Skip to main content

Advertisement

Log in

How Schwann cells facilitate cancer progression in nerves

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated a critical role for nerves in enabling tumor progression. The association of nerves with cancer cells is well established for a variety of malignant tumors, including pancreatic, prostate and the head and neck cancers. This association is often correlated with poor prognosis. A strong partnership between cancer cells and nerve cells leads to both cancer progression and expansion of the nerve network. This relationship is supported by molecular pathways related to nerve growth and repair. Peripheral nerves form complex tumor microenvironments, which are made of several cell types including Schwann cells. Recent studies have revealed that Schwann cells enable cancer progression by adopting a de-differentiated phenotype, similar to the Schwann cell response to nerve trauma. A detailed understanding of the molecular and cellular mechanisms involved in the regulation of cancer progression by the nerves is essential to design strategies to inhibit tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Magnon C, Hall SJ, Lin J et al (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341:1236361. doi:10.1126/science.1236361

    Article  PubMed  Google Scholar 

  2. Zhao C-M, Hayakawa Y, Kodama Y et al (2014) Denervation suppresses gastric tumorigenesis. Sci Transl Med 6:250ra115–250ra115. doi:10.1126/scitranslmed.3009569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Peterson SC, Eberl M, Vagnozzi AN et al (2015) Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16:400–412. doi:10.1016/j.stem.2015.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saloman JL, Albers KM, Li D et al (2016) Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci. doi:10.1073/pnas.1512603113

    PubMed  PubMed Central  Google Scholar 

  5. Bockman DE, Büchler M, Beger HG (1994) Interaction of pancreatic ductal carcinoma with nerves leads to nerve damage. Gastroenterology 107:219–230

    Article  CAS  PubMed  Google Scholar 

  6. Amit M, Na’ara S, Gil Z (2016) Mechanisms of cancer dissemination along nerves. Nat Rev Cancer. doi:10.1038/nrc.2016.38

    PubMed  Google Scholar 

  7. Bapat AA, Hostetter G, Von Hoff DD, Han H (2011) Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer 11:695–707. doi:10.1038/nrc3131

    Article  CAS  PubMed  Google Scholar 

  8. Demir IE, Ceyhan GO, Liebl F et al (2010) Neural invasion in pancreatic cancer: the past, present and future. Cancers 2:1513–1527. doi:10.3390/cancers2031513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Demir IE, Friess H, Ceyhan GO (2012) Nerve-cancer interactions in the stromal biology of pancreatic cancer. Front Physiol 3:97. doi:10.3389/fphys.2012.00097

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liebig C, Ayala G, Wilks JA et al (2009) Perineural invasion in cancer. Cancer 115:3379–3391. doi:10.1002/cncr.24396

    Article  CAS  PubMed  Google Scholar 

  11. Batsakis JG (1985) Nerves and neurotropic carcinomas. Ann Otol Rhinol Laryngol 94:426–427

    Article  CAS  PubMed  Google Scholar 

  12. Petrou A, Soonawalla Z, Silva M-A et al (2016) Prognostic indicators following curative pancreatoduodenectomy for pancreatic carcinoma: a retrospective multivariate analysis of a single centre experience. J BUON 21:874–882

    PubMed  Google Scholar 

  13. Nakao A, Harada A, Nonami T et al (1996) Clinical significance of carcinoma invasion of the extrapancreatic nerve plexus in pancreatic cancer. Pancreas 12:357–361

    Article  CAS  PubMed  Google Scholar 

  14. Mitsunaga S, Hasebe T, Kinoshita T et al (2007) Detail histologic analysis of nerve plexus invasion in invasive ductal carcinoma of the pancreas and its prognostic impact. Am J Surg Pathol 31:1636–1644. doi:10.1097/PAS.0b013e318065bfe6

    Article  PubMed  Google Scholar 

  15. Eibl G, Reber HA (2005) A xenograft nude mouse model for perineural invasion and recurrence in pancreatic cancer. Pancreas 31:258–262

    Article  PubMed  Google Scholar 

  16. Pour PM, Egami H, Takiyama Y (1991) Patterns of growth and metastases of induced pancreatic cancer in relation to the prognosis and its clinical implications. Gastroenterology 100:529–536

    Article  CAS  PubMed  Google Scholar 

  17. Stopczynski RE, Normolle DP, Hartman DJ et al (2014) Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Can Res 74:1718–1727. doi:10.1158/0008-5472.CAN-13-2050

