Expression profiling of Tas2r genes reveals a complex pattern along the mouse GI tract and the presence of Tas2r131 in a subset of intestinal Paneth cells

Abstract

The chemical variability of the intestinal lumen requires the presence of molecular receptors detecting the various substances naturally occurring in the diet and as a result of the activity of the microbiota. Despite their early discovery, intestinal bitter taste receptors (Tas2r) have not yet been assigned an unambiguous physiological function. Recently, using a CRE-recombinant approach we showed that the Tas2r131 gene is expressed in a subset of mucin-producing goblet cells in the colon of mice. Moreover, we also demonstrated that the expression of the Tas2r131 locus is not restricted to this region. In the present study we aimed at characterizing the presence of positive cells also in other gastrointestinal regions. Our results show that Tas2r131+ cells appear in the jejunum and the ileum, and are absent from the stomach and the duodenum. We identified the positive cells as a subpopulation of deep-crypt Paneth cells in the ileum, strengthening the notion of a defensive role for Tas2rs in the gut. To get a broader perspective on the expression of bitter taste receptors in the alimentary canal, we quantified the expression of all 35 Tas2r genes along the gastrointestinal tract by qRT-PCR. We discovered that the number and expression level of Tas2r genes profoundly vary along the alimentary canal, with the stomach and the colon expressing the largest subsets.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Lindemann B (1996) Taste reception. Physiol Rev 76:718–766

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Meyerhof W (2005) Elucidation of mammalian bitter taste. Rev Physiol Biochem Pharmacol 154:37–72

    CAS  PubMed  Google Scholar 

  3. 3.

    Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416:199–202

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Vigues S, Dotson CD, Munger SD (2009) The receptor basis of sweet taste in mammals. Results Probl Cell Differ 47:187–202

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Behrens M, Meyerhof W, Hellfritsch C, Hofmann T (2011) Sweet and umami taste: natural products, their chemosensory targets, and beyond. Angew Chem Int Ed Engl 50:2220–2242

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106:381–390

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Behrens M, Korsching SI, Meyerhof W (2014) Tuning properties of avian and frog bitter taste receptors dynamically fit gene repertoire sizes. Mol Biol Evol 31:3216–3227

    PubMed  Article  Google Scholar 

  9. 9.

    Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) T2Rs function as bitter taste receptors. Cell 100:703–711

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Lossow K, Hubner S, Roudnitzky N, Slack JP, Pollastro F, Behrens M, Meyerhof W (2016) Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans. J Biol Chem 291:15358–15377

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Matsunami H, Montmayeur JP, Buck LB (2000) A family of candidate taste receptors in human and mouse. Nature 404:601–604

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Hayakawa T, Suzuki-Hashido N, Matsui A, Go Y (2014) Frequent expansions of the bitter taste receptor gene repertoire during evolution of mammals in the Euarchontoglires clade. Mol Biol Evol 31:2018–2031

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Li D, Zhang J (2014) Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire. Mol Biol Evol 31:303–309

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Shi P, Zhang J, Yang H, Zhang YP (2003) Adaptive diversification of bitter taste receptor genes in Mammalian evolution. Mol Biol Evol 20:805–814

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190:285–296

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Behrens M, Prandi S, Meyerhof W (2017) Taste receptor gene expression outside the gustatory system. In: Krautwurst D (ed) Topics in medicinal chemistry 23: Taste and smell. Springer International Publishing, pp 1–34

  18. 18.

    Dyer J, Salmon KS, Zibrik L, Shirazi-Beechey SP (2005) Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33:302–305

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E (2002) Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci USA 99:2392–2397

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Daly K, Al-Rammahi M, Arora DK, Moran AW, Proudman CJ, Ninomiya Y, Shirazi-Beechey SP (2012) Expression of sweet receptor components in equine small intestine: relevance to intestinal glucose transport. Am J Physiol Regul Integr Comp Physiol 303:R199–R208

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Daly K, Al-Rammahi M, Moran A, Marcello M, Ninomiya Y, Shirazi-Beechey SP (2013) Sensing of amino acids by the gut-expressed taste receptor T1R1–T1R3 stimulates CCK secretion. Am J Physiol Gastrointest Liver Physiol 304:G271–G282

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF, Egan JM (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA 104:15069–15074

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na+ -glucose cotransporter 1. Proc Natl Acad Sci USA 104:15075–15080

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Kendig DM, Hurst NR, Bradley ZL, Mahavadi S, Kuemmerle JF, Lyall V, DeSimone J, Murthy KS, Grider JR (2014) Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon. Am J Physiol Gastrointest Liver Physiol 307:G1100–G1107

