Skip to main content

Advertisement

Log in

Dimerization leads to changes in APP (amyloid precursor protein) trafficking mediated by LRP1 and SorLA

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Proteolytic cleavage of the amyloid precursor protein (APP) by α-, β- and γ-secretases is a determining factor in Alzheimer’s disease (AD). Imbalances in the activity of all three enzymes can result in alterations towards pathogenic Aβ production. Proteolysis of APP is strongly linked to its subcellular localization as the secretases involved are distributed in different cellular compartments. APP has been shown to dimerize in cis-orientation, affecting Aβ production. This might be explained by different substrate properties defined by the APP oligomerization state or alternatively by altered APP monomer/dimer localization. We investigated the latter hypothesis using two different APP dimerization systems in HeLa cells. Dimerization caused a decreased localization of APP to the Golgi and at the plasma membrane, whereas the levels in the ER and in endosomes were increased. Furthermore, we observed via live cell imaging and biochemical analyses that APP dimerization affects its interaction with LRP1 and SorLA, suggesting that APP dimerization modulates its interplay with sorting molecules and in turn its localization and processing. Thus, pharmacological approaches targeting APP oligomerization properties might open novel strategies for treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  PubMed  Google Scholar 

  2. Kuhn PH et al (2010) ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J 29(17):3020–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vassar R et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741

    Article  CAS  PubMed  Google Scholar 

  4. Lichtenthaler SF (2006) Ectodomain shedding of the amyloid precursor protein: cellular control mechanisms and novel modifiers. Neurodegener Dis 3(4–5):262–269

    Article  CAS  PubMed  Google Scholar 

  5. Lichtenthaler SF, Haass C, Steiner H (2011) Regulated intramembrane proteolysis—lessons from amyloid precursor protein processing. J Neurochem 117(5):779–796

    Article  CAS  PubMed  Google Scholar 

  6. Weidemann A et al (2002) A novel epsilon-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing. Biochemistry 41(8):2825–2835

    Article  CAS  PubMed  Google Scholar 

  7. Sastre M et al (2001) Presenilin-dependent gamma-secretase processing of beta-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep 2(9):835–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kang J et al (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325(6106):733–736

    Article  CAS  PubMed  Google Scholar 

  9. Brunholz S et al (2011) Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp Brain Res 217:353–364

    Article  PubMed  PubMed Central  Google Scholar 

  10. Szodorai A et al (2009) APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. J Neurosci 29(46):14534–14544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boll W et al (2002) The mu2 subunit of the clathrin adaptor AP-2 binds to FDNPVY and YppO sorting signals at distinct sites. Traffic 3(8):590–600

    Article  CAS  PubMed  Google Scholar 

  12. Das U et al (2016) Visualizing APP and BACE-1 approximation in neurons yields insight into the amyloidogenic pathway. Nat Neurosci 19(1):55–64

    Article  CAS  PubMed  Google Scholar 

  13. Haass C et al (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2(5):a006270

    Article  PubMed  PubMed Central  Google Scholar 

  14. Willnow TE, Andersen OM (2013) Sorting receptor SORLA—a trafficking path to avoid Alzheimer disease. J Cell Sci 126(Pt 13):2751–2760

    Article  CAS  PubMed  Google Scholar 

  15. Haass C et al (1992) Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357(6378):500–503

    Article  CAS  PubMed  Google Scholar 

  16. Lammich S et al (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 96(7):3922–3927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Skovronsky DM et al (2000) Protein kinase C-dependent alpha-secretase competes with beta-secretase for cleavage of amyloid-beta precursor protein in the trans-golgi network. J Biol Chem 275(4):2568–2575

    Article  CAS  PubMed  Google Scholar 

  18. Kinoshita A et al (2003) Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J Cell Sci 116(Pt 16):3339–3346

    Article  CAS  PubMed  Google Scholar 

  19. Fukumori A et al (2006) Presenilin-dependent gamma-secretase on plasma membrane and endosomes is functionally distinct. Biochemistry 45(15):4907–4914

