Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 1, pp 49–65 | Cite as

Expression profiling of Tas2r genes reveals a complex pattern along the mouse GI tract and the presence of Tas2r131 in a subset of intestinal Paneth cells

  • Simone Prandi
  • Anja Voigt
  • Wolfgang Meyerhof
  • Maik Behrens
Original Article

Abstract

The chemical variability of the intestinal lumen requires the presence of molecular receptors detecting the various substances naturally occurring in the diet and as a result of the activity of the microbiota. Despite their early discovery, intestinal bitter taste receptors (Tas2r) have not yet been assigned an unambiguous physiological function. Recently, using a CRE-recombinant approach we showed that the Tas2r131 gene is expressed in a subset of mucin-producing goblet cells in the colon of mice. Moreover, we also demonstrated that the expression of the Tas2r131 locus is not restricted to this region. In the present study we aimed at characterizing the presence of positive cells also in other gastrointestinal regions. Our results show that Tas2r131+ cells appear in the jejunum and the ileum, and are absent from the stomach and the duodenum. We identified the positive cells as a subpopulation of deep-crypt Paneth cells in the ileum, strengthening the notion of a defensive role for Tas2rs in the gut. To get a broader perspective on the expression of bitter taste receptors in the alimentary canal, we quantified the expression of all 35 Tas2r genes along the gastrointestinal tract by qRT-PCR. We discovered that the number and expression level of Tas2r genes profoundly vary along the alimentary canal, with the stomach and the colon expressing the largest subsets.

Keywords

Tas2r Paneth cell Small intestine Bitter taste receptor Taste 

Notes

Acknowledgements

We thank Dr. H. J. Fehling for providing the ROSA26tdRFP mouse strain, S. Demgensky for the perfusion of mouse tissues and the genotyping of the mice, Dr. S. Huebner and J. Wuerfel for establishing the qRT-PCR. This work was supported by the German Ministry of Education and Research (BMBF, #0315669, to WM and MB).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

18_2017_2621_MOESM1_ESM.pdf (31 kb)
Supplementary material 1 (PDF 30 kb)
18_2017_2621_MOESM2_ESM.pdf (202 kb)
Supplementary material 2 (PDF 202 kb)
18_2017_2621_MOESM3_ESM.pdf (29 kb)
Supplementary material 3 (PDF 28 kb)
18_2017_2621_MOESM4_ESM.pdf (28 kb)
Supplementary material 4 (PDF 28 kb)

