Skip to main content
Log in

Routes and machinery of primary cilium biogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Primary cilia are solitary, microtubule-based protrusions of the cell surface that play fundamental roles as photosensors, mechanosensors and biochemical sensors. Primary cilia dysfunction results in a long list of developmental and degenerative disorders that combine to give rise to a large spectrum of human diseases affecting almost any major body organ. Depending on the cell type, primary ciliogenesis is initiated intracellularly, as in fibroblasts, or at the cell surface, as in renal polarized epithelial cells. In this review, we have focused on the routes of primary ciliogenesis placing particular emphasis on the recently described pathway in renal polarized epithelial cells by which the midbody remnant resulting from a previous cell division event enables the centrosome for initiation of primary cilium assembly. The protein machinery implicated in primary cilium formation in epithelial cells, including the machinery best known for its involvement in establishing cell polarity and polarized membrane trafficking, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

aPKC:

Atypical protein kinase C

BBS:

Bardet–Biedl syndrome

GEF:

Guanine nucleotide exchange factor

GPCR:

G protein-coupled receptor

Hh:

Hedgehog

IFT:

Intraflagellar transport

JBTS:

Joubert syndrome

MDCK:

Madin–Darby canine kidney

MKS:

Meckel syndrome

MEF:

Mouse embryonic fibroblast

NPHP:

Nephronophthisis

PDGF:

Platelet-derived growth factor

RPE:

Retinal pigment epithelial

Smo:

Smoothened

References

  1. Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11:331–344. doi:10.1038/nrg2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400. doi:10.1146/annurev.physiol.69.040705.141236

    Article  CAS  PubMed  Google Scholar 

  3. Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234. doi:10.1038/nrm3085

    Article  CAS  PubMed  Google Scholar 

  4. Brooks ER, Wallingford JB (2014) Multiciliated cells: a review. Curr Biol 24:R973–R982. doi:10.1016/j.cub.2014.08.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lindemann CB, Lesich KA (2016) Functional anatomy of the mammalian sperm flagellum. Cytoskeleton 73:652–669. doi:10.1002/cm.21338

    Article  CAS  PubMed  Google Scholar 

  6. Oberholzer M, Bregy P, Marti G, Minca M, Peier M, Seebeck T (2007) Trypanosomes and mammalian sperm: one of a kind? Trends Parasitol 23:71–77. doi:10.1016/j.pt.2006.12.002

    Article  PubMed  Google Scholar 

  7. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825. doi:10.1038/nrm952

    Article  CAS  PubMed  Google Scholar 

  8. Falk N, Lösl M, Schöeder N, Giebl A (2015) Specialized cilia in mammalian sensory systems. Cells 4:500–519. doi:10.3390/cells4030500

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shinohara K, Chen D, Nishida T, Misaki K, Yonemura S, Hamada H (2015) Absence of radial spokes in mouse node cilia is required for rotational movement but confers ultrastructural instability as a trade-off. Dev Cell 35:236–246. doi:10.1016/j.devcel.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  10. Yoshiba S, Hamada H (2014) Roles of cilia, fluid flow, and Ca2+ signaling in breaking of left-right symmetry. Trends Genet 30:10–17. doi:10.1016/j.tig.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  11. Wheatley DN, Wang AM, Strugnell GE (1996) Expression of primary cilia in mammalian cells. Cell Biol Int 20:73–81. doi:10.1006/cbir.1996.0011

    Article  CAS  PubMed  Google Scholar 

  12. Pearring JN, Salinas RY, Baker SA, Arshavsky VY (2013) Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retina Eye Res 36:24–51. doi:10.1016/j.preteyeres.2013.03.002

    Article  CAS  Google Scholar 

  13. Zimmerman KW (1898) Beiträge zur Kenntniss einiger drüsen und epithelien. Arch Mikr Anat 52:552–706

    Article  Google Scholar 

  14. Malicki JJ, Johnson CA (2017) The cilium: cellular antenna and central processing unit. Trends Cell Biol 27:126–140. doi:10.1016/j.tcb.2016.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zimmerman K, Yoder BK (2015) Snapshot: sensing and signaling by cilia. Cell 161(692–692):e691. doi:10.1016/j.cell.2015.04.015

    Google Scholar 

  16. Ishikawa H, Marshall WF (2014) Mechanobiology of ciliogenesis. Bioscience 64:1084–1091. doi:10.1093/biosci/biu173

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou J (2009) Polycystins and primary cilia: primers for cell cycle progression. Annu Rev Physiol 71:83–113. doi:10.1146/annurev.physiol.70.113006.100621

    Article  CAS  PubMed  Google Scholar 

  18. Battle C, Ott CM, Burnette DT, Lippincott-Schwartz J, Schmidt CF (2015) Intracellular and extracellular forces drive primary cilia movement. Proc Natl Acad Sci USA 112:1410–1415. doi:10.1073/pnas.1421845112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Praetorius HA, Frokiaer J, Nielsen S, Spring KR (2003) Bending the primary cilium opens Ca2+-sensitive intermediate-conductance K+ channels in MDCK cells. J Membr Biol 191:193–200. doi:10.1007/s00232-002-1055-z

    Article  CAS  PubMed  Google Scholar 

  20. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  CAS  PubMed  Google Scholar 

  21. DeCaen PG, Delling M, Vien TN, Clapham DE (2013) Direct recording and molecular identification of the calcium channel of primary cilia. Nature 504:315–318. doi:10.1038/nature12832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Delling M, DeCaen PG, Doerner JF, Febvay S, Clapham DE (2013) Primary cilia are specialized calcium signalling organelles. Nature 504:311–314. doi:10.1038/nature12833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takao D, Nemoto T, Abe T, Kiyonari H, Kajiura-Kobayashi H, Shiratori H, Nonaka S (2013) Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left–right axis formation. Dev Biol 376:23–30. doi:10.1016/j.ydbio.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  24. Praetorius HA (2015) The primary cilium as sensor of fluid flow: new building blocks to the model. Am J Physiol Cell Physiol 308:C198. doi:10.1152/ajpcell.00336.2014

    Article  CAS  PubMed  Google Scholar 

  25. Doerner JF, Delling M, Clapham DE (2015) Ion channels and calcium signaling in motile cilia. eLife 4:e11066. doi:10.7554/eLife.11066