    Article  CAS  Google Scholar 

  18. Amit M, Binenbaum Y, Trejo-Leider L et al (2015) International collaborative validation of intraneural invasion as a prognostic marker in adenoid cystic carcinoma of the head and neck. Head Neck 37:1038–1045. doi:10.1002/hed.23710

    Article  PubMed  Google Scholar 

  19. Chatterjee D, Katz MH, Rashid A et al (2012) Perineural and intraneural invasion in posttherapy pancreaticoduodenectomy specimens predicts poor prognosis in patients with pancreatic ductal adenocarcinoma. Am J Surg Pathol 36:409–417. doi:10.1097/PAS.0b013e31824104c5

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol (Lond). doi:10.1113/JP270874

    Google Scholar 

  21. Zochodne DW (2008) Neurobiology of peripheral nerve regeneration

  22. Bunge MB, Wood PM, Tynan LB et al (1989) Perineurium originates from fibroblasts: demonstration in vitro with a retroviral marker. Science 243:229–231

    Article  CAS  PubMed  Google Scholar 

  23. Kucenas S, Takada N, Park H-C et al (2008) CNS-derived glia ensheath peripheral nerves and mediate motor root development. Nat Neurosci 11:143–151. doi:10.1038/nn2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cavel O, Shomron O, Shabtay A et al (2012) Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Can Res 72:5733–5743. doi:10.1158/0008-5472.CAN-12-0764

    Article  CAS  Google Scholar 

  25. Deborde S, Omelchenko T, Lyubchik A et al (2016) Schwann cells induce cancer cell dispersion and invasion. J Clin Invest 126:1538–1554. doi:10.1172/JCI82658

    Article  PubMed  PubMed Central  Google Scholar 

  26. Demir IE, Boldis A, Pfitzinger PL et al (2014) Investigation of Schwann cells at neoplastic cell sites before the onset of cancer invasion. J Natl Cancer Inst 106:dju184. doi:10.1093/jnci/dju184

    Article  PubMed  CAS  Google Scholar 

  27. Sunami E, Kanazawa H, Hashizume H et al (2001) Morphological characteristics of Schwann cells in the islets of Langerhans of the murine pancreas. Arch Histol Cytol 64:191–201

    Article  CAS  PubMed  Google Scholar 

  28. Ushiki T, Ide C (1988) Autonomic nerve networks in the rat exocrine pancreas as revealed by scanning and transmission electron microscopy. Arch Histol Cytol 51:71–81

    Article  CAS  PubMed  Google Scholar 

  29. Ceyhan GO, Bergmann F, Kadihasanoglu M et al (2009) Pancreatic neuropathy and neuropathic pain—a comprehensive pathomorphological study of 546 cases. Gastroenterology 136(177–186):e1. doi:10.1053/j.gastro.2008.09.029

    Google Scholar 

  30. Pundavela J, Roselli S, Faulkner S et al (2015) Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol Oncol 9:1626–1635. doi:10.1016/j.molonc.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jimenez-Andrade JM, Bloom AP, Stake JI et al (2010) Pathological sprouting of adult nociceptors in chronic prostate cancer-induced bone pain. J Neurosci 30:14649–14656. doi:10.1523/JNEUROSCI.3300-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jimenez-Andrade JM, Ghilardi JR, Castañeda-Corral G et al (2011) Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain 152:2564–2574. doi:10.1016/j.pain.2011.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mantyh WG, Jimenez-Andrade JM, Stake JI et al (2010) Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain. Neuroscience 171:588–598. doi:10.1016/j.neuroscience.2010.08.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ayala GE, Wheeler TM, Shine HD et al (2001) In vitro dorsal root ganglia and human prostate cell line interaction: redefining perineural invasion in prostate cancer. Prostate 49:213–223. doi:10.1002/pros.1137

    Article  CAS  PubMed  Google Scholar 

  35. Polli-Lopes AC, Zucoloto S, de Queirós Cunha F et al (2003) Myenteric denervation reduces the incidence of gastric tumors in rats. Cancer Lett 190:45–50

    Article  CAS  PubMed  Google Scholar 

  36. Venkatesh HS, Johung TB, Caretti V et al (2015) Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161:803–816. doi:10.1016/j.cell.2015.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamazaki S, Nakauchi H (2014) Bone marrow Schwann cells induce hematopoietic stem cell hibernation. Int J Hematol 99:695–698. doi:10.1007/s12185-014-1588-9