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Shirazi-Beechey SP, Moran AW, Batchelor DJ, Daly K, Al-Rammahi M (2011) Glucose sensing and signalling; regulation of intestinal glucose transport. Proc Nutr Soc 70:185–193

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Gerspach AC, Steinert RE, Schonenberger L, Graber-Maier A, Beglinger C (2011) The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am J Physiol Endocrinol Metab 301:E317–E325

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Steinert RE, Gerspach AC, Gutmann H, Asarian L, Drewe J, Beglinger C (2011) The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin Nutr 30:524–532

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Dotson CD, Zhang L, Xu H, Shin YK, Vigues S, Ott SH, Elson AE, Choi HJ, Shaw H, Egan JM, Mitchell BD, Li X, Steinle NI, Munger SD (2008) Bitter taste receptors influence glucose homeostasis. PLoS One 3:e3974

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Kaji I, Karaki S, Fukami Y, Terasaki M, Kuwahara A (2009) Secretory effects of a luminal bitter tastant and expressions of bitter taste receptors, T2Rs, in the human and rat large intestine. Am J Physiol Gastrointest Liver Physiol 296:G971–G981

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Rozengurt N, Wu SV, Chen MC, Huang C, Sternini C, Rozengurt E (2006) Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am J Physiol Gastrointest Liver Physiol 291:G792–G802

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Wu SV, Chen MC, Rozengurt E (2005) Genomic organization, expression, and function of bitter taste receptors (T2R) in mouse and rat. Physiol Genom 22:139–149

    CAS  Article  Google Scholar 

  32. 32.

    Glendinning JI, Yiin YM, Ackroff K, Sclafani A (2008) Intragastric infusion of denatonium conditions flavor aversions and delays gastric emptying in rodents. Physiol Behav 93:757–765

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Janssen S, Laermans J, Verhulst PJ, Thijs T, Tack J, Depoortere I (2011) Bitter taste receptors and alpha-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc Natl Acad Sci USA 108:2094–2099

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Yang N, Lei Z, Li X, Zhao J, Liu T, Ning N, Xiao A, Xu L, Li J (2014) Chloroquine stimulates Cl– secretion by Ca2+ activated Cl– channels in rat ileum. PLoS One 9:e87627

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Green BG (2012) Chemesthesis and the chemical senses as components of a “chemofensor complex”. Chem Senses 37:201–206

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Chen MC, Wu SV, Reeve JR Jr, Rozengurt E (2006) Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. Am J Physiol Cell Physiol 291:C726–C739

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Jeon TI, Seo YK, Osborne TF (2011) Gut bitter taste receptor signalling induces ABCB1 through a mechanism involving CCK. Biochem J 438:33–37

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Jeon TI, Zhu B, Larson JL, Osborne TF (2008) SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice. J Clin Invest 118:3693–3700

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Kim KS, Egan JM, Jang HJ (2014) Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia 57:2117–2125

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Masuho I, Tateyama M, Saitoh O (2005) Characterization of bitter taste responses of intestinal STC-1 cells. Chem Senses 30:281–290

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Prandi S, Bromke M, Hubner S, Voigt A, Boehm U, Meyerhof W, Behrens M (2013) A subset of mouse colonic goblet cells expresses the bitter taste receptor Tas2r131. PLoS One 8:e82820

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Vegezzi G, Anselmi L, Huynh J, Barocelli E, Rozengurt E, Raybould H, Sternini C (2014) Diet-induced regulation of bitter taste receptor subtypes in the mouse gastrointestinal tract. PLoS One 9:e107732

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. 43.

    Foster SR, Porrello ER, Purdue B, Chan HW, Voigt A, Frenzel S, Hannan RD, Moritz KM, Simmons DG, Molenaar P, Roura E, Boehm U, Meyerhof W, Thomas WG (2013) Expression, regulation and putative nutrient-sensing function of taste GPCRs in the heart. PLoS One 8:e64579

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Voigt A, Hubner S, Doring L, Perlach N, Hermans-Borgmeyer I, Boehm U, Meyerhof W (2015) Cre-mediated recombination in Tas2r131 cells-a unique way to explore bitter taste receptor function inside and outside of the taste system. Chem Senses 40:627–639

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Voigt A, Hubner S, Lossow K, Hermans-Borgmeyer I, Boehm U, Meyerhof W (2012) Genetic labeling of Tas1r1 and Tas2r131 taste receptor cells in mice. Chem Senses 37:897–911