    Article  PubMed  PubMed Central  Google Scholar 

  26. Delling M, Indzhykulian AA, Liu X, Liu Y, Xie T, Corey DP, Clapham DE (2016) Primary cilia are not calcium-responsive mechanosensors. Nature 531:656–660. doi:10.1038/nature17426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hofherr A, Kottgen M (2016) Polycystic kidney disease: cilia and mechanosensation revisited. Nat Rev Nephrol 12:318–319. doi:10.1038/nrneph.2016.61

    Article  CAS  PubMed  Google Scholar 

  28. Briscoe J, Therond PP (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:416–429. doi:10.1038/nrm3598

    Article  PubMed  CAS  Google Scholar 

  29. Robbins DJ, Fei DL, Riobo NA (2012) The Hedgehog signal transduction network. Sci Signal 5:re6. doi:10.1126/scisignal.2002906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gorojankina T (2016) Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction. Cell Mol Life Sci 73:1317–1332. doi:10.1007/s00018-015-2127-4

    Article  CAS  PubMed  Google Scholar 

  31. Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317:372–376. doi:10.1126/science.1139740

    Article  CAS  PubMed  Google Scholar 

  32. Schneider L, Clement CA, Teilmann SC, Pazour GJ, Hoffmann EK, Satir P, Christensen ST (2005) PDGFRα signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15:1861–1866. doi:10.1016/j.cub.2005.09.012

    Article  CAS  PubMed  Google Scholar 

  33. Wilcockson SG, Sutcliffe C, Ashe HL (2016) Control of signaling molecule range during developmental patterning. Cell Mol Life Sci. doi:10.1007/s00018-016-2433-5

    PubMed  PubMed Central  Google Scholar 

  34. Zhao B, Li L, Lei Q, Guan K-L (2010) The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 24:862–874. doi:10.1101/gad.1909210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. May-Simera HL, Kelley MW (2012) Cilia, Wnt signaling, and the cytoskeleton. Cilia 1:7. doi:10.1186/2046-2530-1-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wallingford JB, Mitchell B (2011) Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev 25:201–213. doi:10.1101/gad.2008011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Habbig S, Bartram MP, Müller RU, Schwarz R, Andriopoulos N, Chen S, Sägmüller JG, Hoehne M, Burst V, Liebau MC, Reinhardt HC, Benzing T, Schermer B (2011) NPHP4, a cilia-associated protein, negatively regulates the Hippo pathway. J Cell Biol 193:633–642. doi:10.1083/jcb.201009069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hilgendorf KI, Johnson CT, Jackson PK (2016) The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr Opin Cell Biol 39:84–92. doi:10.1016/j.ceb.2016.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. N Engl J Med 364:1533–1543. doi:10.1056/NEJMra1010172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fliegauf M, Benzing T, Omran H (2007) When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8:880–893. doi:10.1038/nrm2278

    Article  CAS  PubMed  Google Scholar 

  41. Novarino G, Akizu N, Gleeson JG (2011) Modeling human disease in humans: the ciliopathies. Cell 147:70–79. doi:10.1016/j.cell.2011.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zariwala MA, Knowles MR, Omran H (2007) Genetic defects in ciliary structure and function. Annu Rev Physiol 69:423–450

    Article  CAS  PubMed  Google Scholar 

  43. Tobin JL, Beales PL (2009) The nonmotile ciliopathies. Genet Med 11:386–402. doi:10.1097/GIM.0b013e3181a02882

    Article  CAS  PubMed  Google Scholar 

  44. Mitchell DR (2017) Evolution of cilia. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a028290

    PubMed  Google Scholar 

  45. Mizuno N, Taschner M, Engel BD, Lorentzen E (2012) Structural studies of ciliary components. J Mol Biol 422:163–180. doi:10.1016/j.jmb.2012.05.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garcia G, Reiter JF (2016) A primer on the mouse basal body. Cilia 5:17. doi:10.1186/s13630-016-0038-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Vertii A, Hung H-F, Hehnly H, Doxsey S (2016) Human basal body basics. Cilia 5:13. doi:10.1186/s13630-016-0030-8

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vertii A, Hehnly H, Doxsey S (2016) The centrosome, a multitalented renaissance organelle. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a025049

    PubMed  Google Scholar 

  49. Wei Q, Ling K, Hu J (2015) The essential roles of transition fibers in the context of cilia. Curr Opin Cell Biol 35:98–105. doi:10.1016/j.ceb.2015.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14:25–34. doi:10.1016/S0955-0674(01)00290-3

    Article  CAS  PubMed  Google Scholar 

  51. Tateishi K, Yamazaki Y, Nishida T, Watanabe S, Kunimoto K, Ishikawa H, Tsukita S (2013) Two appendages homologous between basal bodies and centrioles are formed using distinct Odf2 domains. J Cell Biol 203:417–425. doi:10.1083/jcb.201303071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang J, Liu X, Yue G, Adamian M, Bulgakov O, Li T (2002) Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J Cell Biol 159:431–440. doi:10.1083/jcb.200207153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Benzing T, Schermer B (2011) Transition zone proteins and cilia dynamics. Nat Genet 43:723–724. doi:10.1038/ng.896

    Article  CAS  PubMed  Google Scholar 

  54. Szymanska K, Johnson CA (2012) The transition zone: an essential functional compartment of cilia. Cilia 1:10. doi:10.1186/2046-2530-1-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Garcia-Gonzalo FR, Reiter JF (2012) Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J Cell Biol 197:697–709. doi:10.1083/jcb.201111146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Garcia-Gonzalo FR, Reiter JF (2017) Open sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a028134

    PubMed  PubMed Central  Google Scholar 

  57. Reiter JF, Blacque OE, Leroux MR (2012) The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 13:608–618. doi:10.1038/embor.2012.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yee LE, Garcia-Gonzalo FR, Bowie RV, Li C, Kennedy JK, Ashrafi K, Blacque OE, Leroux MR, Reiter JF (2015) Conserved genetic interactions between ciliopathy complexes cooperatively support ciliogenesis and ciliary signaling. PLoS Genet 11:e1005627. doi:10.1371/journal.pgen.1005627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Li C, Jensen VL, Park K, Kennedy J, Garcia-Gonzalo FR, Romani M, De Mori R, Bruel A-L, Gaillard D, Brn Doray, Lopez E, Rivière J-B, Faivre L, Thauvin-Robinet C, Reiter JF, Blacque OE, Valente EM, Leroux MR (2016) MKS5 and CEP290 dependent assembly pathway of the ciliary transition zone. PLoS Biol 14:e1002416. doi:10.1371/journal.pbio.1002416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Li S, Fernandez J-J, Marshall WF, Agard DA (2012) Three-dimensional structure of basal body triplet revealed by electron cryo-tomography. EMBO J 31:552–562. doi:10.1038/emboj.2011.460