    Article  CAS  PubMed  Google Scholar 

  38. Pawlowski A, Weddell G (1967) Induction of tumours in denervated skin. Nature 213:1234–1236

    Article  CAS  Google Scholar 

  39. Dubeykovskaya Z, Si Y, Chen X et al (2016) Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nat Commun 7:10517. doi:10.1038/ncomms10517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaminishi M, Shimizu N, Shimoyama S et al (1997) Denervation promotes the development of cancer-related lesions in the gastric remnant. J Clin Gastroenterol 25(Suppl 1):S129–S134

    Article  PubMed  Google Scholar 

  41. Lundegårdh G, Ekbom A, McLaughlin JK, Nyrén O (1994) Gastric cancer risk after vagotomy. Gut 35:946–949

    Article  PubMed  PubMed Central  Google Scholar 

  42. Colomar A, Robitaille R (2004) Glial modulation of synaptic transmission at the neuromuscular junction. Glia 47:284–289. doi:10.1002/glia.20086

    Article  PubMed  Google Scholar 

  43. Wekerle H, Schwab M, Linington C, Meyermann R (1986) Antigen presentation in the peripheral nervous system: Schwann cells present endogenous myelin autoantigens to lymphocytes. Eur J Immunol 16:1551–1557. doi:10.1002/eji.1830161214

    Article  CAS  PubMed  Google Scholar 

  44. Shan C, Wei J, Hou R et al (2015) Schwann cells promote EMT and the Schwann-like differentiation of salivary adenoid cystic carcinoma cells via the BDNF/TrkB axis. Oncol Rep 35:427–435. doi:10.3892/or.2015.4366

    Article  PubMed  CAS  Google Scholar 

  45. Sroka IC, Chopra H, Das L et al (2015) Schwann cells increase prostate and pancreatic tumor cell invasion using laminin binding A6 integrin. J Cell Biochem. doi:10.1002/jcb.25300

    Google Scholar 

  46. Ferguson TA, Muir D (2000) MMP-2 and MMP-9 increase the neurite-promoting potential of Schwann cell basal laminae and are upregulated in degenerated nerve. Mol Cell Neurosci 16:157–167. doi:10.1006/mcne.2000.0859

    Article  CAS  PubMed  Google Scholar 

  47. Abercrombie M (1979) Contact inhibition and malignancy. Nature 281:259–262. doi:10.1038/281259a0

    Article  CAS  PubMed  Google Scholar 

  48. Cravioto H (1965) The role of Schwann cells in the development of human peripheral nerves. An electron microscopic study. J Ultrastruct Res 12:634–651

    Article  CAS  PubMed  Google Scholar 

  49. Ben Q-W, Wang J-C, Liu J et al (2010) Positive expression of L1-CAM is associated with perineural invasion and poor outcome in pancreatic ductal adenocarcinoma. Ann Surg Oncol 17:2213–2221. doi:10.1245/s10434-010-0955-x

    Article  PubMed  Google Scholar 

  50. Deborde S, Perret E, Gravotta D et al (2008) Clathrin is a key regulator of basolateral polarity. Nature 452:719–723. doi:10.1038/nature06828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Demir IE, Tieftrunk E, Schorn S et al (2016) Activated Schwann cells in pancreatic cancer are linked to analgesia via suppression of spinal astroglia and microglia. Gut. doi:10.1136/gutjnl-2015-309784

    Google Scholar 

  52. Jessen KR, Mirsky R, Lloyd AC (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7:a020487. doi:10.1101/cshperspect.a020487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fricker FR, Bennett DL (2011) The role of neuregulin-1 in the response to nerve injury. Future Neurol 6:809–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guertin AD, Zhang DP, Mak KS et al (2005) Microanatomy of axon/glial signaling during Wallerian degeneration. J Neurosci 25:3478–3487. doi:10.1523/JNEUROSCI.3766-04.2005

    Article  CAS  PubMed  Google Scholar 

  55. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434. doi:10.1002/glia.20207

    Article  PubMed  Google Scholar 

  56. Imoto A, Mitsunaga S, Inagaki M et al (2012) Neural invasion induces cachexia via astrocytic activation of neural route in pancreatic cancer. Int J Cancer 131:2795–2807. doi:10.1002/ijc.27594

