Cellular and Molecular Life Sciences

, Volume 75, Issue 2, pp 275–290 | Cite as

Mechanisms of protein homeostasis (proteostasis) maintain stem cell identity in mammalian pluripotent stem cells

  • Alireza Noormohammadi
  • Giuseppe Calculli
  • Ricardo Gutierrez-Garcia
  • Amirabbas Khodakarami
  • Seda Koyuncu
  • David VilchezEmail author


Protein homeostasis, or proteostasis, is essential for cell function, development, and organismal viability. The composition of the proteome is adjusted to the specific requirements of a particular cell type and status. Moreover, multiple metabolic and environmental conditions challenge the integrity of the proteome. To maintain the quality of the proteome, the proteostasis network monitors proteins from their synthesis through their degradation. Whereas somatic stem cells lose their ability to maintain proteostasis with age, immortal pluripotent stem cells exhibit a stringent proteostasis network associated with their biological function and intrinsic characteristics. Moreover, growing evidence indicates that enhanced proteostasis mechanisms play a central role in immortality and cell fate decisions of pluripotent stem cells. Here, we will review new insights into the melding fields of proteostasis and pluripotency and their implications for the understanding of organismal development and survival.


Autophagy Chaperones Differentiation Pluripotency Proteostasis Proteasome Stress responses 