    Article  CAS  PubMed  Google Scholar 

  61. Jana SC, Marteil G, Bettencourt-Dias M (2014) Mapping molecules to structure: unveiling secrets of centriole and cilia assembly with near-atomic resolution. Curr Opin Cell Biol 26:96–106. doi:10.1016/j.ceb.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  62. Portran D, Schaedel L, Xu Z, Thery M, Nachury MV (2017) Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat Cell Biol 19:391–398. doi:10.1038/ncb3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wloga D, Joachimiak E, Louka P, Gaertig J (2016) Posttranslational modifications of tubulin and cilia. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a028159

    Google Scholar 

  64. Xu Z, Schaedel L, Portran D, Aguilar A, Gaillard J, Marinkovich MP, Théry M, Nachury MV (2017) Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 356:328. doi:10.1126/science.aai8764

    Article  CAS  PubMed  Google Scholar 

  65. Takao D, Verhey KJ (2016) Gated entry into the ciliary compartment. Cell Mol Life Sci 73:119–127. doi:10.1007/s00018-015-2058-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Verhey KJ, Yang W (2016) Permeability barriers for generating a unique ciliary protein and lipid composition. Curr Opin Cell Biol 41:109–116. doi:10.1016/j.ceb.2016.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nachury MV, Seeley ES, Jin H (2010) Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu Rev Cell Dev Biol 26:59–87. doi:10.1146/annurev.cellbio.042308.113337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu Q, Nelson WJ (2011) The ciliary diffusion barrier: the gatekeeper for the primary cilium compartment. Cytoskeleton (Hoboken, NJ) 68:313–324. doi:10.1002/cm.20514

    Article  CAS  Google Scholar 

  69. Dentler WL, Rosenbaum JL (1977) Flagellar elongation and shortening in Chlamydomonas. III. Structures attached to the tips of flagellar microtubules and their relationship to the directionality of flagellar microtubule assembly. J Cell Biol 74:747–759

    Article  CAS  PubMed  Google Scholar 

  70. Satir P (1968) Studies on cilia: III. Further studies on the cilium tip and a “sliding filament” model of ciliary motility. J Cell Biol 39:77–94. doi:10.1083/jcb.39.1.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dentler WL (1980) Structures linking the tips of ciliary and flagellar microtubules to the membrane. J Cell Sci 42:207–220

    CAS  PubMed  Google Scholar 

  72. Portman RW, LeCluyse EL, Dentler WL (1987) Development of microtubule capping structures in ciliated epithelial cells. J Cell Sci 87:85–94

    PubMed  Google Scholar 

  73. Sloboda RD (2005) Intraflagellar transport and the flagellar tip complex. J Cell Biochem 94:266–272. doi:10.1002/jcb.20323

    Article  CAS  PubMed  Google Scholar 

  74. He M, Subramanian R, Bangs F, Omelchenko T, Liem KF, Kapoor TM, Anderson KV (2014) The kinesin-4 protein KIF7 regulates mammalian hedgehog signaling by organizing the cilia tip compartment. Nat Cell Biol 16:663–672. doi:10.1038/ncb2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pusapati GV, Rohatgi R (2014) Location, location, and location: compartmentalization of Hedgehog signaling at primary cilia. EMBO J 33:1852–1854. doi:10.15252/embj.201489294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cao M, Ning J, Hernandez-Lara CI, Belzile O, Wang Q, Dutcher SK, Liu Y, Snell WJ (2015) Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding. eLife 4:e05242. doi:10.7554/eLife.05242

    Article  PubMed Central  CAS  Google Scholar 

  77. Nager AR, Goldstein JS, Herranz-Pérez V, Portran D, Ye F, Garcia-Verdugo JM, Nachury MV (2017) An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling. Cell 168:1–12. doi:10.1016/j.cell.2016.11.036

    Article  CAS  Google Scholar 

  78. Phua SC, Chiba S, Suzuki M, Su E, Roberson EC, Pusapati GV, Setou M, Rohatgi R, Reiter JF, Ikegami K, Inoue T (2017) Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell 168(264–279):e215. doi:10.1016/j.cell.2016.12.032

    Google Scholar 

  79. Wood CR, Huang K, Diener DR, Rosenbaum JL (2013) The cilium secretes bioactive ectosomes. Curr Biol 23:906–911. doi:10.1016/j.cub.2013.04.019

    Article  CAS  PubMed  Google Scholar 

  80. Wood CR, Rosenbaum JL (2015) Ciliary ectosomes: transmissions from the cell’s antenna. Trends Cell Biol 25:276–285. doi:10.1016/j.tcb.2014.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang J, Silva M, Haas L, Morsci N, Nguyen KCQ, Hall DH, Barr MM (2014) C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr Biol 24:519–525. doi:10.1016/j.cub.2014.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kobayashi T, Dynlacht BD (2011) Regulating the transition from centriole to basal body. J Cell Biol 193:435–444. doi:10.1083/jcb.201101005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim S, Tsiokas L (2011) Cilia and cell cycle re-entry: more than a coincidence. Cell Cycle 10:2683–2690. doi:10.4161/cc.10.16.17009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liang Y, Meng D, Zhu B, Pan J (2016) Mechanism of ciliary disassembly. Cell Mol Life Sci 73:1787–1802. doi:10.1007/s00018-016-2148-7

    Article  CAS  PubMed  Google Scholar 

  85. Taschner M, Lorentzen E (2016) The intraflagellar transport machinery. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a028092

    PubMed  Google Scholar 

  86. Hernandez-Hernandez V, Henkins D (2015) Advances in the understanding of the BBSome complex structure and function. Res Rep Biol 6:191–201. doi:10.2147/RRB.S65700

    Google Scholar 

  87. Spektor A, Tsang WY, Khoo D, Dynlacht BD (2007) Cep97 and CP110 suppress a cilia assembly program. Cell 130:678–690. doi:10.1016/j.cell.2007.06.027

