  Google Scholar 

  8. Bambace NM, Holmes CE (2011) The platelet contribution to cancer progression. J Thromb Haemost 9(2):237–249. doi:10.1111/j.1538-7836.2010.04131.x

    Article  CAS  PubMed  Google Scholar 

  9. Coupland LA, Parish CR (2014) Platelets, selectins, and the control of tumor metastasis. Semin Oncol 41(3):422–434. doi:10.1053/j.seminoncol.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  10. Bastida E, Almirall L, Ordinas A (1987) Tumor-cell-induced platelet aggregation is a glycoprotein-dependent and lipoxygenase-associated process. Int J Cancer 39(6):760–763

    Article  CAS  PubMed  Google Scholar 

  11. Honn KV, Tang DG, Chen YQ (1992) Platelets and cancer metastasis: more than an epiphenomenon. Semin Thromb Hemost 18(4):392–415. doi:10.1055/s-2007-1002578

    Article  CAS  PubMed  Google Scholar 

  12. Burkhart JM, Gambaryan S, Watson SP, Jurk K, Walter U, Sickmann A, Heemskerk JW, Zahedi RP (2014) What can proteomics tell us about platelets? Circ Res 114(7):1204–1219. doi:10.1161/CIRCRESAHA.114.301598

    Article  CAS  PubMed  Google Scholar 

  13. Burkhart JM, Vaudel M, Gambaryan S, Radau S, Walter U, Martens L, Geiger J, Sickmann A, Zahedi RP (2012) The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 120(15):e73–e82. doi:10.1182/blood-2012-04-416594

    Article  CAS  PubMed  Google Scholar 

  14. Blann AD, Gurney D, Wadley M, Bareford D, Stonelake P, Lip GY (2001) Increased soluble P-selectin in patients with haematological and breast cancer: a comparison with fibrinogen, plasminogen activator inhibitor and von Willebrand factor. Blood Coagul Fibrinolysis 12(1):43–50

    Article  CAS  PubMed  Google Scholar 

  15. Caine GJ, Lip GY, Stonelake PS, Ryan P, Blann AD (2004) Platelet activation, coagulation and angiogenesis in breast and prostate carcinoma. Thromb Haemost 92(1):185–190. doi:10.1267/THRO04070185

    CAS  PubMed  Google Scholar 

  16. Reed GL, Fitzgerald ML, Polgar J (2000) Molecular mechanisms of platelet exocytosis: insights into the “secrete” life of thrombocytes. Blood 96(10):3334–3342

    CAS  PubMed  Google Scholar 

  17. Rendu F, Brohard-Bohn B (2001) The platelet release reaction: granules’ constituents, secretion and functions. Platelets 12(5):261–273. doi:10.1080/09537100120068170

    Article  CAS  PubMed  Google Scholar 

  18. Zufferey A, Fontana P, Reny JL, Nolli S, Sanchez JC (2012) Platelet proteomics. Mass Spectrom Rev 31(2):331–351. doi:10.1002/mas.20345

    Article  CAS  PubMed  Google Scholar 

  19. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20(5):576–590. doi:10.1016/j.ccr.2011.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, Cahill DJ, Emili A, Fitzgerald DJ, Maguire PB (2004) Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103(6):2096–2104. doi:10.1182/blood-2003-08-2804

    Article  CAS  PubMed  Google Scholar 

  21. Sabrkhany S, Griffioen AW, Oude Egbrink MG (2011) The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta 1815(2):189–196. doi:10.1016/j.bbcan.2010.12.001

    CAS  PubMed  Google Scholar 

  22. Patrignani P, Patrono C (2016) Aspirin and Cancer. J Am Coll Cardiol 68(9):967–976. doi:10.1016/j.jacc.2016.05.083

    Article  CAS  PubMed  Google Scholar 

  23. Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M (2010) The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol 2010:215158. doi:10.1155/2010/215158

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dovizio M, Maier TJ, Alberti S, Di Francesco L, Marcantoni E, Munch G, John CM, Suess B, Sgambato A, Steinhilber D, Patrignani P (2013) Pharmacological inhibition of platelet-tumor cell cross-talk prevents platelet-induced overexpression of cyclooxygenase-2 in HT29 human colon carcinoma cells. Mol Pharmacol 84(1):25–40. doi:10.1124/mol.113.084988