    Article  CAS  PubMed  Google Scholar 

  20. Kaether C et al (2006) Amyloid precursor protein and Notch intracellular domains are generated after transport of their precursors to the cell surface. Traffic 7(4):408–415

    Article  CAS  PubMed  Google Scholar 

  21. Pasternak SH, Callahan JW, Mahuran DJ (2004) The role of the endosomal/lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer’s disease: reexamining the spatial paradox from a lysosomal perspective. J Alzheimer’s Dis 6(1):53–65

    Article  CAS  Google Scholar 

  22. Soba P et al (2005) Homo- and heterodimerization of APP family members promotes intercellular adhesion. EMBO J 24(20):3624–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaden D et al (2009) Subcellular localization and dimerization of APLP1 are strikingly different from APP and APLP2. J Cell Sci 122(Pt 3):368–377

    Article  CAS  PubMed  Google Scholar 

  24. Eggert S et al (2009) Induced dimerization of the amyloid precursor protein leads to decreased amyloid-beta protein production. J Biol Chem 284(42):28943–28952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scheuermann S et al (2001) Homodimerization of amyloid precursor protein and its implication in the amyloidogenic pathway of Alzheimer’s disease. J Biol Chem 276(36):33923–33929

    Article  CAS  PubMed  Google Scholar 

  26. Jung JI et al (2014) Independent relationship between amyloid precursor protein (APP) dimerization and gamma-secretase processivity. PLoS One 9(10):e111553

    Article  PubMed  PubMed Central  Google Scholar 

  27. Isbert S et al (2012) APP dimer formation is initiated in the endoplasmic reticulum and differs between APP isoforms. Cell Mol Life Sci 69:1353–1375

    Article  CAS  PubMed  Google Scholar 

  28. Ben Khalifa N et al (2012) Structural features of the KPI domain control APP dimerization, trafficking, and processing. FASEB J 26(2):855–867

    Article  CAS  PubMed  Google Scholar 

  29. Hermey G et al (2006) Tumour necrosis factor alpha-converting enzyme mediates ectodomain shedding of Vps10p-domain receptor family members. Biochem J 395(2):285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmidt V et al (2007) SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1. J Biol Chem 282(45):32956–32964

    Article  CAS  PubMed  Google Scholar 

  31. Hermey G et al (2015) SorCS1 variants and amyloid precursor protein (APP) are co-transported in neurons but only SorCS1c modulates anterograde APP transport. J Neurochem 135(1):60–75

    Article  CAS  PubMed  Google Scholar 

  32. Rabiej VK et al (2016) Low density lipoprotein receptor-related protein 1 mediated endocytosis of beta1-integrin influences cell adhesion and cell migration. Exp Cell Res 340(1):102–115

    Article  CAS  PubMed  Google Scholar 

  33. Altan-Bonnet N et al (2006) Golgi inheritance in mammalian cells is mediated through endoplasmic reticulum export activities. Mol Biol Cell 17(2):990–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schilling S et al (2017) APLP1 is a synaptic cell adhesion molecule, supporting maintenance of dendritic spines and basal synaptic transmission. J Neurosci 37:5345–5365

    Article  CAS  PubMed  Google Scholar 

  35. Tyan SH et al (2012) Amyloid precursor protein (APP) regulates synaptic structure and function. Mol Cell Neurosci 51(1–2):43–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Levites Y et al (2006) Anti-Abeta42- and anti-Abeta40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J Clin Investig 116(1):193–201

    Article  CAS  PubMed  Google Scholar 

  37. Nielsen MS et al (1999) Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase. J Biol Chem 274(13):8832–8836

    Article  CAS  PubMed  Google Scholar 

  38. Del Turco D et al (2016) Region-specific differences in amyloid precursor protein expression in the mouse hippocampus. Front Mol Neurosci 9:134