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Rodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25:139–140

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37:43–53

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, Alba MM, Messeguer X (2003) Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31:3651–3653

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18:333–334

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Pruss M, Reuter I, Schacherer F (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28:316–319

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Rossler P, Kroner C, Freitag J, Noe J, Breer H (1998) Identification of a phospholipase C beta subtype in rat taste cells. Eur J Cell Biol 77:253–261

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Bezencon C, Furholz A, Raymond F, Mansourian R, Metairon S, Le Coutre J, Damak S (2008) Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J Comp Neurol 509:514–525

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Bezencon C, le Coutre J, Damak S (2007) Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses 32:41–49

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Facer P, Bishop AE, Lloyd RV, Wilson BS, Hennessy RJ, Polak JM (1985) Chromogranin: a newly recognized marker for endocrine cells of the human gastrointestinal tract. Gastroenterology 89:1366–1373

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Park J, Kim KS, Kim KH, Lee IS, Jeong HS, Kim Y, Jang HJ (2015) GLP-1 secretion is stimulated by 1,10-phenanthroline via colocalized T2R5 signal transduction in human enteroendocrine L cell. Biochem Biophys Res Commun 468:306–311

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Robine S, Huet C, Moll R, Sahuquillo-Merino C, Coudrier E, Zweibaum A, Louvard D (1985) Can villin be used to identify malignant and undifferentiated normal digestive epithelial cells? Proc Natl Acad Sci USA 82:8488–8492

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Gerbe F, Legraverend C, Jay P (2012) The intestinal epithelium tuft cells: specification and function. Cell Mol Life Sci 69:2907–2917

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12:319–330

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, Buller HA, Dekker J, Van Seuningen I, Renes IB, Einerhand AW (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131:117–129

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105:15064–15069

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    McGuckin MA, Linden SK, Sutton P, Florin TH (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9:265–278

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, Newberry RD, Miller MJ (2012) Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483:345–349

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Oullette AJ (2012) Paneth cells. In: Ghishan FK, Kaunitz JD, Merchant JL, Said HM, Wood JD (eds) Physiology of the gastrointestinal tract, 5th edn. Academic Press, Boston, pp 1211–1228

  66. 66.

    Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, Kishi C, Kc W, Carrero JA, Hunt S, Stone CD, Brunt EM, Xavier RJ, Sleckman BP, Li E, Mizushima N, Stappenbeck TS, Virgin HWt (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259–263

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Avau B, Bauters D, Steensels S, Vancleef L, Laermans J, Lesuisse J, Buyse J, Lijnen HR, Tack J, Depoortere I (2015) The gustatory signaling pathway and bitter taste receptors affect the development of obesity and adipocyte metabolism in mice. PLoS One 10:e0145538

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Avau B, Rotondo A, Thijs T, Andrews CN, Janssen P, Tack J, Depoortere I (2015) Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation. Sci Rep 5:15985

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Foster SR, Porrello ER, Stefani M, Smith NJ, Molenaar P, dos Remedios CG, Thomas WG, Ramialison M (2015) Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation. Naunyn Schmiedebergs Arch Pharmacol 388:1009–1027

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Becker KG, Swergold GD, Ozato K, Thayer RE (1993) Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum Mol Genet 2:1697–1702

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Chen F, Castranova V, Shi X, Demers LM (1999) New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 45:7–17

    CAS  PubMed  Google Scholar 

  73. 73.

    Hatada EN, Chen-Kiang S, Scheidereit C (2000) Interaction and functional interference of C/EBPbeta with octamer factors in immunoglobulin gene transcription. Eur J Immunol 30:174–184

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Jain J, Nalefski EA, McCaffrey PG, Johnson RS, Spiegelman BM, Papaioannou V, Rao A (1994) Normal peripheral T-cell function in c-Fos-deficient mice. Mol Cell Biol 14:1566–1574

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Legraverend C, Antonson P, Flodby P, Xanthopoulos KG (1993) High level activity of the mouse CCAAT/enhancer binding protein (C/EBP alpha) gene promoter involves autoregulation and several ubiquitous transcription factors. Nucleic Acids Res 21:1735–1742

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Mensah-Osman EJ, Veniaminova NA, Merchant JL (2011) Menin and JunD regulate gastrin gene expression through proximal DNA elements. Am J Physiol Gastrointest Liver Physiol 301:G783–G790

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Zhao FQ (2013) Octamer-binding transcription factors: genomics and functions. Front Biosci (Landmark Ed) 18:1051–1071

    CAS  Article  Google Scholar 

  78. 78.