    Article  CAS  PubMed  Google Scholar 

  57. Clark CE, Hingorani SR, Mick R et al (2007) Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Can Res 67:9518–9527. doi:10.1158/0008-5472.CAN-07-0175

    Article  CAS  Google Scholar 

  58. Demir IE, Schorn S, Schremmer-Danninger E et al (2013) Perineural mast cells are specifically enriched in pancreatic neuritis and neuropathic pain in pancreatic cancer and chronic pancreatitis. PLoS One 8:e60529. doi:10.1371/journal.pone.0060529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lesina M, Kurkowski MU, Ludes K et al (2011) Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19:456–469. doi:10.1016/j.ccr.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  60. McAllister F, Bailey JM, Alsina J et al (2014) Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25:621–637. doi:10.1016/j.ccr.2014.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cattin A-L, Burden JJ, Van Emmenis L et al (2015) Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves. Cell. doi:10.1016/j.cell.2015.07.021

    PubMed  PubMed Central  Google Scholar 

  62. Gaggioli C, Hooper S, Hidalgo-Carcedo C et al (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Publ Group 9:1392–1400. doi:10.1038/ncb1658

    CAS  Google Scholar 

  63. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563. doi:10.1038/nature06188

    Article  CAS  PubMed  Google Scholar 

  64. Vong S, Kalluri R (2011) The role of stromal myofibroblast and extracellular matrix in tumor angiogenesis. Genes Cancer 2:1139–1145. doi:10.1177/1947601911423940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Merika EE, Syrigos KN, Saif MW (2012) Desmoplasia in pancreatic cancer. Can we fight it? Gastroenterol Res Pract 2012:781765–781810. doi:10.1155/2012/781765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li X, Wang Z, Ma Q et al (2014) Sonic hedgehog paracrine signaling activates stromal cells to promote perineural invasion in pancreatic cancer. Clin Cancer Res 20:4326–4338. doi:10.1158/1078-0432.CCR-13-3426

    Article  CAS  PubMed  Google Scholar 

  67. Parrinello S, Napoli I, Ribeiro S et al (2010) EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 143:145–155. doi:10.1016/j.cell.2010.08.039

    Article  CAS  PubMed  Google Scholar 

  68. Rhim AD, Oberstein PE, Thomas DH et al (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25:735–747. doi:10.1016/j.ccr.2014.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Özdemir BC, Pentcheva-Hoang T, Carstens JL et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25:719–734. doi:10.1016/j.ccr.2014.04.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298:556–562. doi:10.1126/science.298.5593.556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bakst RL, Wong RJ (2016) Mechanisms of perineural invasion. J Neurol Surg B Skull Base 77:96–106. doi:10.1055/s-0036-1571835

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ceyhan GO, Schäfer K-H, Kerscher AG et al (2010) Nerve growth factor and artemin are paracrine mediators of pancreatic neuropathy in pancreatic adenocarcinoma. Ann Surg 251:923–931. doi:10.1097/SLA.0b013e3181d974d4

    Article  PubMed  Google Scholar 

  73. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1. doi:10.1126/scisignal.2004088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. doi:10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  75. Witkiewicz AK, McMillan EA, Balaji U et al (2015) Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 6:6744. doi:10.1038/ncomms7744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Beltran H, Prandi D, Mosquera JM et al (2016) Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 22:298–305. doi:10.1038/nm.4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eirew P, Steif A, Khattra J et al (2015) Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518:422–426. doi:10.1038/nature13952

    Article  CAS  PubMed  Google Scholar 

  78. Ciriello G, Gatza ML, Beck AH et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163:506–519. doi:10.1016/j.cell.2015.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Demir IE, Tieftrunk E, Schorn S et al (2016) Nerve growth factor and TrkA as novel therapeutic targets in cancer. Biochim Biophys Acta 1866:37–50. doi:10.1016/j.bbcan.2016.05.003

    CAS  PubMed  Google Scholar 

  80. Zhu Z, Friess H, diMola FF et al (1999) Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol 17:2419–2428

    Article  CAS  PubMed  Google Scholar 

  81. Dang C, Zhang Y, Ma Q, Shimahara Y (2006) Expression of nerve growth factor receptors is correlated with progression and prognosis of human pancreatic cancer. J Gastroenterol Hepatol 21:850–858. doi:10.1111/j.1440-1746.2006.04074.x