Chaperone-mediated autophagy


Endoplasmic reticulum


Heat-shock chaperone proteins


Heat-shock response


Human embryonic stem cells


Induced pluripotent stem cells


J-domain proteins


Mouse embryonic stem cells


Neural stem cells


Nucleotide exchange factors


Ubiquitin proteasome system


Unfolded protein response



This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (VI742/1-1 and CECAD).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353(6294):aac4354PubMedCrossRefGoogle Scholar
  2. 2.
    Hartl FU (2016) Cellular homeostasis and aging. Annu Rev Biochem 85:1–4PubMedCrossRefGoogle Scholar
  3. 3.
    Balch WE et al (2008) Adapting proteostasis for disease intervention. Science 319(5865):916–919PubMedCrossRefGoogle Scholar
  4. 4.
    Powers ET et al (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991PubMedCrossRefGoogle Scholar
  5. 5.
    Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lee HJ, Gutierrez-Garcia R, Vilchez D (2017) Embryonic stem cells: a novel paradigm to study proteostasis? FEBS J 284(3):391–398PubMedCrossRefGoogle Scholar
  7. 7.
    Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659PubMedCrossRefGoogle Scholar
  8. 8.
    Garcia-Prat L, Sousa-Victor P, Munoz-Canoves P (2017) Proteostatic and metabolic control of stemness. Cell Stem Cell 20(5):593–608PubMedCrossRefGoogle Scholar
  9. 9.
    Vilchez D, Simic MS, Dillin A (2014) Proteostasis and aging of stem cells. Trends Cell Biol 24(3):161–170PubMedCrossRefGoogle Scholar
  10. 10.
    Koyuncu S et al (2015) Defining the general principles of stem cell aging: lessons from organismal models. Curr Stem Cell Rep 1(3):162–169CrossRefGoogle Scholar
  11. 11.
    Lopez-Otin C et al (2013) The hallmarks of aging. Cell 153(6):1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cohen E, Dillin A (2008) The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci 9(10):759–767PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Taylor RC, Dillin A (2011) Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol 3(5):a004440PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Weinberger L et al (2016) Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 17(3):155–169PubMedCrossRefGoogle Scholar
  15. 15.
    Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRefGoogle Scholar
  16. 16.
    Miura T, Mattson MP, Rao MS (2004) Cellular lifespan and senescence signaling in embryonic stem cells. Aging Cell 3(6):333–343PubMedCrossRefGoogle Scholar
  17. 17.
    Aguilo F et al (2015) Coordination of m(6)A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 17(6):689–704PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ye J, Blelloch R (2014) Regulation of pluripotency by RNA binding proteins. Cell Stem Cell 15(3):271–280PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    You KT, Park J, Kim VN (2015) Role of the small subunit processome in the maintenance of pluripotent stem cells. Genes Dev 29(19):2004–2009PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hinnebusch AG, Lorsch JR (2012) The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol 4(10):a011544PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Pavitt GD, Ron D (2012) New insights into translational regulation in the endoplasmic reticulum unfolded protein response. Cold Spring Harb Perspect Biol 4(6):a012278PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Buszczak M, Signer RA, Morrison SJ (2014) Cellular differences in protein synthesis regulate tissue homeostasis. Cell 159(2):242–251PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Signer RA et al (2014) Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509(7498):49–54PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fichelson P et al (2009) Live-imaging of single stem cells within their niche reveals that a U3snoRNP component segregates asymmetrically and is required for self-renewal in Drosophila. Nat Cell Biol 11(6):685–693PubMedCrossRefGoogle Scholar
  25. 25.
    Insco ML et al (2012) A self-limiting switch based on translational control regulates the transition from proliferation to differentiation in an adult stem cell lineage. Cell Stem Cell 11(5):689–700PubMedCrossRefGoogle Scholar
  26. 26.
    Thompson B, Wickens M, Kimble J (2007) Translational control in development. In: Mathews MB, Sonenberg N, Hershey JWB (eds) Translational control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 507–544Google Scholar
  27. 27.
    Zhang Q, Shalaby NA, Buszczak M (2014) Changes in rRNA transcription influence proliferation and cell fate within a stem cell lineage. Science 343(6168):298–301PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147(4):789–802PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Savic N et al (2014) lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs. Cell Stem Cell 15(6):720–734PubMedCrossRefGoogle Scholar
  30. 30.
    Sampath P et al (2008) A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2(5):448–460PubMedCrossRefGoogle Scholar
  31. 31.
    Barbosa C, Peixeiro I, Romao L (2013) Gene expression regulation by upstream open reading frames and human disease. PLoS Genet 9(8):e1003529PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Jia G, Fu Y, He C (2013) Reversible RNA adenosine methylation in biological regulation. Trends Genet 29(2):108–115PubMedCrossRefGoogle Scholar
  33. 33.
    Wang X et al (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505(7481):117–120PubMedCrossRefGoogle Scholar
  34. 34.
    Wang Y et al (2014) N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16(2):191–198PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Geula S et al (2015) Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347(6225):1002–1006PubMedCrossRefGoogle Scholar
  36. 36.
    Batista PJ et al (2014) m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15(6):707–719PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zhang J et al (2016) LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell 19(1):66–80PubMedCrossRefGoogle Scholar
  38. 38.
    Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332PubMedCrossRefGoogle Scholar
  39. 39.
