Skip to main content

Advertisement

Log in

To be disordered or not to be disordered: is that still a question for proteins in the cell?

  • Multi-author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

There is ample evidence that many proteins or regions of proteins lack a well-defined folded structure under native-like conditions. These are called intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). Whether this intrinsic disorder is also their main structural characteristic in living cells has been a matter of intense debate. The structural analysis of IDPs became an important challenge also because of their involvement in a plethora of human diseases, which made IDPs attractive targets for therapeutic development. Therefore, biophysical approaches are increasingly being employed to probe the structural and dynamical state of proteins, not only in isolation in a test tube, but also in a complex biological environment and even within intact cells. Here, we survey direct and indirect evidence that structural disorder is in fact the physiological state of many proteins in the proteome. The paradigmatic case of α-synuclein is used to illustrate the controversial nature of this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Ref. [151]

Fig. 3
Fig. 4
Fig. 5

Reprinted from Ref. [119]. Copyright 2012 American Society for Biochemistry and Molecular Biology

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19:23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Piovesan D, Tabaro F, Micetic I, Necci M, Quaglia F, Oldfield C, Aspromonte MC, Davey NE, Davidovic R, Dosztanyi Z, Elofsson A, Gasparini A, Hatos A, Kajava AV, Kalmar L, Leonardi E, Lazar T, Macedo-Ribeiro S, Macossay Castillo MM, Meszaros A, Minervini G, Murvai N, Pujols J, Roche DB, Salladini E, Schad E, Schramm A, Szabo B, Tantos A, Tonello F, Tsirigos KD, Veljkovic N, Ventura S, Vranken W, Warholm P, Uversky VN, Dunker AK, Longhi S, Tompa P, Tosatto SCE (2017) DisProt 7.0: A major update of the database of disordered proteins. Nucleic Acids Res 45:D1123–D1124

    Article  PubMed  Google Scholar 

  3. Potenza E, Di Domenico T, Walsh I, Tosatto SC (2014) MobiDB 2.0: An improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 43:D315–D320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Baruah A, Rani P, Biswas P (2015) Conformational entropy of intrinsically disordered proteins from amino acid triads. Sci Rep 5:11740

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  CAS  PubMed  Google Scholar 

  6. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589–6631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Varadi M, Tompa P (2015) The protein ensemble database. Adv Exp Med Biol 870:335–349

    Article  CAS  PubMed  Google Scholar 

  8. Trombitas K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M, Granzier H (1998) Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 140:853–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mukhopadhyay R, Hoh JH (2001) AFM force measurements on microtubule-associated proteins: the projection domain exerts a long-range repulsive force. FEBS Lett 505:374–378

    Article  CAS  PubMed  Google Scholar 

  10. Denning DP, Patel SS, Uversky V, Fink AL, Rexach M (2003) Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci USA 100:2450–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Milles S, Mercadante D, Aramburu IV, Jensen MR, Banterle N, Koehler C, Tyagi S, Clarke J, Shammas SL, Blackledge M, Grater F, Lemke EA (2015) Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 163:734–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patel SS, Belmont BJ, Sante JM, Rexach MF (2007) Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129:83–96

    Article  CAS  PubMed  Google Scholar 

  13. Halwer M (1954) Light-scattering study of effect of electrolytes on alpha- and beta-casein solutions. Arch Biochem Biophys 51:79–87

    Article  CAS  PubMed  Google Scholar 

  14. Pascal C, Pate F, Cheynier V, Delsuc MA (2009) Study of the interactions between a proline-rich protein and a flavan-3-ol by NMR: residual structures in the natively unfolded protein provides anchorage points for the ligands. Biopolymers 91:745–756

    Article  CAS  PubMed  Google Scholar 

  15. House-Pompeo K, Xu Y, Joh D, Speziale P, Hook M (1996) Conformational changes in the fibronectin binding MSCRAMMs are induced by ligand binding. J Biol Chem 271:1379–1384