    Article  CAS  PubMed  Google Scholar 

  88. Tsang WY, Bossard C, Khanna H, Peranen J, Swaroop A, Malhotra V, Dynlacht BD (2008) CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Dev Cell 15:187–197. doi:10.1016/j.devcel.2008.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tsang WY, Dynlacht BD (2013) CP110 and its network of partners coordinately regulate cilia assembly. Cilia 2:9. doi:10.1186/2046-2530-2-9

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Goetz SC, Liem KF, Anderson KV (2012) The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 (TTBK2) controls the initiation of ciliogenesis. Cell 151:847–858. doi:10.1016/j.cell.2012.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cajanek L, Nigg EA (2014) Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proc Natl Acad Sci USA 111:E2841–E2850. doi:10.1073/pnas.1401777111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kuhns S, Schmidt KN, Jr Reymann, Gilbert DF, Neuner A, Hub B, Carvalho R, Wiedemann P, Zentgraf H, Erfle H, Klingmüller U, Boutros M, Pereira G (2013) The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis. J Cell Biol 200:505–522. doi:10.1083/jcb.201206013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Prosser SL, Morrison CG (2015) Centrin2 regulates CP110 removal in primary cilium formation. J Cell Biol 208:693–701. doi:10.1083/jcb.201411070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nikonova AS, Astsaturov I, Serebriiskii IG, Dunbrack RL, Golemis EA (2016) Aurora-A kinase (AURKA) in normal and pathological cell growth. Cell Mol Life Sci 70:661–687. doi:10.1007/s00018-012-1073-7

    Article  CAS  Google Scholar 

  95. Inoko A, Matsuyama M, Goto H, Ohmuro-Matsuyama Y, Hayashi Y, Enomoto M, Ibi M, Urano T, Yonemura S, Kiyono T, Izawa I, Inagaki M (2012) Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J Cell Biol 197:391–405. doi:10.1083/jcb.201106101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kasahara K, Kawakami Y, Kiyono T, Yonemura S, Kawamura Y, Era S, Matsuzaki F, Goshima N, Inagaki M (2014) Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension. Nat Commun 5:5081. doi:10.1038/ncomms6081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Izawa I, Goto H, Kasahara K, Inagaki M (2015) Current topics of functional links between primary cilia and cell cycle. Cilia 4:12. doi:10.1186/s13630-015-0021-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Shearer RF, Saunders DN (2016) Regulation of primary cilia formation by the ubiquitin-proteasome system. Biochem Soc Trans 44:1265–1271. doi:10.1042/BST20160174

    Article  CAS  PubMed  Google Scholar 

  99. Goto H, Inaba H, Inagaki M (2016) Mechanisms of ciliogenesis suppression in dividing cells. Cell Mol Life Sci 74:881–890. doi:10.1007/s00018-016-2369-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bhogaraju S, Engel BD, Lorentzen E (2013) Intraflagellar transport complex structure and cargo interactions. Cilia 2:10. doi:10.1186/2046-2530-2-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Braun DA, Hildebrandt F (2017) Ciliopathies. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a028191

    PubMed  Google Scholar 

  102. van Dam TJP, Townsend MJ, Turk M, Schlessinger A, Sali A, Field MC, Huynen MA (2013) Evolution of modular intraflagellar transport from a coatomer-like progenitor. Proc Natl Acad Sci USA 110:6943–6948. doi:10.1073/pnas.1221011110

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dishinger JF, Kee HL, Jenkins PM, Fan S, Hurd TW, Hammond JW, Truong YN-T, Margolis B, Martens JR, Verhey KJ (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and Ran-GTP. Nat Cell Biol 12:703–710. doi:10.1038/ncb2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stepanek L, Pigino G (2016) Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352:721–724. doi:10.1126/science.aaf4594

    Article  CAS  PubMed  Google Scholar 

  105. S-i Yoshimura, Egerer J, Fuchs E, Haas AK, Barr FA (2007) Functional dissection of Rab GTPases involved in primary cilium formation. J Cell Biol 178:363–369. doi:10.1083/jcb.200703047

    Article  CAS  Google Scholar 

  106. Westlake CJ, Baye LM, Nachury MV, Wright KJ, Ervin KE, Phu L, Chalouni C, Beck JS, Kirkpatrick DS, Slusarski DC, Sheffield VC, Scheller RH, Jackson PK (2011) Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Nat Acad Sci USA 108:2759–2764. doi:10.1073/pnas.1018823108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Knodler A, Feng S, Zhang J, Zhang X, Das A, Peränen J, Guo W (2010) Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc Natl Acad Sci USA 107:6346–6351. doi:10.1073/pnas.1002401107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Babbey CM, Bacallao RL, Dunn KW (2010) Rab10 associates with primary cilia and the exocyst complex in renal epithelial cells. Am J Physiol -Renal Physiol 299:F495–F506. doi:10.1152/ajprenal.00198.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hehnly H, Chen C-T, Powers CM, Liu H-L, Doxsey S (2012) The centrosome regulates the Rab11- dependent recycling endosome pathway at appendages of the mother centriole. Curr Biol 22:1944–1950. doi:10.1016/j.cub.2012.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Thomas LL, Fromme JC (2016) GTPase cross talk regulates TRAPPII activation of Rab11 homologues during vesicle biogenesis. J Cell Biol 215:499–513. doi:10.1083/jcb.201608123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749. doi:10.1016/j.cell.2005.06.043

    Article  CAS  PubMed  Google Scholar 

  112. Sato T, Iwano T, Kunii M, Matsuda S, Mizuguchi R, Jung Y, Hagiwara H, Yoshihara Y, Yuzaki M, Harada R, Harada A (2014) Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis. J Cell Sci 127:422–431. doi:10.1242/jcs.136903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Boehlke C, Bashkurov M, Buescher A, Krick T, John A-K, Nitschke R, Walz G, Kuehn EW (2010) Differential role of Rab proteins in ciliary trafficking: Rab23 regulates Smoothened levels. J Cell Sci 123:1460. doi:10.1242/jcs.058883

    Article  CAS  PubMed  Google Scholar 

  114. Lim YS, Tang BL (2015) A role for Rab23 in the trafficking of Kif17 to the primary cilium. J Cell Sci 128:2996–3008. doi:10.1242/jcs.163964