    Brehme M et al (2014) A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 9(3):1135–1150PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    McClellan AJ et al (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121–135PubMedCrossRefGoogle Scholar
  41. 41.
    Albanese V et al (2006) Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124(1):75–88PubMedCrossRefGoogle Scholar
  42. 42.
    Noormohammadi A et al (2016) Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan. Nat Commun 7:13649PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Prinsloo E et al (2009) Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation? BioEssays 31(4):370–377PubMedCrossRefGoogle Scholar
  44. 44.
    Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294PubMedCrossRefGoogle Scholar
  45. 45.
    Trepel J et al (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10(8):537–549PubMedCrossRefGoogle Scholar
  46. 46.
    Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772PubMedCrossRefGoogle Scholar
  47. 47.
    Sreedhar AS et al (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562(1–3):11–15PubMedCrossRefGoogle Scholar
  48. 48.
    Saez I, Vilchez D (2014) The mechanistic links between proteasome activity, aging and age-related diseases. Curr Genom 15(1):38–51CrossRefGoogle Scholar
  49. 49.
    Bradley E et al (2012) Regulation of embryonic stem cell pluripotency by heat shock protein 90. Stem Cells 30(8):1624–1633PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Longshaw VM et al (2009) Knockdown of the co-chaperone Hop promotes extranuclear accumulation of Stat3 in mouse embryonic stem cells. Eur J Cell Biol 88(3):153–166PubMedCrossRefGoogle Scholar
  51. 51.
    Setati MM et al (2010) Leukemia inhibitory factor promotes Hsp90 association with STAT3 in mouse embryonic stem cells. IUBMB Life 62(1):61–66PubMedGoogle Scholar
  52. 52.
    Wanderling S et al (2007) GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. Mol Biol Cell 18(10):3764–3775PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Goloubinoff P (2017) Editorial: the HSP70 molecular chaperone machines. Front Mol Biosci 4:1PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Mayer MP (2013) Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 38(10):507–514PubMedCrossRefGoogle Scholar
  55. 55.
    Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858PubMedCrossRefGoogle Scholar
  56. 56.
    Finka A, Sharma SK, Goloubinoff P (2015) Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front Mol Biosci 2:29PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gottschling DE, Nystrom T (2017) The upsides and downsides of organelle interconnectivity. Cell 169(1):24–34PubMedCrossRefGoogle Scholar
  58. 58.
    Oh J, Lee YD, Wagers AJ (2014) Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med 20(8):870–880PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Son YS et al (2005) Heat shock 70-kDa protein 8 isoform 1 is expressed on the surface of human embryonic stem cells and downregulated upon differentiation. Stem Cells 23(10):1502–1513PubMedCrossRefGoogle Scholar
  60. 60.
    Saretzki G et al (2004) Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells 22(6):962–971PubMedCrossRefGoogle Scholar
  61. 61.
    Saretzki G et al (2008) Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells 26(2):455–464PubMedCrossRefGoogle Scholar
  62. 62.
    Gurbuxani S et al (2003) Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 22(43):6669–6678PubMedCrossRefGoogle Scholar
  63. 63.
    Battersby A et al (2007) Comparative proteomic analysis reveals differential expression of Hsp25 following the directed differentiation of mouse embryonic stem cells. Biochim Biophys Acta 1773(2):147–156PubMedCrossRefGoogle Scholar
  64. 64.
    Kaula SC et al (2000) Inactivation of p53 and life span extension of human diploid fibroblasts by mot-2. FEBS Lett 474(2–3):159–164PubMedCrossRefGoogle Scholar
  65. 65.
    Kaul SC et al (2002) Mortalin: present and prospective. Exp Gerontol 37(10–11):1157–1164PubMedCrossRefGoogle Scholar
  66. 66.
    Kaul SC et al (2003) Overexpressed mortalin (mot-2)/mthsp70/GRP75 and hTERT cooperate to extend the in vitro lifespan of human fibroblasts. Exp Cell Res 286(1):96–101PubMedCrossRefGoogle Scholar
  67. 67.
    Lopez T, Dalton K, Frydman J (2015) The mechanism and function of group II chaperonins. J Mol Biol 427(18):2919–2930PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Pashai N et al (2012) Genome-wide profiling of pluripotent cells reveals a unique molecular signature of human embryonic germ cells. PLoS One 7(6):e39088PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ellis RJ (1999) Chaperonins. Curr Biol 9(10):R352PubMedCrossRefGoogle Scholar
  70. 70.
    Levy-Rimler G et al (2001) The effect of nucleotides and mitochondrial chaperonin 10 on the structure and chaperone activity of mitochondrial chaperonin 60. Eur J Biochem 268(12):3465–3472PubMedCrossRefGoogle Scholar
  71. 71.
    Leitner A et al (2012) The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 20(5):814–825PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Spiess C et al (2004) Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol 14(11):598–604PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yam AY et al (2008) Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol 15(12):1255–1262PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Faustino RS et al (2010) Decoded calreticulin-deficient embryonic stem cell transcriptome resolves latent cardiophenotype. Stem Cells 28(7):1281–1291PubMedPubMedCentralGoogle Scholar
  75. 75.
    Mesaeli N et al (1999) Calreticulin is essential for cardiac development. J Cell Biol 144(5):857–868PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Li J et al (2002) Calreticulin reveals a critical Ca(2+) checkpoint in cardiac myofibrillogenesis. J Cell Biol 158(1):103–113PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Etchells SA et al (2005) The cotranslational contacts between ribosome-bound nascent polypeptides and the subunits of the hetero-oligomeric chaperonin TRiC probed by photocross-linking. J Biol Chem 280(30):28118–28126PubMedCrossRefGoogle Scholar