    Article  CAS  PubMed  Google Scholar 

  82. Ma J, Jiang Y, Jiang Y et al (2008) Expression of nerve growth factor and tyrosine kinase receptor A and correlation with perineural invasion in pancreatic cancer. J Gastroenterol Hepatol 23:1852–1859. doi:10.1111/j.1440-1746.2008.05579.x

    Article  CAS  PubMed  Google Scholar 

  83. Sakamoto Y, Kitajima Y, Edakuni G et al (2001) Expression of Trk tyrosine kinase receptor is a biologic marker for cell proliferation and perineural invasion of human pancreatic ductal adenocarcinoma. Oncol Rep 8:477–484

    CAS  PubMed  Google Scholar 

  84. Chen-Tsai CP, Colome-Grimmer M, Wagner RF (2004) Correlations among neural cell adhesion molecule, nerve growth factor, and its receptors, TrkA, TrkB, TrkC, and p75NGFR, in perineural invasion by basal cell and cutaneous squamous cell carcinomas. Dermatol Surg 30:1009–1016. doi:10.1111/j.1524-4725.2004.30306.x

    PubMed  Google Scholar 

  85. Kolokythas A, Cox DP, Dekker N, Schmidt BL (2010) Nerve growth factor and tyrosine kinase A receptor in oral squamous cell carcinoma: is there an association with perineural invasion? J Oral Maxillofac Surg 68:1290–1295. doi:10.1016/j.joms.2010.01.006

    Article  PubMed  Google Scholar 

  86. Kobayashi K, Ando M, Saito Y et al (2015) Nerve growth factor signals as possible pathogenic biomarkers for perineural invasion in adenoid cystic carcinoma. Otolaryngol Head Neck Surg 153:218–224. doi:10.1177/0194599815584762

    Article  PubMed  Google Scholar 

  87. Ketterer K, Rao S, Friess H et al (2003) Reverse transcription-PCR analysis of laser-captured cells points to potential paracrine and autocrine actions of neurotrophins in pancreatic cancer. Clin Cancer Res 9:5127–5136

    CAS  PubMed  Google Scholar 

  88. Lewis Kelso R, Colome-Grimmer MI, Uchida T et al (2006) p75(NGFR) immunostaining for the detection of perineural invasion by cutaneous squamous cell carcinoma. Dermatol Surg 32:177–183

    PubMed  Google Scholar 

  89. Verbeke S, Meignan S, Lagadec C et al (2010) Overexpression of p75(NTR) increases survival of breast cancer cells through p21(waf1). Cell Signal 22:1864–1873. doi:10.1016/j.cellsig.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  90. Johnston ALM, Lun X, Rahn JJ et al (2007) The p75 neurotrophin receptor is a central regulator of glioma invasion. PLoS Biol 5:e212. doi:10.1371/journal.pbio.0050212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Jin H, Pan Y, Zhao L et al (2007) p75 neurotrophin receptor suppresses the proliferation of human gastric cancer cells. Neoplasia 9:471–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Khwaja F, Tabassum A, Allen J, Djakiew D (2006) The p75(NTR) tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells. Biochem Biophys Res Commun 341:1184–1192. doi:10.1016/j.bbrc.2006.01.073

    Article  CAS  PubMed  Google Scholar 

  93. Tabassum A, Khwaja F, Djakiew D (2003) The p75(NTR) tumor suppressor induces caspase-mediated apoptosis in bladder tumor cells. Int J Cancer 105:47–52. doi:10.1002/ijc.11038

    Article  CAS  PubMed  Google Scholar 

  94. Taniuchi M, Clark HB, Schweitzer JB, Johnson EM (1988) Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: ultrastructural location, suppression by axonal contact, and binding properties. J Neurosci 8:664–681

    CAS  PubMed  Google Scholar 

  95. Bentley CA, Lee KF (2000) p75 is important for axon growth and Schwann cell migration during development. J Neurosci 20:7706–7715

    CAS  PubMed  Google Scholar 

  96. Sclabas GM, Fujioka S, Schmidt C et al (2005) Overexpression of tropomysin-related kinase B in metastatic human pancreatic cancer cells. Clin Cancer Res 11:440–449