References

  1. 1.
    Lindemann B (1996) Taste reception. Physiol Rev 76:718–766PubMedCrossRefGoogle Scholar
  2. 2.
    Meyerhof W (2005) Elucidation of mammalian bitter taste. Rev Physiol Biochem Pharmacol 154:37–72PubMedGoogle Scholar
  3. 3.
    Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416:199–202PubMedCrossRefGoogle Scholar
  4. 4.
    Vigues S, Dotson CD, Munger SD (2009) The receptor basis of sweet taste in mammals. Results Probl Cell Differ 47:187–202PubMedCrossRefGoogle Scholar
  5. 5.
    Behrens M, Meyerhof W, Hellfritsch C, Hofmann T (2011) Sweet and umami taste: natural products, their chemosensory targets, and beyond. Angew Chem Int Ed Engl 50:2220–2242PubMedCrossRefGoogle Scholar
  6. 6.
    Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106:381–390PubMedCrossRefGoogle Scholar
  7. 7.
    Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702PubMedCrossRefGoogle Scholar
  8. 8.
    Behrens M, Korsching SI, Meyerhof W (2014) Tuning properties of avian and frog bitter taste receptors dynamically fit gene repertoire sizes. Mol Biol Evol 31:3216–3227PubMedCrossRefGoogle Scholar
  9. 9.
    Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) T2Rs function as bitter taste receptors. Cell 100:703–711PubMedCrossRefGoogle Scholar
  10. 10.
    Lossow K, Hubner S, Roudnitzky N, Slack JP, Pollastro F, Behrens M, Meyerhof W (2016) Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans. J Biol Chem 291:15358–15377PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Matsunami H, Montmayeur JP, Buck LB (2000) A family of candidate taste receptors in human and mouse. Nature 404:601–604PubMedCrossRefGoogle Scholar
  12. 12.
    Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170PubMedCrossRefGoogle Scholar
  13. 13.
    Hayakawa T, Suzuki-Hashido N, Matsui A, Go Y (2014) Frequent expansions of the bitter taste receptor gene repertoire during evolution of mammals in the Euarchontoglires clade. Mol Biol Evol 31:2018–2031PubMedCrossRefGoogle Scholar
  14. 14.
    Li D, Zhang J (2014) Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire. Mol Biol Evol 31:303–309PubMedCrossRefGoogle Scholar
  15. 15.
    Shi P, Zhang J, Yang H, Zhang YP (2003) Adaptive diversification of bitter taste receptor genes in Mammalian evolution. Mol Biol Evol 20:805–814PubMedCrossRefGoogle Scholar
  16. 16.
    Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190:285–296PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Behrens M, Prandi S, Meyerhof W (2017) Taste receptor gene expression outside the gustatory system. In: Krautwurst D (ed) Topics in medicinal chemistry 23: Taste and smell. Springer International Publishing, pp 1–34Google Scholar
  18. 18.
    Dyer J, Salmon KS, Zibrik L, Shirazi-Beechey SP (2005) Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33:302–305PubMedCrossRefGoogle Scholar
  19. 19.
    Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E (2002) Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci USA 99:2392–2397PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Daly K, Al-Rammahi M, Arora DK, Moran AW, Proudman CJ, Ninomiya Y, Shirazi-Beechey SP (2012) Expression of sweet receptor components in equine small intestine: relevance to intestinal glucose transport. Am J Physiol Regul Integr Comp Physiol 303:R199–R208PubMedCrossRefGoogle Scholar
  21. 21.
    Daly K, Al-Rammahi M, Moran A, Marcello M, Ninomiya Y, Shirazi-Beechey SP (2013) Sensing of amino acids by the gut-expressed taste receptor T1R1–T1R3 stimulates CCK secretion. Am J Physiol Gastrointest Liver Physiol 304:G271–G282PubMedCrossRefGoogle Scholar
  22. 22.
    Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF, Egan JM (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA 104:15069–15074PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na+ -glucose cotransporter 1. Proc Natl Acad Sci USA 104:15075–15080PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kendig DM, Hurst NR, Bradley ZL, Mahavadi S, Kuemmerle JF, Lyall V, DeSimone J, Murthy KS, Grider JR (2014) Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon. Am J Physiol Gastrointest Liver Physiol 307:G1100–G1107PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Shirazi-Beechey SP, Moran AW, Batchelor DJ, Daly K, Al-Rammahi M (2011) Glucose sensing and signalling; regulation of intestinal glucose transport. Proc Nutr Soc 70:185–193PubMedCrossRefGoogle Scholar
  26. 26.
    Gerspach AC, Steinert RE, Schonenberger L, Graber-Maier A, Beglinger C (2011) The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am J Physiol Endocrinol Metab 301:E317–E325PubMedCrossRefGoogle Scholar
  27. 27.
    Steinert RE, Gerspach AC, Gutmann H, Asarian L, Drewe J, Beglinger C (2011) The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin Nutr 30:524–532PubMedCrossRefGoogle Scholar
  28. 28.