  78. 78.
    Priya S, Sharma SK, Goloubinoff P (2013) Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Lett 583(13):1981–1987CrossRefGoogle Scholar
  79. 79.
    Kitamura A et al (2006) Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat Cell Biol 8(10):1163–1170PubMedCrossRefGoogle Scholar
  80. 80.
    Nollen EA et al (2004) Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci USA 101(17):6403–6408PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Tam S et al (2006) The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 8(10):1155–1162PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Finkbeiner S (2011) Huntington’s disease. Cold Spring Harb Perspect Biol 3(6):a007476PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Sot B et al (2017) The chaperonin CCT inhibits assembly of alpha-synuclein amyloid fibrils by a specific, conformation-dependent interaction. Sci Rep 7:40859PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Nillegoda NB et al (2015) Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 524(7564):247–251PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bakthisaran R, Tangirala R, Rao M (2015) Ch, Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta 1854(4):291–319PubMedCrossRefGoogle Scholar
  86. 86.
    Mehlen P et al (1997) hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem 272(50):31657–31665PubMedCrossRefGoogle Scholar
  87. 87.
    Buckley SM et al (2012) Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell 11(6):783–798PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Liu P et al (2017) High autophagic flux guards ESC identity through coordinating autophagy machinery gene program by FOXO1. Cell Death Differ. doi: 10.1038/cdd.2017.90 Google Scholar
  89. 89.
    Vilchez D et al (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489(7415):304–308PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Schmidt M, Finley D (2014) Regulation of proteasome activity in health and disease. Biochim Biophys Acta 1843(1):13–25PubMedCrossRefGoogle Scholar
  91. 91.
    Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695(1–3):55–72PubMedCrossRefGoogle Scholar
  92. 92.
    Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439PubMedCrossRefGoogle Scholar
  93. 93.
    Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533PubMedCrossRefGoogle Scholar
  94. 94.
    Strikoudis A, Guillamot M, Aifantis I (2014) Regulation of stem cell function by protein ubiquitylation. EMBO Rep 15(4):365–382PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Werner A, Manford AG, Rape M (2017) Ubiquitin-dependent regulation of stem cell biology. Trends Cell Biol. doi: 10.1016/j.tcb.2017.04.002 PubMedGoogle Scholar
  96. 96.
    Zhao X et al (2008) The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol 10(6):643–653PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29(Suppl 1):3–9PubMedCrossRefGoogle Scholar
  98. 98.
    Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Assou S et al (2009) A gene expression signature shared by human mature oocytes and embryonic stem cells. BMC Genom 10:10CrossRefGoogle Scholar
  100. 100.
    Pathare GR et al (2012) The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc Natl Acad Sci USA 109(1):149–154PubMedCrossRefGoogle Scholar
  101. 101.
    Vilchez D et al (2013) FOXO4 is necessary for neural differentiation of human embryonic stem cells. Aging Cell 12(3):518–522PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Jang J et al (2014) Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells. Stem Cells 32(10):2616–2625PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Vilchez D et al (2012) RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489(7415):263–268PubMedCrossRefGoogle Scholar
  104. 104.
    Hernebring M et al (2006) Elimination of damaged proteins during differentiation of embryonic stem cells. Proc Natl Acad Sci USA 103(20):7700–7705PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hernebring M et al (2013) Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28. Sci Rep 3:1381PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14(2):70–77PubMedCrossRefGoogle Scholar
  107. 107.
    Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741PubMedCrossRefGoogle Scholar
  108. 108.
    Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823–830PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Rodolfo C, Di Bartolomeo S, Cecconi F (2016) Autophagy in stem and progenitor cells. Cell Mol Life Sci 73(3):475–496PubMedCrossRefGoogle Scholar
  110. 110.
    Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19(8):983–997PubMedCrossRefGoogle Scholar
  111. 111.
    Ravikumar B et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435PubMedCrossRefGoogle Scholar
  112. 112.
    Bennett EJ et al (2005) Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell 17(3):351–365PubMedCrossRefGoogle Scholar
  113. 113.
    Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6(4):352–361PubMedCrossRefGoogle Scholar
  114. 114.
    He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Wong E, Cuervo AM (2010) Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol 2(12):a006734PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Cuervo AM (2010) Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 21(3):142–150PubMedCrossRefGoogle Scholar
  117. 117.
    Klionsky DJ et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5(4):539–545PubMedCrossRefGoogle Scholar
  118. 118.
    Egan D et al (2011) The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7(6):643–644PubMedCrossRefGoogle Scholar
  119. 119.
    Lee IH et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 105(9):3374–3379PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146(5):682–695PubMedCrossRefGoogle Scholar
  121. 121.
    Rubinsztein DC et al (2005) Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1(1):11–22PubMedCrossRefGoogle Scholar
  122. 122.
    Tsukamoto S et al (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321(5885):117–120PubMedCrossRefGoogle Scholar
  123. 123.