    Article  CAS  PubMed  Google Scholar 

  25. Dovizio M, Tacconelli S, Ricciotti E, Bruno A, Maier TJ, Anzellotti P, Di Francesco L, Sala P, Signoroni S, Bertario L, Dixon DA, Lawson JA, Steinhilber D, FitzGerald GA, Patrignani P (2012) Effects of celecoxib on prostanoid biosynthesis and circulating angiogenesis proteins in familial adenomatous polyposis. J Pharmacol Exp Ther 341(1):242–250. doi:10.1124/jpet.111.190785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917. doi:10.1002/ijc.25516

    Article  CAS  PubMed  Google Scholar 

  27. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. doi:10.3322/caac.21262

    Article  PubMed  Google Scholar 

  28. Arvelo F, Sojo F, Cotte C (2015) Biology of colorectal cancer. Ecancermedicalscience 9:520. doi:10.3332/ecancer.2015.520

    Article  PubMed  PubMed Central  Google Scholar 

  29. Connell W (2004) PRO: endoscopic surveillance minimizes the risk of cancer. Am J Gastroenterol 99(9):1631–1633. doi:10.1111/j.1572-0241.2004.40829.x

    Article  PubMed  Google Scholar 

  30. Guillem-Llobat P, Dovizio M, Bruno A, Ricciotti E, Cufino V, Sacco A, Grande R, Alberti S, Arena V, Cirillo M, Patrono C, FitzGerald GA, Steinhilber D, Sgambato A, Patrignani P (2016) Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells. Oncotarget 7(22):32462–32477. doi:10.18632/oncotarget.8655

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ferroni P, Riondino S, Vazzana N, Santoro N, Guadagni F, Davi G (2012) Biomarkers of platelet activation in acute coronary syndromes. Thromb Haemost 108(6):1109–1123. doi:10.1160/TH12-08-0550

    Article  PubMed  Google Scholar 

  32. Strohkamp S, Gemoll T, Habermann JK (2016) Possibilities and limitations of 2DE-based analyses for identifying low-abundant tumor markers in human serum and plasma. Proteomics 16(19):2519–2532. doi:10.1002/pmic.201600154

    Article  CAS  PubMed  Google Scholar 

  33. Gemoll T, Epping F, Heinrich L, Fritzsche B, Roblick UJ, Szymczak S, Hartwig S, Depping R, Bruch HP, Thorns C, Lehr S, Paech A, Habermann JK (2015) Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone malignancies. Oncotarget 6(18):16517–16526. doi:10.18632/oncotarget.4140

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hagner-McWhirter A, Laurin Y, Larsson A, Bjerneld EJ, Ronn O (2015) Cy5 total protein normalization in Western blot analysis. Anal Biochem 486:54–61. doi:10.1016/j.ab.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  35. Jones SE, Jomary C (2002) Clusterin. The International Journal of Biochemistry & Cell Biology 34(5):427–431

    Article  CAS  Google Scholar 

  36. Rodriguez-Pineiro AM, Garcia-Lorenzo A, Blanco-Prieto S, Alvarez-Chaver P, Rodriguez-Berrocal FJ, Cadena MP, Martinez-Zorzano VS (2012) Secreted Clusterin in colon tumor cell models and its potential as diagnostic marker for colorectal cancer. Cancer Invest 30(1):72–78. doi:10.3109/07357907.2011.630051

    Article  CAS  PubMed  Google Scholar 

  37. Pucci S, Bonanno E, Pichiorri F, Mazzarelli P, Spagnoli LG (2004) The expression and the nuclear activity of the caretaker gene ku86 are modulated by somatostatin. Eur J Histochem 48(2):103–110

    Article  CAS  PubMed  Google Scholar 

  38. Pucci S, Bonanno E, Sesti F, Mazzarelli P, Mauriello A, Ricci F, Zoccai GB, Rulli F, Galata G, Spagnoli LG (2009) Clusterin in stool: a new biomarker for colon cancer screening? Am J Gastroenterol 104(11):2807–2815. doi:10.1038/ajg.2009.412