    Dotson CD, Zhang L, Xu H, Shin YK, Vigues S, Ott SH, Elson AE, Choi HJ, Shaw H, Egan JM, Mitchell BD, Li X, Steinle NI, Munger SD (2008) Bitter taste receptors influence glucose homeostasis. PLoS One 3:e3974PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kaji I, Karaki S, Fukami Y, Terasaki M, Kuwahara A (2009) Secretory effects of a luminal bitter tastant and expressions of bitter taste receptors, T2Rs, in the human and rat large intestine. Am J Physiol Gastrointest Liver Physiol 296:G971–G981PubMedCrossRefGoogle Scholar
  30. 30.
    Rozengurt N, Wu SV, Chen MC, Huang C, Sternini C, Rozengurt E (2006) Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am J Physiol Gastrointest Liver Physiol 291:G792–G802PubMedCrossRefGoogle Scholar
  31. 31.
    Wu SV, Chen MC, Rozengurt E (2005) Genomic organization, expression, and function of bitter taste receptors (T2R) in mouse and rat. Physiol Genom 22:139–149CrossRefGoogle Scholar
  32. 32.
    Glendinning JI, Yiin YM, Ackroff K, Sclafani A (2008) Intragastric infusion of denatonium conditions flavor aversions and delays gastric emptying in rodents. Physiol Behav 93:757–765PubMedCrossRefGoogle Scholar
  33. 33.
    Janssen S, Laermans J, Verhulst PJ, Thijs T, Tack J, Depoortere I (2011) Bitter taste receptors and alpha-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc Natl Acad Sci USA 108:2094–2099PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yang N, Lei Z, Li X, Zhao J, Liu T, Ning N, Xiao A, Xu L, Li J (2014) Chloroquine stimulates Cl– secretion by Ca2+ activated Cl– channels in rat ileum. PLoS One 9:e87627PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Green BG (2012) Chemesthesis and the chemical senses as components of a “chemofensor complex”. Chem Senses 37:201–206PubMedCrossRefGoogle Scholar
  36. 36.
    Chen MC, Wu SV, Reeve JR Jr, Rozengurt E (2006) Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. Am J Physiol Cell Physiol 291:C726–C739PubMedCrossRefGoogle Scholar
  37. 37.
    Jeon TI, Seo YK, Osborne TF (2011) Gut bitter taste receptor signalling induces ABCB1 through a mechanism involving CCK. Biochem J 438:33–37PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Jeon TI, Zhu B, Larson JL, Osborne TF (2008) SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice. J Clin Invest 118:3693–3700PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kim KS, Egan JM, Jang HJ (2014) Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia 57:2117–2125PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Masuho I, Tateyama M, Saitoh O (2005) Characterization of bitter taste responses of intestinal STC-1 cells. Chem Senses 30:281–290PubMedCrossRefGoogle Scholar
  41. 41.
    Prandi S, Bromke M, Hubner S, Voigt A, Boehm U, Meyerhof W, Behrens M (2013) A subset of mouse colonic goblet cells expresses the bitter taste receptor Tas2r131. PLoS One 8:e82820PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Vegezzi G, Anselmi L, Huynh J, Barocelli E, Rozengurt E, Raybould H, Sternini C (2014) Diet-induced regulation of bitter taste receptor subtypes in the mouse gastrointestinal tract. PLoS One 9:e107732PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Foster SR, Porrello ER, Purdue B, Chan HW, Voigt A, Frenzel S, Hannan RD, Moritz KM, Simmons DG, Molenaar P, Roura E, Boehm U, Meyerhof W, Thomas WG (2013) Expression, regulation and putative nutrient-sensing function of taste GPCRs in the heart. PLoS One 8:e64579PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Voigt A, Hubner S, Doring L, Perlach N, Hermans-Borgmeyer I, Boehm U, Meyerhof W (2015) Cre-mediated recombination in Tas2r131 cells-a unique way to explore bitter taste receptor function inside and outside of the taste system. Chem Senses 40:627–639PubMedCrossRefGoogle Scholar
  45. 45.
    Voigt A, Hubner S, Lossow K, Hermans-Borgmeyer I, Boehm U, Meyerhof W (2012) Genetic labeling of Tas1r1 and Tas2r131 taste receptor cells in mice. Chem Senses 37:897–911PubMedCrossRefGoogle Scholar
  46. 46.
    Rodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25:139–140PubMedCrossRefGoogle Scholar
  47. 47.
    Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37:43–53PubMedCrossRefGoogle Scholar
  48. 48.
    Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, Alba MM, Messeguer X (2003) Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31:3651–3653PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18:333–334PubMedCrossRefGoogle Scholar
  51. 51.
    Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Pruss M, Reuter I, Schacherer F (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28:316–319PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Rossler P, Kroner C, Freitag J, Noe J, Breer H (1998) Identification of a phospholipase C beta subtype in rat taste cells. Eur J Cell Biol 77:253–261PubMedCrossRefGoogle Scholar
  53. 53.
    Bezencon C, Furholz A, Raymond F, Mansourian R, Metairon S, Le Coutre J, Damak S (2008) Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J Comp Neurol 509:514–525PubMedCrossRefGoogle Scholar