    CAS  PubMed  Google Scholar 

  97. Jia S, Wang W, Hu Z et al (2015) BDNF mediated TrkB activation contributes to the EMT progression and the poor prognosis in human salivary adenoid cystic carcinoma. Oral Oncol 51:64–70. doi:10.1016/j.oraloncology.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  98. Kowalski PJ, Paulino AFG (2002) Perineural invasion in adenoid cystic carcinoma: its causation/promotion by brain-derived neurotrophic factor. Hum Pathol 33:933–936. doi:10.1053/hupa.2002.128249

    Article  CAS  PubMed  Google Scholar 

  99. Johnson MD, Stone B, Thibodeau BJ et al (2017) The significance of Trk receptors in pancreatic cancer. Tumour Biol 39:1010428317692256. doi:10.1177/1010428317692256

    Article  PubMed  Google Scholar 

  100. Chopin V, Lagadec C, Toillon R-A, Le Bourhis X (2016) Neurotrophin signaling in cancer stem cells. Cell Mol Life Sci 73:1859–1870. doi:10.1007/s00018-016-2156-7

    Article  CAS  PubMed  Google Scholar 

  101. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Publ Group 8:755–768. doi:10.1038/nrc2499

    CAS  Google Scholar 

  102. Murillo-Sauca O, Chung MK, Shin JH et al (2014) CD271 is a functional and targetable marker of tumor-initiating cells in head and neck squamous cell carcinoma. Oncotarget 5:6854–6866. doi:10.18632/oncotarget.2269

    Article  PubMed  PubMed Central  Google Scholar 

  103. Redmer T, Welte Y, Behrens D et al (2014) The nerve growth factor receptor CD271 is crucial to maintain tumorigenicity and stem-like properties of melanoma cells. PLoS One 9:e92596. doi:10.1371/journal.pone.0092596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Tomellini E, Touil Y, Lagadec C et al (2015) Nerve growth factor and proNGF simultaneously promote symmetric self-renewal, quiescence, and epithelial to mesenchymal transition to enlarge the breast cancer stem cell compartment. Stem Cells 33:342–353. doi:10.1002/stem.1849

    Article  CAS  PubMed  Google Scholar 

  105. Yin B, Ma ZY, Zhou ZW et al (2015) The TrkB+ cancer stem cells contribute to post-chemotherapy recurrence of triple-negative breast cancers in an orthotopic mouse model. Oncogene 34:761–770. doi:10.1038/onc.2014.8

    Article  CAS  PubMed  Google Scholar 

  106. Gil Z, Cavel O, Kelly K et al (2010) Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves. J Natl Cancer Inst 102:107–118. doi:10.1093/jnci/djp456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. He S, Chen C-H, Chernichenko N et al (2014) GFRα1 released by nerves enhances cancer cell perineural invasion through GDNF-RET signaling. Proc Natl Acad Sci. doi:10.1073/pnas.1402944111

    Google Scholar 

  108. Iwahashi N, Nagasaka T, Tezel G et al (2002) Expression of glial cell line-derived neurotrophic factor correlates with perineural invasion of bile duct carcinoma. Cancer 94:167–174

    Article  CAS  PubMed  Google Scholar 

  109. Liu H, Li X, Xu Q et al (2012) Role of glial cell line-derived neurotrophic factor in perineural invasion of pancreatic cancer. Biochim Biophys Acta 1826:112–120. doi:10.1016/j.bbcan.2012.03.010

    CAS  PubMed  Google Scholar 

  110. Paratcha G, Ledda F, Ibáñez CF (2003) The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113:867–879

    Article  CAS  PubMed  Google Scholar 

  111. Naveilhan P, ElShamy WM, Ernfors P (1997) Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur J Neurosci 9:1450–1460

    Article  CAS  PubMed  Google Scholar 

  112. Gao L, Bo H, Wang Y et al (2015) Neurotrophic factor artemin promotes invasiveness and neurotrophic function of pancreatic adenocarcinoma in vivo and in vitro. Pancreas 44:134–143. doi:10.1097/MPA.0000000000000223

    Article  CAS  PubMed  Google Scholar 

  113. Wang K, Demir IE, D’Haese JG et al (2014) The neurotrophic factor neurturin contributes toward an aggressive cancer cell phenotype, neuropathic pain and neuronal plasticity in pancreatic cancer. Carcinogenesis 35:103–113. doi:10.1093/carcin/bgt312