    Article  CAS  PubMed  Google Scholar 

  115. Leaf A, Von Zastrow M (2015) Dopamine receptors reveal an essential role of IFT-B, KIF17, and Rab23 in delivering specific receptors to primary cilia. eLife 4:e06996. doi:10.7554/eLife.06996

    Article  PubMed Central  Google Scholar 

  116. Sheffield VC (2010) The blind leading the obese: the molecular pathophysiology of a human obesity syndrome. Trans Am Clin Climatol Assoc 121:172–182

    PubMed  PubMed Central  Google Scholar 

  117. Jin H, Nachury MV (2009) The BBSome. Curr Biol 19:R472–R473. doi:10.1016/j.cub.2009.04.015

    Article  CAS  PubMed  Google Scholar 

  118. Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, Bazan JF, Nachury MV (2010) The conserved Bardet–Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141:1208–1219. doi:10.1016/j.cell.2010.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peränen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201–1213. doi:10.1016/j.cell.2007.03.053

    Article  CAS  PubMed  Google Scholar 

  120. Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K (2008) Bardet–Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Prooc Natl Acad Sci USA 105:4242–4246. doi:10.1073/pnas.0711027105

    Article  CAS  Google Scholar 

  121. Loktev AV, Jackson PK (2013) Neuropeptide Y family receptors traffic via the Bardet–Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep 5:1316–1329. doi:10.1016/j.celrep.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  122. Domire JS, Green JA, Lee KG, Johnson AD, Askwith CC, Mykytyn K (2011) Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet–Biedl syndrome proteins. Cell Mol Life Sci 68:2951–2960. doi:10.1007/s00018-010-0603-4

    Article  CAS  PubMed  Google Scholar 

  123. Eguether T, San Agustin JT, Keady BT, Jonassen JA, Liang Y, Francis R, Tobita K, Johnson CA, Abdelhamed ZA, Lo CW, Pazour GJ (2014) IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Dev Cell 31:279–290. doi:10.1016/j.devcel.2014.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liew GM, Ye F, Nager AR, Murphy JP, Lee JS, Aguiar M, Breslow DK, Gygi SP, Nachury MV (2014) The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3. Dev Cell 31:265–278. doi:10.1016/j.devcel.2014.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu Q, Zhang Y, Wei Q, Huang Y, Li Y, Ling K, Hu J (2015) BBS4 and BBS5 show functional redundancy in the BBSome to regulate the degradative sorting of ciliary sensory receptors. Sci Rep 5:11855. doi:10.1038/srep11855

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lechtreck K-F, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J, Pazour GJ, Ikebe M, Witman GB (2009) The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol 187:1117–1132. doi:10.1083/jcb.200909183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lechtreck KF, Brown JM, Sampaio JL, Craft JM, Shevchenko A, Evans JE, Witman GB (2013) Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase. J Cell Biol 201:249–261. doi:10.1083/jcb.201207139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yu IM, Hughson FM (2010) Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26:137–156. doi:10.1146/annurev.cellbio.042308.113327

    Article  CAS  PubMed  Google Scholar 

  129. Hertzog M, Chavrier P (2011) Cell polarity during motile processes: keeping on track with the exocyst complex. Biochem J 433:403–409. doi:10.1042/BJ20101214

    Article  CAS  PubMed  Google Scholar 

  130. Munson M, Novick P (2006) The exocyst defrocked, a framework of rods revealed. Nat Struct Mol Biol 13:577–581. doi:10.1038/nsmb1097

    Article  CAS  PubMed  Google Scholar 

  131. Heider MR, Munson M (2012) Exorcising the exocyst complex. Traffic 13:898–907. doi:10.1111/j.1600-0854.2012.01353.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rogers KK, Wilson PD, Snyder RW, Zhang X, Guo W, Burrow CR, Lipschutz JH (2004) The exocyst localizes to the primary cilium in MDCK cells. Biochem Biophys Res Commun 319:138–143. doi:10.1016/j.bbrc.2004.04.165

    Article  CAS  PubMed  Google Scholar 

  133. Zhang X-M, Ellis S, Sriratana A, Mitchell CA, Rowe T (2004) Sec15 is an effector for the Rab11 GTPase in mammalian cells. J Biol Chem 279:43027–43034. doi:10.1074/jbc.M402264200

    Article  CAS  PubMed  Google Scholar 

  134. Wu S, Mehta SQ, Pichaud F, Bellen HJ, Quiocho FA (2005) Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat Struct Mol Biol 12:879–885. doi:10.1038/nsmb987

    Article  CAS  PubMed  Google Scholar 

  135. Zuo X, Guo W, Lipschutz JH (2009) The exocyst protein sec10 is necessary for primary ciliogenesis and cystogenesis in vitro. Mol Biol Cell 20:2522–2529. doi:10.1091/mbc.E08-07-0772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Polgar N, Lee AJ, Lui VH, Napoli JA, Fogelgren B (2015) The exocyst gene Sec10 regulates renal epithelial monolayer homeostasis and apoptotic sensitivity. Am J Physiol Cell Physiol 309:C190–C201. doi:10.1152/ajpcell.00011.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fogelgren B, Lin S-Y, Zuo X, Jaffe KM, Park KM, Reichert RJ, Bell PD, Burdine RD, Lipschutz JH (2011) The exocyst protein Sec10 interacts with polycystin-2 and knockdown causes PKD-phenotypes. PLoS Gen 7:e1001361. doi:10.1371/journal.pgen.1001361

    Article  CAS  Google Scholar 

  138. Li Y, Ling K, Hu J (2012) The emerging role of Arf/Arl small GTPases in cilia and ciliopathies. J Cell Biochem 113:2201–2207. doi:10.1002/jcb.24116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cantagrel V, Silhavy JL, Bielas SL, Swistun D, Marsh SE, Bertrand JY, Audollent S, Attié-Bitach T, Holden KR, Dobyns WB, Traver D, Al-Gazali L, Ali BR, Lindner TH, Caspary T, Otto EA, Hildebrandt F, Glass IA, Logan CV, Johnson CA, Bennett C, Brancati F, The International Joubert Syndrome Related Disorders Study Group, Valente EM, Woods CG, Gleeson JG (2008) Mutations in the cilia Gene ARL13B lead to the classical form of Joubert syndrome. Am J Hum Genet 83:170–179. doi:10.1016/j.ajhg.2008.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Larkins CE, Aviles GDG, East MP, Kahn RA, Caspary T (2011) Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins. Mol Biol Cell 22:4694–4703. doi:10.1091/mbc.E10-12-0994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Caspary T, Larkins CE, Anderson KV (2007) The graded response to sonic Hedgehog depends on cilia architecture. Dev Cell 12:767–778. doi:10.1016/j.devcel.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  142. Cl Seixas, Choi SY, Polgar N, Umberger NL, East MP, Zuo X, Moreiras H, Ghossoub R, Benmerah A, Kahn RA, Fogelgren B, Caspary T, Lipschutz JH, Barral DC (2016) Arl13b and the exocyst interact synergistically in ciliogenesis. Mol Biol Cell 27:308–320. doi:10.1091/mbc.E15-02-0061