    Rojansky R, Cha MY, Chan DC (2016) Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. Elife 5:e17896PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Guan JL et al (2013) Autophagy in stem cells. Autophagy 9(6):830–849PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Pan H et al (2013) Autophagic control of cell ‘stemness’. EMBO Mol Med 5(3):327–331PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Liu K et al (2016) ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy 12(11):2000–2008PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Sotthibundhu A et al (2016) Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Res Ther 7(1):166PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Tra T et al (2011) Autophagy in human embryonic stem cells. PLoS One 6(11):e27485PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Jang J et al (2016) Primary cilium-autophagy-Nrf2 (PAN) axis activation commits human embryonic stem cells to a neuroectoderm fate. Cell 165(2):410–420PubMedCrossRefGoogle Scholar
  130. 130.
    Ma T et al (2015) Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat Cell Biol 17(11):1379–1387PubMedCrossRefGoogle Scholar
  131. 131.
    Wang S et al (2013) Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell 13(5):617–625PubMedCrossRefGoogle Scholar
  132. 132.
    Wu Y et al (2015) Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming. Nat Cell Biol 17(6):715–725PubMedCrossRefGoogle Scholar
  133. 133.
    Ogrodnik M et al (2014) Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin. Proc Natl Acad Sci USA 111(22):8049–8054PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Rujano MA et al (2006) Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol 4(12):e417PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Saarikangas J, Barral Y (2015) Protein aggregates are associated with replicative aging without compromising protein quality control. Elife 4:1–24CrossRefGoogle Scholar
  136. 136.
    Moore DL et al (2015) A mechanism for the segregation of age in mammalian neural stem cells. Science 349(6254):1334–1338CrossRefGoogle Scholar
  137. 137.
    Morimoto RI (2011) The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol 76:91–99PubMedCrossRefGoogle Scholar
  138. 138.
    Yang J et al (2008) Neural differentiation and the attenuated heat shock response. Brain Res 1203:39–50PubMedCrossRefGoogle Scholar
  139. 139.
    Araki K, Nagata K (2011) Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 3(11):a007526PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102PubMedGoogle Scholar
  141. 141.
    Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789PubMedCrossRefGoogle Scholar
  142. 142.
    Cho YM et al (2009) Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells. Exp Mol Med 41(6):440–452PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Xu H et al (2014) Unfolded protein response is required for the definitive endodermal specification of mouse embryonic stem cells via Smad2 and beta-catenin signaling. J Biol Chem 289(38):26290–26301PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Iwawaki T et al (2009) Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc Natl Acad Sci USA 106(39):16657–16662PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Kratochvilova K et al (2016) The role of the endoplasmic reticulum stress in stemness, pluripotency and development. Eur J Cell Biol 95(3–5):115–123PubMedCrossRefGoogle Scholar
  146. 146.
    Reimold AM et al (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412(6844):300–307PubMedCrossRefGoogle Scholar
  147. 147.
    Yamamoto K et al (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13(3):365–376PubMedCrossRefGoogle Scholar
  148. 148.
    Bertolotti A et al (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332PubMedCrossRefGoogle Scholar
  149. 149.
    Shen J et al (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3(1):99–111PubMedCrossRefGoogle Scholar
  150. 150.
    Luo S et al (2006) GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol 26(15):5688–5697PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Baker MJ, Tatsuta T, Langer T (2011) Quality control of mitochondrial proteostasis. Cold Spring Harb Perspect Biol 3(7):a007559PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Cuanalo-Contreras K, Mukherjee A, Soto C (2013) Role of protein misfolding and proteostasis deficiency in protein misfolding diseases and aging. Int J Cell Biol 2013:638083PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    HD iPSC Consortium (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11(2):264–278CrossRefGoogle Scholar
  154. 154.
    Jeon I et al (2012) Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cells 30(9):2054–2062PubMedCrossRefGoogle Scholar
  155. 155.
    Park IH et al (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Koch P et al (2011) Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease. Nature 480(7378):543–546PubMedCrossRefGoogle Scholar
  157. 157.
    Boudiaf-Benmammar C, Cresteil T, Melki R (2013) The cytosolic chaperonin CCT/TRiC and cancer cell proliferation. PLoS One 8(4):e60895PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Huang X et al (2014) Chaperonin containing TCP1, subunit 8 (CCT8) is upregulated in hepatocellular carcinoma and promotes HCC proliferation. APMIS 122(11):1070–1079PubMedGoogle Scholar
  159. 159.
    Qiu X et al (2015) Overexpression of CCT8 and its significance for tumor cell proliferation, migration and invasion in glioma. Pathol Res Pract 211(10):717–725PubMedCrossRefGoogle Scholar
  160. 160.
    Rappa F et al (2012) HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Res 32(12):5139–5150PubMedGoogle Scholar
  161. 161.
    Lei Y et al (2017) Targeting autophagy in cancer stem cells as an anticancer therapy. Cancer Lett 393:33–39PubMedCrossRefGoogle Scholar
  162. 162.
    Trinidad AG et al (2013) Interaction of p53 with the CCT complex promotes protein folding and wild-type p53 activity. Mol Cell 50(6):805–817PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD)University of CologneCologneGermany

Personalised recommendations