    Article  PubMed  CAS  Google Scholar 

  114. Ceyhan GO, Bergmann F, Kadihasanoglu M et al (2007) The neurotrophic factor artemin influences the extent of neural damage and growth in chronic pancreatitis. Gut 56:534–544. doi:10.1136/gut.2006.105528

    Article  CAS  PubMed  Google Scholar 

  115. Marchesi F, Locatelli M, Solinas G et al (2010) Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer. J Neuroimmunol 224:39–44. doi:10.1016/j.jneuroim.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  116. Mehlen P, Delloye-Bourgeois C, Chédotal A (2011) Novel roles for slits and netrins: axon guidance cues as anticancer targets? Nat Publ Group 11:188–197. doi:10.1038/nrc3005

    CAS  Google Scholar 

  117. Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ (2016) Targeting the CCL2–CCR2 signaling axis in cancer metastasis. Oncotarget 7:28697–28710. doi:10.18632/oncotarget.7376

    Article  PubMed  PubMed Central  Google Scholar 

  118. Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    Article  CAS  PubMed  Google Scholar 

  119. Kameda K, Shimada H, Ishikawa T et al (1999) Expression of highly polysialylated neural cell adhesion molecule in pancreatic cancer neural invasive lesion. Cancer Lett 137:201–207

    Article  CAS  PubMed  Google Scholar 

  120. McLaughlin RB, Montone KT, Wall SJ et al (1999) Nerve cell adhesion molecule expression in squamous cell carcinoma of the head and neck: a predictor of propensity toward perineural spread. Laryngoscope 109:821–826

    Article  PubMed  Google Scholar 

  121. Seki H, Tanaka J, Sato Y et al (1993) Neural cell adhesion molecule (NCAM) and perineural invasion in bile duct cancer. J Surg Oncol 53:78–83

    Article  CAS  PubMed  Google Scholar 

  122. Shang J, Sheng L, Wang K et al (2007) Expression of neural cell adhesion molecule in salivary adenoid cystic carcinoma and its correlation with perineural invasion. Oncol Rep 18:1413–1416

    PubMed  Google Scholar 

  123. Vural E, Hutcheson J, Korourian S et al (2000) Correlation of neural cell adhesion molecules with perineural spread of squamous cell carcinoma of the head and neck. Otolaryngol Head Neck Surg 122:717–720. doi:10.1067/mhn.2000.105057

    CAS  PubMed  Google Scholar 

  124. Li R, Wheeler T, Dai H, Ayala G (2003) Neural cell adhesion molecule is upregulated in nerves with prostate cancer invasion. Hum Pathol. doi:10.1016/S0046-8177(03)00084-4

    Google Scholar 

  125. Binmadi NO, Yang YH, Zhou H et al (2012) Plexin-B1 and semaphorin 4D cooperate to promote perineural invasion in a RhoA/ROK-dependent manner. AJPA 180:1232–1242. doi:10.1016/j.ajpath.2011.12.009

    CAS  Google Scholar 

  126. Ding Y, He D, Florentin D et al (2013) Semaphorin 4F as a critical regulator of neuroepithelial interactions and a biomarker of aggressive prostate cancer. Clin Cancer Res 19:6101–6111. doi:10.1158/1078-0432.CCR-12-3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dickson BJ, Gilestro GF (2006) Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 22:651–675. doi:10.1146/annurev.cellbio.21.090704.151234

    Article  CAS  PubMed  Google Scholar 

  128. Ma L, Tessier-Lavigne M (2007) Dual branch-promoting and branch-repelling actions of Slit/Robo signaling on peripheral and central branches of developing sensory axons. J Neurosci 27:6843–6851. doi:10.1523/JNEUROSCI.1479-07.2007

    Article  CAS  PubMed  Google Scholar 

  129. Wu W, Wong K, Chen J et al (1999) Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400:331–336. doi:10.1038/22477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kinrade EF, Brates T, Tear G, Hidalgo A (2001) Roundabout signalling, cell contact and trophic support confine longitudinal glia and axons in the Drosophila CNS. Development 128:207–216

    CAS  PubMed  Google Scholar 

  131. Wang Y, Teng H-L, Huang Z-H (2013) Repulsive migration of Schwann cells induced by Slit-2 through Ca2+-dependent RhoA-myosin signaling. Glia 61:710–723. doi:10.1002/glia.22464