    Article  CAS  Google Scholar 

  143. Joberty G, Petersen C, Gao L, Macara IG (2000) The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2:531–539. doi:10.1038/35019573

    Article  CAS  PubMed  Google Scholar 

  144. Sfakianos J, Togawa A, Maday S, Hull M, Pypaert M, Cantley L, Toomre D, Mellman I (2007) Par3 functions in the biogenesis of the primary cilium in polarized epithelial cells. J Cell Biol 179:1133–1140. doi:10.1083/jcb.200709111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fan S, Hurd TW, Liu C-J, Straight SW, Weimbs T, Hurd EA, Domino SE, Margolis B (2004) Polarity proteins control ciliogenesis via kinesin motor interactions. Curr Biol 14:1451–1461. doi:10.1016/j.cub.2004.08.025

    Article  CAS  PubMed  Google Scholar 

  146. Hurd TW, Fan S, Liu C-J, Kweon HK, Hakansson K, Margolis B (2003) Phosphorylation-dependent binding of 14-3-3 to the polarity protein Par3 regulates cell polarity in mammalian epithelia. Curr Biol 13:2082–2090. doi:10.1016/j.cub.2003.11.020

    Article  CAS  PubMed  Google Scholar 

  147. Zuo X, Fogelgren B, Lipschutz JH (2011) The small GTPase Cdc42 is necessary for primary ciliogenesis in renal tubular epithelial cells. J Biol Chem 286:22469–22477. doi:10.1074/jbc.M111.238469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lemmers C, Michel D, Lane-Guermonprez L, Delgrossi M-H, Médina E, Arsanto J-P, Le Bivic A (2004) CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Mol Biol Cell 15:1324–1333. doi:10.1091/mbc.E03-04-0235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang G, Krishnamurthy K, Bieberich E (2009) Regulation of primary cilia formation by ceramide. J Lipid Res 50:2103–2110. doi:10.1194/jlr.M900097-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fan S, Fogg V, Wang Q, Chen X-W, Liu C-J, Margolis B (2007) A novel Crumbs3 isoform regulates cell division and ciliogenesis via importin β interactions. J Cell Biol 178:387–398. doi:10.1083/jcb.200609096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Torkko JM, Manninen A, Schuck S, Simons K (2008) Depletion of apical transport proteins perturbs epithelial cyst formation and ciliogenesis. J Cell Sci 121:1193–1203. doi:10.1242/jcs.015495

    Article  CAS  PubMed  Google Scholar 

  152. Takiar V, Mistry K, Carmosino M, Schaeren-Wiemers N, Caplan MJ (2012) VIP17/MAL expression modulates epithelial cyst formation and ciliogenesis. Am J Physiol Cell Physiol 303:C862–C871. doi:10.1152/ajpcell.00338.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Reales E, Bernabé-Rubio M, Casares-Arias J, Rentero C, Fernández-Barrera J, Rangel L, Correas I, Enrich C, Andrés G, Alonso MA (2015) The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci 128:2261–2270. doi:10.1242/jcs.164970

    Article  CAS  PubMed  Google Scholar 

  154. Sorokin SP (1968) Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 3:207–230

    CAS  PubMed  Google Scholar 

  155. Ghossoub R, Molla-Herman A, Bastin P, Benmerah A (2011) The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol Cell 103:131–144. doi:10.1042/BC20100128

    Article  PubMed  Google Scholar 

  156. Molla-Herman A, Ghossoub R, Blisnick T, Meunier A, Serres C, Silbermann F, Emmerson C, Romeo K, Bourdoncle P, Schmitt A, Saunier S, Spassky N, Bastin P, Benmerah A (2010) The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci 123:1785–1795. doi:10.1242/jcs.059519

    Article  CAS  PubMed  Google Scholar 

  157. Benmerah A (2013) The ciliary pocket. Curr Opin Cell Biol 25:78–84. doi:10.1016/j.ceb.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  158. Rohatgi R, Snell WJ (2010) The ciliary membrane. Curr Opin Cell Biol 22:541–546. doi:10.1016/j.ceb.2010.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rattner JB, Sciore P, Ou Y, van der Hoorn FA, Lo IK (2010) Primary cilia in fibroblast-like type B synoviocytes lie within a cilium pit: a site of endocytosis. Histol Histopathol 25:865–875. doi:10.14670/HH-25.865

    PubMed  Google Scholar 

  160. Clement CA, Ajbro KD, Koefoed K, Vestergaard ML, Veland IR, Henriques de Jesus MP, Pedersen LB, Benmerah A, Andersen CY, Larsen LA, Christensen ST (2013) TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep 3:1806–1814. doi:10.1016/j.celrep.2013.05.020

    Article  CAS  PubMed  Google Scholar 

  161. Sorokin S (1962) Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol 15:363–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mazo G, Soplop N, Wang W-J, Uryu K, Tsou M-FB (2016) Spatial control of primary ciliogenesis by subdistal appendages alters sensation-associated properties of cilia. Dev Cell 39:424–437. doi:10.1016/j.devcel.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  163. LaRusso NF, Masyuk TV (2011) The role of cilia in the regulation of bile flow. Dig Dis 29:6–12. doi:10.1159/000324121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Pitaval A, Tseng Q, Bornens M, Théry M (2010) Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J Cell Biol 191:303–312. doi:10.1083/jcb.201004003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Galati DF, Mitchell BJ, Pearson CG (2016) Subdistal appendages stabilize the ups and downs of ciliary life. Dev Cell 39:387–389. doi:10.1016/j.devcel.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  166. Lu Q, Insinna C, Ott C, Stauffer J, Pintado PA, Rahajeng J, Baxa U, Walia V, Cuenca A, Hwang Y-S, Daar IO, Lopes S, Lippincott-Schwartz J, Jackson PK, Caplan S, Westlake CJ (2015) Early steps in primary cilium assembly require EHD1- and EHD3-dependent ciliary vesicle formation. Nat Cell Biol 17:228–240. doi:10.1038/ncb3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Baron Gaillard CL, Pallesi-Pocachard E, Massey-Harroche D, Richard F, Arsanto J-P, Chauvin J-P, Lecine P, Krämer H, Borg J-P, Le Bivic A (2011) Hook2 is involved in the morphogenesis of the primary cilium. Mol Biol Cell 22:4549–4562. doi:10.1091/mbc.E11-05-0405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Tucker RW, Pardee AB, Fujiwara K (1979) Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17:527–535. doi:10.1016/0092-8674(79)90261-7