  54. 54.
    Bezencon C, le Coutre J, Damak S (2007) Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses 32:41–49PubMedCrossRefGoogle Scholar
  55. 55.
    Facer P, Bishop AE, Lloyd RV, Wilson BS, Hennessy RJ, Polak JM (1985) Chromogranin: a newly recognized marker for endocrine cells of the human gastrointestinal tract. Gastroenterology 89:1366–1373PubMedCrossRefGoogle Scholar
  56. 56.
    Park J, Kim KS, Kim KH, Lee IS, Jeong HS, Kim Y, Jang HJ (2015) GLP-1 secretion is stimulated by 1,10-phenanthroline via colocalized T2R5 signal transduction in human enteroendocrine L cell. Biochem Biophys Res Commun 468:306–311PubMedCrossRefGoogle Scholar
  57. 57.
    van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260PubMedCrossRefGoogle Scholar
  58. 58.
    Robine S, Huet C, Moll R, Sahuquillo-Merino C, Coudrier E, Zweibaum A, Louvard D (1985) Can villin be used to identify malignant and undifferentiated normal digestive epithelial cells? Proc Natl Acad Sci USA 82:8488–8492PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gerbe F, Legraverend C, Jay P (2012) The intestinal epithelium tuft cells: specification and function. Cell Mol Life Sci 69:2907–2917PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12:319–330PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, Buller HA, Dekker J, Van Seuningen I, Renes IB, Einerhand AW (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131:117–129PubMedCrossRefGoogle Scholar
  62. 62.
    Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105:15064–15069PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    McGuckin MA, Linden SK, Sutton P, Florin TH (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9:265–278PubMedCrossRefGoogle Scholar
  64. 64.
    McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, Newberry RD, Miller MJ (2012) Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483:345–349PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Oullette AJ (2012) Paneth cells. In: Ghishan FK, Kaunitz JD, Merchant JL, Said HM, Wood JD (eds) Physiology of the gastrointestinal tract, 5th edn. Academic Press, Boston, pp 1211–1228Google Scholar
  66. 66.
    Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418PubMedCrossRefGoogle Scholar
  67. 67.
    Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, Kishi C, Kc W, Carrero JA, Hunt S, Stone CD, Brunt EM, Xavier RJ, Sleckman BP, Li E, Mizushima N, Stappenbeck TS, Virgin HWt (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259–263PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Avau B, Bauters D, Steensels S, Vancleef L, Laermans J, Lesuisse J, Buyse J, Lijnen HR, Tack J, Depoortere I (2015) The gustatory signaling pathway and bitter taste receptors affect the development of obesity and adipocyte metabolism in mice. PLoS One 10:e0145538PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Avau B, Rotondo A, Thijs T, Andrews CN, Janssen P, Tack J, Depoortere I (2015) Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation. Sci Rep 5:15985PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Foster SR, Porrello ER, Stefani M, Smith NJ, Molenaar P, dos Remedios CG, Thomas WG, Ramialison M (2015) Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation. Naunyn Schmiedebergs Arch Pharmacol 388:1009–1027PubMedCrossRefGoogle Scholar
  71. 71.
    Becker KG, Swergold GD, Ozato K, Thayer RE (1993) Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum Mol Genet 2:1697–1702PubMedCrossRefGoogle Scholar
  72. 72.
    Chen F, Castranova V, Shi X, Demers LM (1999) New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 45:7–17PubMedGoogle Scholar
  73. 73.
    Hatada EN, Chen-Kiang S, Scheidereit C (2000) Interaction and functional interference of C/EBPbeta with octamer factors in immunoglobulin gene transcription. Eur J Immunol 30:174–184PubMedCrossRefGoogle Scholar
  74. 74.
    Jain J, Nalefski EA, McCaffrey PG, Johnson RS, Spiegelman BM, Papaioannou V, Rao A (1994) Normal peripheral T-cell function in c-Fos-deficient mice. Mol Cell Biol 14:1566–1574PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Legraverend C, Antonson P, Flodby P, Xanthopoulos KG (1993) High level activity of the mouse CCAAT/enhancer binding protein (C/EBP alpha) gene promoter involves autoregulation and several ubiquitous transcription factors. Nucleic Acids Res 21:1735–1742PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Mensah-Osman EJ, Veniaminova NA, Merchant JL (2011) Menin and JunD regulate gastrin gene expression through proximal DNA elements. Am J Physiol Gastrointest Liver Physiol 301:G783–G790PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Zhao FQ (2013) Octamer-binding transcription factors: genomics and functions. Front Biosci (Landmark Ed) 18:1051–1071CrossRefGoogle Scholar
  78. 78.