    Article  PubMed  Google Scholar 

  132. Yiin J-J, Hu B, Jarzynka MJ et al (2009) Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity. Neuro Oncol 11:779–789. doi:10.1215/15228517-2008-017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Göhrig A, Detjen KM, Hilfenhaus G et al (2014) Axon guidance factor SLIT2 inhibits neural invasion and metastasis in pancreatic cancer. Can Res 74:1529–1540. doi:10.1158/0008-5472.CAN-13-1012

    Article  CAS  Google Scholar 

  134. Secq V, Leca J, Bressy C et al (2015) Stromal SLIT2 impacts on pancreatic cancer-associated neural remodeling. Cell Death Dis 6:e1592. doi:10.1038/cddis.2014.557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shao Z, Zhu F, Song K et al (2013) EphA2/ephrinA1 mRNA expression and protein production in adenoid cystic carcinoma of salivary gland. J Oral Maxillofac Surg 71:869–878. doi:10.1016/j.joms.2012.10.026

    Article  PubMed  Google Scholar 

  136. Kinch MS, Moore M-B, Harpole DH (2003) Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res 9:613–618

    CAS  PubMed  Google Scholar 

  137. Miyazaki T, Kato H, Fukuchi M et al (2003) EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Cancer 103:657–663. doi:10.1002/ijc.10860

    Article  CAS  PubMed  Google Scholar 

  138. Afshari FT, Kwok JC, Fawcett JW (2010) Astrocyte-produced ephrins inhibit Schwann cell migration via VAV2 signaling. J Neurosci 30:4246–4255. doi:10.1523/JNEUROSCI.3351-09.2010

    Article  CAS  PubMed  Google Scholar 

  139. He S, He S, Chen C-H et al (2015) The chemokine (CCL2–CCR2) signaling axis mediates perineural invasion. Mol Cancer Res 13:380–390. doi:10.1158/1541-7786.MCR-14-0303

    Article  CAS  PubMed  Google Scholar 

  140. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266. doi:10.1016/j.cell.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  141. Qian B-Z, Li J, Zhang H et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225. doi:10.1038/nature10138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Marchesi F, Piemonti L, Fedele G et al (2008) The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Can Res 68:9060–9069. doi:10.1158/0008-5472.CAN-08-1810

    Article  CAS  Google Scholar 

  143. Lv C-Y, Zhou T, Chen W et al (2014) Preliminary study correlating CX3CL1/CX3CR1 expression with gastric carcinoma and gastric carcinoma perineural invasion. World J Gastroenterol 20:4428–4432. doi:10.3748/wjg.v20.i15.4428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Doumas S, Paterson JC, Norris PM et al (2015) Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) in squamous cell carcinoma of the tongue: markers of nerve invasion? Oral Maxillofac Surg 19:61–64. doi:10.1007/s10006-014-0455-4

    Article  CAS  PubMed  Google Scholar 

  145. Swanson BJ, McDermott KM, Singh PK et al (2007) MUC1 Is a counter-receptor for myelin-associated glycoprotein (Siglec-4a) and their interaction contributes to adhesion in pancreatic cancer perineural invasion. Can Res 67:10222–10229. doi:10.1158/0008-5472.CAN-06-2483

    Article  CAS  Google Scholar 

  146. Mukhopadhyay G, Doherty P, Walsh FS et al (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13:757–767

    Article  CAS  PubMed  Google Scholar 

  147. Nakamori S, Ota DM, Cleary KR et al (1994) MUC1 mucin expression as a marker of progression and metastasis of human colorectal carcinoma. Gastroenterology 106:353–361

    Article  CAS  PubMed  Google Scholar 

  148. Lüttges J, Feyerabend B, Buchelt T et al (2002) The mucin profile of noninvasive and invasive mucinous cystic neoplasms of the pancreas. Am J Surg Pathol 26:466–471

    Article  PubMed  Google Scholar 

  149. Kashiwagi H, Kijima H, Dowaki S et al (2000) DF3 expression in human gallbladder carcinoma: significance for lymphatic invasion. Int J Oncol 16:455–459

    CAS  PubMed  Google Scholar 

  150. Nath S, Mukherjee P (2014) MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 20:332–342. doi:10.1016/j.molmed.2014.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deborde, S., Wong, R.J. How Schwann cells facilitate cancer progression in nerves. Cell. Mol. Life Sci. 74, 4405–4420 (2017). https://doi.org/10.1007/s00018-017-2578-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2578-x

Keywords

Navigation