    Article  CAS  PubMed  Google Scholar 

  169. Schmidt KN, Kuhns S, Neuner A, Hub B, Zentgraf H, Pereira G (2012) Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J Cell Biol 199:1083–1101. doi:10.1083/jcb.201202126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pedersen LB, Veland IR, Schrøder JM, Christensen ST (2008) Assembly of primary cilia. Dev Dyn 237:1993–2006. doi:10.1002/dvdy.21521

    Article  CAS  PubMed  Google Scholar 

  171. Paridaen JTML, Wilsch-Bräuninger M, Huttner WB (2013) Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell 155:333–344. doi:10.1016/j.cell.2013.08.060

    Article  CAS  PubMed  Google Scholar 

  172. Yee LE, Reiter JF (2015) Ciliary vesicle formation: a prelude to ciliogenesis. Dev Cell 32:665–666. doi:10.1016/j.devcel.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  173. Latta H, Maunsbach AB, Madden SC (1961) Cilia in different segments of the rat nephron. J Biophys Biochem Cytol 11:248–252. doi:10.1083/jcb.11.1.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529. doi:10.1146/annurev.physiol.67.040403.101353

    Article  CAS  PubMed  Google Scholar 

  175. Zhang Q, Taulman PD, Yoder BK (2004) Cystic kidney diseases: all roads lead to the cilium. Physiology 19:225. doi:10.1152/physiol.00003.2004

    Article  CAS  PubMed  Google Scholar 

  176. Rodriguez-Boulan E, Kreitzer G, Musch A (2005) Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 6:233–247. doi:10.1038/nrm1593

    Article  CAS  PubMed  Google Scholar 

  177. Bernabé-Rubio M, Andrés G, Casares-Arias J, Fernández-Barrera J, Rangel L, Reglero-Real N, Gershlick DC, Fernández JJ, Millán J, Correas I, Miguez DG, Alonso MA (2016) Novel role for the midbody in primary ciliogenesis by polarized epithelial cells. J Cell Biol 214:259–273. doi:10.1083/jcb.201601020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Praetorius HA, Spring KR (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191:69–76. doi:10.1007/s00232-002-1042-4

    Article  CAS  PubMed  Google Scholar 

  179. Francis SS, Sfakianos J, Lo B, Mellman I (2011) A hierarchy of signals regulates entry of membrane proteins into the ciliary membrane domain in epithelial cells. J Cell Biol 193:219–233. doi:10.1083/jcb.201009001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DYR, Reiter JF (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437:1018–1021. doi:10.1038/nature04117

    Article  CAS  PubMed  Google Scholar 

  181. Praetorius HA, Praetorius J, Nielsen S, Frokiaer J, Spring KR (2004) β-Integrins in the primary cilium of MDCK cells potentiate fibronectin-induced Ca2+ signaling. Am J Physiol Renal Physiol 287:F969–F978. doi:10.1152/ajprenal.00096.2004

    Article  CAS  PubMed  Google Scholar 

  182. Vieira OV, Gaus K, Verkade P, Fullekrug J, Vaz WLC, Simons K (2006) FAPP2, cilium formation, and compartmentalization of the apical membrane in polarized Madin–Darby canine kidney (MDCK) cells. Proc Nat Acad Sci USA 103:18556–18561. doi:10.1073/pnas.0608291103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gromley A, Yeaman C, Rosa J, Redick S, Chen C-T, Mirabelle S, Guha M, Sillibourne J, Doxsey SJ (2005) Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123:75–87. doi:10.1016/j.cell.2005.07.027

    Article  CAS  PubMed  Google Scholar 

  184. Delaval B, Bright A, Lawson ND, Doxsey S (2011) The cilia protein IFT88 is required for spindle orientation in mitosis. Nat Cell Biol 13:461–468. doi:10.1038/ncb2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Fededa JP, Gerlich DW (2012) Molecular control of animal cell cytokinesis. Nat Cell Biol 14:440–447. doi:10.1038/ncb2482

    Article  CAS  PubMed  Google Scholar 

  186. Green RA, Paluch E, Oegema K (2012) Cytokinesis in animal cells. Annu Rev Cell Dev Biol 28:29–58. doi:10.1146/annurev-cellbio-101011-155718

    Article  CAS  PubMed  Google Scholar 

  187. Mullins J, Biesele JJ (1977) Terminal phase of cytokinesis in D-98S cells. J Cell Biol 73:672–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mierzwa B, Gerlich DW (2014) Cytokinetic abscission: molecular mechanisms and temporal control. Dev Cell 31:525–538. doi:10.1016/j.devcel.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  189. Dionne LK, Wang X-J, Prekeris R (2015) Midbody: from cellular junk to regulator of cell polarity and cell fate. Curr Opin Cell Biol 35:51–58. doi:10.1016/j.ceb.2015.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kuo T-C, Chen C-T, Baron D, Onder TT, Loewer S, Almeida S, Weismann C, Xu P, Houghton J-M, Gao F-B, Daley GQ, Doxsey S (2011) Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol 13:1214–1223. doi:10.1038/ncb2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Marzesco A-M, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858. doi:10.1242/jcs.02439

    Article  CAS  PubMed  Google Scholar 

  192. Pohl C, Jentsch S (2009) Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat Cell Biol 11:65–70. doi:10.1038/ncb1813