    Article  CAS  PubMed  Google Scholar 

  39. Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 111–112:1–14

    Article  PubMed  Google Scholar 

  40. Kim AD, Zhang R, Han X, Kang KA, Piao MJ, Maeng YH, Chang WY, Hyun JW (2015) Involvement of glutathione and glutathione metabolizing enzymes in human colorectal cancer cell lines and tissues. Mol Med Rep 12(3):4314–4319. doi:10.3892/mmr.2015.3902

    Article  CAS  PubMed  Google Scholar 

  41. Godwin AK, Meister A, O’Dwyer PJ, Huang CS, Hamilton TC, Anderson ME (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci USA 89(7):3070–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu LI, Fu NI, Luo XU, Li XY, Li XP (2015) Overexpression of cofilin 1 in prostate cancer and the corresponding clinical implications. Oncol Lett 9(6):2757–2761. doi:10.3892/ol.2015.3133

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chang CY, Leu JD, Lee YJ (2015) The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer. Int J Mol Sci 16(2):4095–4120. doi:10.3390/ijms16024095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu B, Fukada K, Zhu H, Kyprianou N (2006) Prohibitin and cofilin are intracellular effectors of transforming growth factor beta signaling in human prostate cancer cells. Cancer Res 66(17):8640–8647. doi:10.1158/0008-5472.CAN-06-1443

    Article  CAS  PubMed  Google Scholar 

  45. Zhou J, Wang Y, Fei J, Zhang W (2012) Expression of cofilin 1 is positively correlated with the differentiation of human epithelial ovarian cancer. Oncol Lett 4(6):1187–1190. doi:10.3892/ol.2012.897

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hembrough T, Thyparambil S, Liao WL, Darfler MM, Abdo J, Bengali KM, Hewitt SM, Bender RA, Krizman DB, Burrows J (2013) Application of selected reaction monitoring for multiplex quantification of clinically validated biomarkers in formalin-fixed, paraffin-embedded tumor tissue. J Mol Diagn 15(4):454–465. doi:10.1016/j.jmoldx.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  47. Nishimura S, Tsuda H, Kataoka F, Arao T, Nomura H, Chiyoda T, Susumu N, Nishio K, Aoki D (2011) Overexpression of cofilin 1 can predict progression-free survival in patients with epithelial ovarian cancer receiving standard therapy. Hum Pathol 42(4):516–521. doi:10.1016/j.humpath.2010.07.019

    Article  CAS  PubMed  Google Scholar 

  48. Chung H, Kim B, Jung SH, Won KJ, Jiang X, Lee CK, Lim SD, Yang SK, Song KH, Kim HS (2013) Does phosphorylation of cofilin affect the progression of human bladder cancer? BMC Cancer 13:45. doi:10.1186/1471-2407-13-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Kuramitsu Y, Ueno T, Suzuki N, Yoshino S, Iizuka N, Zhang X, Oka M, Nakamura K (2011) Differential expression of up-regulated cofilin-1 and down-regulated cofilin-2 characteristic of pancreatic cancer tissues. Oncol Rep 26(6):1595–1599. doi:10.3892/or.2011.1447

    CAS  PubMed  Google Scholar 

  50. Castro MA, Dal-Pizzol F, Zdanov S, Soares M, Muller CB, Lopes FM, Zanotto-Filho A, da Cruz Fernandes M, Moreira JC, Shacter E, Klamt F (2010) CFL1 expression levels as a prognostic and drug resistance marker in nonsmall cell lung cancer. Cancer 116(15):3645–3655. doi:10.1002/cncr.25125

    Article  CAS  PubMed  Google Scholar 

  51. Tonus C, Neupert G, Sellinger M (2006) Colorectal cancer screening by non-invasive metabolic biomarker fecal tumor M2-PK. World J Gastroenterol 12(43):7007–7011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deutekom M, van Rossum LG, van Rijn AF, Laheij RJ, Fockens P, Bossuyt PM, Dekker E, Jansen JB (2010) Comparison of guaiac and immunological fecal occult blood tests in colorectal cancer screening: the patient perspective. Scand J Gastroenterol 45(11):1345–1349. doi:10.3109/00365521.2010.497937