    Shaw-Smith CJ, Walters JR (1997) Regional expression of intestinal genes for nutrient absorption. Gut 40:5–8PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kawajiri K, Kobayashi Y, Ohtake F, Ikuta T, Matsushima Y, Mimura J, Pettersson S, Pollenz RS, Sakaki T, Hirokawa T, Akiyama T, Kurosumi M, Poellinger L, Kato S, Fujii-Kuriyama Y (2009) Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+mice with natural ligands. Proc Natl Acad Sci USA 106:13481–13486PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Xu H, Zhang B, Li J, Chen H, Wang C, Ghishan FK (2010) Transcriptional inhibition of intestinal NHE8 expression by glucocorticoids involves Pax5. Am J Physiol Gastrointest Liver Physiol 299:G921–G927PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Rozengurt E (2006) Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut. Am J Physiol Gastrointest Liver Physiol 291:G171–G177PubMedCrossRefGoogle Scholar
  82. 82.
    Gu F, Liu X, Liang J, Chen J, Chen F, Li F (2015) Bitter taste receptor mTas2r105 is expressed in small intestinal villus and crypts. Biochem Biophys Res Commun 463:934–941PubMedCrossRefGoogle Scholar
  83. 83.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007PubMedCrossRefGoogle Scholar
  84. 84.
    Bjerknes M, Cheng H (1981) The stem-cell zone of the small intestinal epithelium. V. Evidence for controls over orientation of boundaries between the stem-cell zone, proliferative zone, and the maturation zone. Am J Anat 160:105–112PubMedCrossRefGoogle Scholar
  85. 85.
    Clevers H (2013) The intestinal crypt, a prototype stem cell compartment. Cell 154:274–284PubMedCrossRefGoogle Scholar
  86. 86.
    Mace OJ, Affleck J, Patel N, Kellett GL (2007) Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol 582:379–392PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Behrens M, Foerster S, Staehler F, Raguse JD, Meyerhof W (2007) Gustatory expression pattern of the human TAS2R bitter receptor gene family reveals a heterogenous population of bitter responsive taste receptor cells. J Neurosci 27:12630–12640PubMedCrossRefGoogle Scholar
  88. 88.
    Malki A, Fiedler J, Fricke K, Ballweg I, Pfaffl MW, Krautwurst D (2015) Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J Leukoc Biol 97:533–545PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Roberts MS, Magnusson BM, Burczynski FJ, Weiss M (2002) Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet 41:751–790PubMedCrossRefGoogle Scholar
  90. 90.
    Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma S, Fujisawa Y, Fujino M (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278:9435–9440PubMedCrossRefGoogle Scholar
  91. 91.
    Barker N (2014) Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 15:19–33PubMedCrossRefGoogle Scholar
  92. 92.
    Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9:356–368PubMedCrossRefGoogle Scholar
  93. 93.
    Clevers HC, Bevins CL (2013) Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol 75:289–311PubMedCrossRefGoogle Scholar
  94. 94.
    Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105:20858–20863PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Wells JM, Rossi O, Meijerink M, van Baarlen P (2011) Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci USA 108(Suppl 1):4607–4614PubMedCrossRefGoogle Scholar
  96. 96.
    Belitz HD, Wieser H (1985) Bitter compounds: occurrence and structure-activity relationships. Food Rev Int 1:271–354CrossRefGoogle Scholar
  97. 97.
    Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Christensen LD, Moser C, Jensen PO, Rasmussen TB, Christophersen L, Kjelleberg S, Kumar N, Hoiby N, Givskov M, Bjarnsholt T (2007) Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology 153:2312–2320PubMedCrossRefGoogle Scholar
  99. 99.
    Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:e14PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Bally M, Chapon V, Salmond GP, Bycroft BW et al (1995) Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:9427–9431PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Swearingen MC, Sabag-Daigle A, Ahmer BM (2013) Are there acyl-homoserine lactones within mammalian intestines? J Bacteriol 195:173–179PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE (2010) Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA 107:3210–3215PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Rumio C, Besusso D, Palazzo M, Selleri S, Sfondrini L, Dubini F, Menard S, Balsari A (2004) Degranulation of Paneth cells via toll-like receptor 9. Am J Pathol 165:373–381PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Tanabe H, Ayabe T, Bainbridge B, Guina T, Ernst RK, Darveau RP, Miller SI, Ouellette AJ (2005) Mouse Paneth cell secretory responses to cell surface glycolipids of virulent and attenuated pathogenic bacteria. Infect Immun 73:2312–2320PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Molecular GeneticsGerman Institute for Human Nutrition Potsdam-RehbrueckeNuthetalGermany

Personalised recommendations