    PubMed  PubMed Central  Google Scholar 

  39. Carpenter AE et al (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100

    Article  PubMed  PubMed Central  Google Scholar 

  40. Baumkotter F et al (2014) Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain. J Neurosci 34(33):11159–11172

    Article  PubMed  Google Scholar 

  41. Clackson T (2006) Dissecting the functions of proteins and pathways using chemically induced dimerization. Chem Biol Drug Des 67(6):440–442

    Article  CAS  PubMed  Google Scholar 

  42. Munter LM et al (2007) GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42. EMBO J 26(6):1702–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koo EH et al (1996) Trafficking of cell-surface amyloid beta-protein precursor. I. Secretion, endocytosis and recycling as detected by labeled monoclonal antibody. J Cell Sci 109(Pt 5):991–998

    CAS  PubMed  Google Scholar 

  44. Andersen OM et al (2006) Molecular dissection of the interaction between amyloid precursor protein and its neuronal trafficking receptor SorLA/LR11. Biochemistry 45(8):2618–2628

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt V et al (2012) Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer’s disease. EMBO J 31(1):187–200

    Article  CAS  PubMed  Google Scholar 

  46. Hermey G (2009) The Vps10p-domain receptor family. Cell Mol Life Sci 66(16):2677–2689

    Article  CAS  PubMed  Google Scholar 

  47. Yang M et al (2013) The intracellular domain of sortilin interacts with amyloid precursor protein and regulates its lysosomal and lipid raft trafficking. PLoS One 8(5):e63049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gustafsen C et al (2013) Sortilin and SorLA display distinct roles in processing and trafficking of amyloid precursor protein. J Neurosci 33(1):64–71

    Article  CAS  PubMed  Google Scholar 

  49. Pietrzik CU et al (2004) FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J Neurosci 24(17):4259–4265

    Article  CAS  PubMed  Google Scholar 

  50. Wagner T, Pietrzik CU (2012) The role of lipoprotein receptors on the physiological function of APP. Exp Brain Res 217(3–4):377–387

    Article  CAS  PubMed  Google Scholar 

  51. Decock M et al (2015) Analysis by a highly sensitive split luciferase assay of the regions involved in APP dimerization and its impact on processing. FEBS Open Biol 5:763–773

    Article  CAS  Google Scholar 

  52. Caporaso GL et al (1994) Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer beta/A4 amyloid precursor protein. J Neurosci 14(5 Pt 2):3122–3138

    CAS  PubMed  Google Scholar 

  53. Palacios G et al (1992) Beta-amyloid precursor protein localization in the Golgi apparatus in neurons and oligodendrocytes. An immunocytochemical structural and ultrastructural study in normal and axotomized neurons. Brain Res Mol Brain Res 15(3–4):195–206

    Article  CAS  PubMed  Google Scholar 

  54. Guo Q et al (2012) Amyloid precursor protein revisited: neuron-specific expression and highly stable nature of soluble derivatives. J Biol Chem 287(4):2437–2445

    Article  CAS  PubMed  Google Scholar 

  55. Noda Y et al (2013) Copper enhances APP dimerization and promotes Abeta production. Neurosci Lett 547:10–15

    Article  CAS  PubMed  Google Scholar 

  56. Acevedo KM et al (2011) Copper promotes the trafficking of the amyloid precursor protein. J Biol Chem 286(10):8252–8262

    Article  CAS  PubMed  Google Scholar 

  57. Wang Q, Villeneuve G, Wang Z (2005) Control of epidermal growth factor receptor endocytosis by receptor dimerization, rather than receptor kinase activation. EMBO Rep 6(10):942–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schlessinger J (2002) Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110(6):669–672