    Article  CAS  PubMed  Google Scholar 

  193. Salzmann V, Chen C, Chiang CYA, Tiyaboonchai A, Mayer M, Yamashita YM (2014) Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division. Mol Biol Cell 25:267–275. doi:10.1091/mbc.E13-09-0541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Chen C-T, Ettinger AW, Huttner WB, Doxsey SJ (2012) Resurrecting remnants: the lives of post-mitotic midbodies. Trends Cell Biol 23:118–128. doi:10.1016/j.tcb.2012.10.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Ettinger AW, Wilsch-Brauninger M, Marzesco A-M, Bickle M, Lohmann A, Maliga Z, Karbanova J, Corbeil D, Hyman AA, Huttner WB (2011) Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour. Nat Commun 2:503. doi:10.1038/ncomms1511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Li D, Mangan A, Cicchini L, Margolis B, Prekeris R (2014) FIP5 phosphorylation during mitosis regulates apical trafficking and lumenogenesis. EMBO Rep 15:428–437. doi:10.1002/embr.201338128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Singh D, Pohl C (2014) Coupling of rotational cortical flow, asymmetric midbody positioning, and spindle rotation mediates dorsoventral axis formation in C. elegans. Dev Cell 28:253–267. doi:10.1016/j.devcel.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  198. Pollarolo G, Schulz JG, Munck S, Dotti CG (2011) Cytokinesis remnants define first neuronal asymmetry in vivo. Nat Neurosci 14:1525–1533. doi:10.1038/nn.2976

    Article  CAS  PubMed  Google Scholar 

  199. Skop AR, Liu H, Yates J, Meyer BJ, Heald R (2004) Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305:61–66. doi:10.1126/science.1097931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ishikawa H, Thompson J, Yates JR, Marshall WF (2012) Proteomic analysis of mammalian primary cilia. Curr Biol 22:414–419. doi:10.1016/j.cub.2012.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Smith KR, Kieserman EK, Wang PI, Basten SG, Giles RH, Marcotte EM, Wallingford JB (2011) A role for central spindle proteins in cilia structure and function. Cytoskeleton (Hoboken, NJ) 68:112–124. doi:10.1002/cm.20498

    Article  CAS  Google Scholar 

  202. Ott CM (2016) Midbody remnant licenses primary cilia formation in epithelial cells. J Cell Biol 214:237–239. doi:10.1083/jcb.201607046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Fielding AB, Schonteich E, Matheson J, Wilson G, Yu X, Hickson GRX, Srivastava S, Baldwin SA, Prekeris R, Gould GW (2005) Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J 24:3389–3399. doi:10.1038/sj.emboj.7600803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wood CR, Wang Z, Diener D, Zones JM, Rosenbaum J, Umen JG (2012) IFT proteins accumulate during cell division and localize to the cleavage furrow in Chlamydomonas. PLoS One 7:e30729. doi:10.1371/journal.pone.0030729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Morais-de-Sá E, Sunkel C (2013) Adherens junctions determine the apical position of the midbody during follicular epithelial cell division. EMBO Rep 14:696–703. doi:10.1038/embor.2013.85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Reinsch S, Karsenti E (1994) Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J Cell Biol 126:1509–1526. doi:10.1083/jcb.126.6.1509

    Article  CAS  PubMed  Google Scholar 

  207. Crowell EF, Gaffuri A-L, Gayraud-Morel B, Tajbakhsh S, Echard A (2014) Engulfment of the midbody remnant after cytokinesis in mammalian cells. J Cell Sci 127:3840–3851. doi:10.1242/jcs.154732

    Article  CAS  PubMed  Google Scholar 

  208. Bazellières E, Conte V, Elosegui-Artola A, Serra-Picamal X, Bintanel-Morcillo M, Roca-Cusachs P, Muñoz JJ, Sales-Pardo M, Guimerá R, Trepat X (2015) Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol 17:409–420. doi:10.1038/ncb3135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ (2009) Physical forces during collective cell migration. Nat Phys 5:426–430. doi:10.1038/nphys1269

    Article  CAS  Google Scholar 

  210. Dingemans KP (1969) The relation between cilia and mitoses in the mouse adenohypophysis. J Cell Biol 43:361–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8:451–463. doi:10.1038/nrm2180

    Article  CAS  PubMed  Google Scholar 

  212. Marshall WF (2008) Basal bodies: platforms for building cilia. Curr Topics Dev Biol 85:1–22. doi:10.1016/S0070-2153(08)00801-6

    Article  CAS  Google Scholar 

  213. Masyuk AI, Masyuk TV, LaRusso NF (2008) Cholangiocyte primary cilium in liver health and disease. Dev Dyn 237:2007–2012. doi:10.1002/dvdy.21530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Davenport JR, Yoder BK (2005) An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol 289:F1159. doi:10.1152/ajprenal.00118.2005

    Article  CAS  PubMed  Google Scholar 

  215. Piel M, Nordberg J, Euteneuer U, Bornens M (2001) Centrosome-dependent exit of cytokinesis in animal cells. Science 291:1550–1553. doi:10.1126/science.1057330

    Article  CAS  PubMed  Google Scholar 

  216. Jonsdottir AB, Dirks RW, Vrolijk J, Ögmundsdottir HM, Tanke HJ, Eyfjörd JE, Szuhai K (2010) Centriole movements in mammalian epithelial cells during cytokinesis. BMC Cell Biol 11:1–9. doi:10.1186/1471-2121-11-34

    Article  CAS  Google Scholar 

  217. Pampliega O, Orhon I, Patel B, Sridhar S, Diaz-Carretero A, Beau I, Codogno P, Satir BH, Satir P, Cuervo AM (2013) Functional interaction between autophagy and ciliogenesis. Nature 502:194–200. doi:10.1038/nature12639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Tang Z, Lin MG, Stowe TR, Chen S, Zhu M, Stearns T, Franco B, Zhong Q (2013) Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502:254–257. doi:10.1038/nature12606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of M. A. Alonso and I. Correas laboratories for helpful discussions. We also thank Dr. Phil Mason for revising the English language of the manuscript. Research in the laboratory of Miguel A. Alonso is supported by a Grant (BFU2015-67266-R) from the Ministerio de Economía y Competitividad MINECO, Spain, and the Fondo Europeo de Desarrollo Regional (FEDER), European Union. MB-R is the holder of a predoctoral contract from the MINECO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Alonso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernabé-Rubio, M., Alonso, M.A. Routes and machinery of primary cilium biogenesis. Cell. Mol. Life Sci. 74, 4077–4095 (2017). https://doi.org/10.1007/s00018-017-2570-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2570-5

Keywords

Navigation