    Shaw-Smith CJ, Walters JR (1997) Regional expression of intestinal genes for nutrient absorption. Gut 40:5–8

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Kawajiri K, Kobayashi Y, Ohtake F, Ikuta T, Matsushima Y, Mimura J, Pettersson S, Pollenz RS, Sakaki T, Hirokawa T, Akiyama T, Kurosumi M, Poellinger L, Kato S, Fujii-Kuriyama Y (2009) Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+mice with natural ligands. Proc Natl Acad Sci USA 106:13481–13486

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Xu H, Zhang B, Li J, Chen H, Wang C, Ghishan FK (2010) Transcriptional inhibition of intestinal NHE8 expression by glucocorticoids involves Pax5. Am J Physiol Gastrointest Liver Physiol 299:G921–G927

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Rozengurt E (2006) Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut. Am J Physiol Gastrointest Liver Physiol 291:G171–G177

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Gu F, Liu X, Liang J, Chen J, Chen F, Li F (2015) Bitter taste receptor mTas2r105 is expressed in small intestinal villus and crypts. Biochem Biophys Res Commun 463:934–941

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Bjerknes M, Cheng H (1981) The stem-cell zone of the small intestinal epithelium. V. Evidence for controls over orientation of boundaries between the stem-cell zone, proliferative zone, and the maturation zone. Am J Anat 160:105–112

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Clevers H (2013) The intestinal crypt, a prototype stem cell compartment. Cell 154:274–284

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Mace OJ, Affleck J, Patel N, Kellett GL (2007) Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol 582:379–392

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Behrens M, Foerster S, Staehler F, Raguse JD, Meyerhof W (2007) Gustatory expression pattern of the human TAS2R bitter receptor gene family reveals a heterogenous population of bitter responsive taste receptor cells. J Neurosci 27:12630–12640

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Malki A, Fiedler J, Fricke K, Ballweg I, Pfaffl MW, Krautwurst D (2015) Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J Leukoc Biol 97:533–545

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Roberts MS, Magnusson BM, Burczynski FJ, Weiss M (2002) Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet 41:751–790

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma S, Fujisawa Y, Fujino M (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278:9435–9440

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Barker N (2014) Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 15:19–33

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9:356–368

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Clevers HC, Bevins CL (2013) Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol 75:289–311

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105:20858–20863

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Wells JM, Rossi O, Meijerink M, van Baarlen P (2011) Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci USA 108(Suppl 1):4607–4614

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Belitz HD, Wieser H (1985) Bitter compounds: occurrence and structure-activity relationships. Food Rev Int 1:271–354

    CAS  Article  Google Scholar 

  97. 97.

    Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Christensen LD, Moser C, Jensen PO, Rasmussen TB, Christophersen L, Kjelleberg S, Kumar N, Hoiby N, Givskov M, Bjarnsholt T (2007) Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology 153:2312–2320

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:e14

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Bally M, Chapon V, Salmond GP, Bycroft BW et al (1995) Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:9427–9431

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Swearingen MC, Sabag-Daigle A, Ahmer BM (2013) Are there acyl-homoserine lactones within mammalian intestines? J Bacteriol 195:173–179

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE (2010) Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA 107:3210–3215

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Rumio C, Besusso D, Palazzo M, Selleri S, Sfondrini L, Dubini F, Menard S, Balsari A (2004) Degranulation of Paneth cells via toll-like receptor 9. Am J Pathol 165:373–381

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Tanabe H, Ayabe T, Bainbridge B, Guina T, Ernst RK, Darveau RP, Miller SI, Ouellette AJ (2005) Mouse Paneth cell secretory responses to cell surface glycolipids of virulent and attenuated pathogenic bacteria. Infect Immun 73:2312–2320

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. H. J. Fehling for providing the ROSA26tdRFP mouse strain, S. Demgensky for the perfusion of mouse tissues and the genotyping of the mice, Dr. S. Huebner and J. Wuerfel for establishing the qRT-PCR. This work was supported by the German Ministry of Education and Research (BMBF, #0315669, to WM and MB).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maik Behrens.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prandi, S., Voigt, A., Meyerhof, W. et al. Expression profiling of Tas2r genes reveals a complex pattern along the mouse GI tract and the presence of Tas2r131 in a subset of intestinal Paneth cells. Cell. Mol. Life Sci. 75, 49–65 (2018). https://doi.org/10.1007/s00018-017-2621-y

Download citation

Keywords

  • Tas2r
  • Paneth cell
  • Small intestine
  • Bitter taste receptor
  • Taste