    Article  PubMed  Google Scholar 

  53. van Rossum LG, van Rijn AF, Verbeek AL, van Oijen MG, Laheij RJ, Fockens P, Jansen JB, Adang EM, Dekker E (2011) Colorectal cancer screening comparing no screening, immunochemical and guaiac fecal occult blood tests: a cost-effectiveness analysis. Int J Cancer 128(8):1908–1917. doi:10.1002/ijc.25530

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Grants from the Werner and Clara Kreitz Foundation and the Ad Infinitum Foundation are gratefully acknowledged. This study was performed in connection with the Surgical Center for Translational Oncology—Lübeck (SCTO-L) and the North German Tumorbank of Colorectal Cancer (ColoNet), the latter being generously supported by the German Cancer Aid Foundation (DKH e.V. #108446).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timo Gemoll or Jens K. Habermann.

Ethics declarations

Ethical standards

This study was approved by the local Ethics Committee of the University of Lübeck (#07-124). Blood samples of CRC patients and healthy volunteers were processed after informed consent and stored at the Interdisciplinary Centrum for Biobanking-Lübeck (ICB-L). The experiments comply with the current laws of the country in which they were performed.

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2017_2631_MOESM1_ESM.pdf

Supplementary Fig. 1: Workflow of the study design. Supplementary Fig. 2 Preliminary in vitro platelet activation experiment. (A) Using a standard operating protocol, platelets were isolated from EDTA anticoagulated venous blood as a homogenous suspension. (B) After addition of 5 µg/ml collagen, 0.5 U/ml thrombin and 13.8 mmol/l CaCl2, artificially platelet activation was visible as white aggregates. Supplementary Fig. 3 Supervised PCA plots between (A) healthy controls (n = 12, pink) vs. late-stage CRCs (n = 5, purple) based on 44 significant spots, of (B) early-stage CRCs (n = 7, blue) vs. late-stage CRCs (n = 5, purple) based on 36 protein spots with significant changes (t test, p < 0.05) and between (C) healthy controls (n = 12, pink) vs. early-stage CRCs (n = 7, blue) vs. late-stage CRCs (n = 5, purple) based on 39 differentially expressed spots (1-way ANOVA, p < 0.05). Colored dots represent platelet samples from each group. Supplementary Fig. 4 2D-DIGE protein expression profiles of Clusterin (A), GSH-S (B) and Cofilin-1 (C) between healthy controls, early-stage CRCs and late-stage CRCs (PDF 1019 kb)

18_2017_2631_MOESM2_ESM.pdf

Supplementary Table 1 Clinical data of the evaluated patient cohort of the 2-D DIGE experiment. Supplementary Table 2 Clinical data of the evaluated patient cohort of the Western blot experiment. Supplementary Table 3 Summary of identified platelet proteins using MALDI-TOF/TOF–MS. Platelet protein identifications of 71 spots with significant differences in 2D-DIGE (t test, p < 0.05) using MALDI-TOF/TOF–MS and Mascot database. Mascot Scores marked with an asterisks (*) indicate MS data. Several spots are isoforms of the same protein. Arrows indicate significant protein down- (↓) or upregulation (↑) in CRC cancer samples compared to healthy controls (t test, p < 0.05 and 1-way ANOVA, p < 0.05). Supplementary Table 4 Summary of platelet protein pathway analyses of direct relationships using IPA. Supplemental Table 5 Diagnostic parameters for the Healthy volunteers vs. Early CRC comparison (top) and associated ROC-curve (bottom) for Clusterin (CLU). Supplemental Table 6 Diagnostic parameters for the Healthy volunteers vs. Early CRC comparison (top) and associated ROC-curve (bottom) for GSH-S. Supplemental Table 7 Diagnostic parameters for the Healthy volunteers vs. Early CRC comparison (top) and associated ROC-curve (bottom) for cofilin-1 (CFL-1) (PDF 809 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strohkamp, S., Gemoll, T., Humborg, S. et al. Protein levels of clusterin and glutathione synthetase in platelets allow for early detection of colorectal cancer. Cell. Mol. Life Sci. 75, 323–334 (2018). https://doi.org/10.1007/s00018-017-2631-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2631-9

Keywords

Navigation