    Article  CAS  PubMed  Google Scholar 

  59. Oved S, Yarden Y (2002) Signal transduction: molecular ticket to enter cells. Nature 416(6877):133–136

    Article  CAS  PubMed  Google Scholar 

  60. Nielsen MS et al (2001) The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J 20(9):2180–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Waldron E et al (2008) LRP1 modulates APP trafficking along early compartments of the secretory pathway. Neurobiol Dis 31(2):188–197

    Article  CAS  PubMed  Google Scholar 

  62. Saito Y et al (2011) Intracellular trafficking of the amyloid beta-protein precursor (APP) regulated by novel function of X11-like. PLoS One 6(7):e22108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guenette SY et al (1999) hFE65L influences amyloid precursor protein maturation and secretion. J Neurochem 73(3):985–993

    Article  CAS  PubMed  Google Scholar 

  64. Araki Y et al (2007) The novel cargo Alcadein induces vesicle association of kinesin-1 motor components and activates axonal transport. EMBO J 26(6):1475–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Konecna A et al (2006) Calsyntenin-1 docks vesicular cargo to kinesin-1. Mol Biol Cell 17(8):3651–3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ludwig A et al (2009) Calsyntenins mediate TGN exit of APP in a kinesin-1-dependent manner. Traffic 10(5):572–589

    Article  CAS  PubMed  Google Scholar 

  67. Aydin D, Weyer SW, Muller UC (2012) Functions of the APP gene family in the nervous system: insights from mouse models. Exp Brain Res 217(3–4):423–434

    Article  CAS  PubMed  Google Scholar 

  68. Kaden D et al (2012) The amyloid precursor protein and its homologues: structural and functional aspects of native and pathogenic oligomerization. Eur J Cell Biol 91(4):234–239

    Article  CAS  PubMed  Google Scholar 

  69. Khalifa NB et al (2010) What is the role of amyloid precursor protein dimerization? Cell Adhes Migr 4(2):268–272

    Article  Google Scholar 

  70. Vooijs M et al (2004) Ectodomain shedding and intramembrane cleavage of mammalian Notch proteins is not regulated through oligomerization. J Biol Chem 279(49):50864–50873

    Article  CAS  PubMed  Google Scholar 

  71. Struhl G, Adachi A (2000) Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol Cell 6(3):625–636

    Article  CAS  PubMed  Google Scholar 

  72. Kienlen-Campard P et al (2008) Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs. J Biol Chem 283(12):7733–7744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Westmeyer GG et al (2004) Dimerization of beta-site beta-amyloid precursor protein-cleaving enzyme. J Biol Chem 279(51):53205–53212

    Article  CAS  PubMed  Google Scholar 

  74. Schmechel A et al (2004) Human BACE forms dimers and colocalizes with APP. J Biol Chem 279(38):39710–39717

    Article  CAS  PubMed  Google Scholar 

  75. Meckler X, Checler F (2016) Presenilin 1 and presenilin 2 target gamma-secretase complexes to distinct cellular compartments. J Biol Chem 291(24):12821–12837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sannerud R et al (2016) Restricted location of PSEN2/gamma-secretase determines substrate specificity and generates an intracellular Abeta pool. Cell 166(1):193–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dagmar Gross and Nura Borger for technical assistance. We thank the Advanced Light Microscopy Facility (ALMF) at the European Molecular Biology Laboratory (EMBL) for support. We thank DFG for funding to SK. SK and GH were supported by AFI. SE was supported by funding of the TU (Technical University of Kaiserslautern) Nachwuchsring. We thank Daniel Romero Mujalli for his valuable support on the statistical analyses. We thank Dr. Sheue-Houy Tyan for encouragement to perform this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simone Eggert or Stefan Kins.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggert, S., Gonzalez, A.C., Thomas, C. et al. Dimerization leads to changes in APP (amyloid precursor protein) trafficking mediated by LRP1 and SorLA. Cell. Mol. Life Sci. 75, 301–322 (2018). https://doi.org/10.1007/s00018-017-2625-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2625-7

Keywords

Navigation