    Article  CAS  PubMed  Google Scholar 

  16. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579:3346–3354

    Article  CAS  PubMed  Google Scholar 

  18. Hegyi H, Schad E, Tompa P (2007) Structural disorder promotes assembly of protein complexes. BMC Struct Biol 7:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kriwacki RW, Hengst L, Tennant L, Reed SI, Wright PE (1996) Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc Natl Acad Sci USA 93:11504–11509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dunker AK, Obradovic Z (2001) The protein trinity—linking function and disorder. Nat Biotechnol 19:805–806

    Article  CAS  PubMed  Google Scholar 

  21. Tompa P, Szasz C, Buday L (2005) Structural disorder throws new light on moonlighting. Trends Biochem Sci 30:484–489

    Article  CAS  PubMed  Google Scholar 

  22. Fabrega C, Shen V, Shuman S, Lima CD (2003) Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Mol Cell 11:1549–1561

    Article  CAS  PubMed  Google Scholar 

  23. Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE (2002) Structural basis for Hif-1 alpha/CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci USA. 99:5271–5276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elkins JM, Hewitson KS, McNeill LA, Seibel JF, Schlemminger I, Pugh CW, Ratcliffe PJ, Schofield CJ (2003) Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1 alpha. J Biol Chem 278:1802–1806

    Article  CAS  PubMed  Google Scholar 

  25. Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, Oldfield CJ, Williams CJ, Keith Dunker A (2002) Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol 55:104–110

    Article  CAS  PubMed  Google Scholar 

  26. Bellay J, Han S, Michaut M, Kim T, Costanzo M, Andrews BJ, Boone C, Bader GD, Myers CL, Kim PM (2011) Bringing order to protein disorder through comparative genomics and genetic interactions. Genome Biol 12:R14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  PubMed  Google Scholar 

  28. Loewenstein Y, Raimondo D, Redfern OC, Watson J, Frishman D, Linial M, Orengo C, Thornton J, Tramontano A (2009) Protein function annotation by homology-based inference. Genome Biol 10:207

    Article  PubMed  PubMed Central  Google Scholar 

  29. Holt C, Sawyer L (1993) Caseins as rheomorphic proteins: interpretation of primary and secondary structures of the alpha(s1)-, beta- and kappa-caseins. J Chem Soc Faraday Trans 89:2683–2692

    Article  CAS  Google Scholar 

  30. Tompa P, Fuxreiter M, Oldfield CJ, Simon I, Dunker AK, Uversky VN (2009) Close encounters of the third kind: disordered domains and the interactions of proteins. BioEssays 31:328–335

    Article  CAS  PubMed  Google Scholar 

  31. Hurst LD (2002) The K a/K s ratio: diagnosing the form of sequence evolution. Trends Genet 18:486

    Article  PubMed  Google Scholar 

  32. Tucker PK, Lundrigan BL (1993) Rapid evolution of the sex determining locus in Old World mice and rats. Nature 364:715–717

    Article  CAS  PubMed  Google Scholar 

  33. Whitfield LS, Lovell-Badge R, Goodfellow PN (1993) Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature 364:713–715

    Article  CAS  PubMed  Google Scholar 

  34. Csizmok V, Felli IC, Tompa P, Banci L, Bertini I (2008) Structural and dynamic characterization of intrinsically disordered human securin by NMR spectroscopy. J Am Chem Soc 130:16873–16879

    Article  CAS  PubMed  Google Scholar 

  35. Dunker AK, Lawson JD, Brown CJ, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    Article  CAS  PubMed  Google Scholar 

  36. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427

    Article  CAS  PubMed  Google Scholar 

  37. Atkins JD, Boateng SY, Sorensen T, McGuffin LJ (2015) Disorder prediction methods, their applicability to different protein targets and their usefulness for guiding experimental studies. Int J Mol Sci 16:19040–19054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ciechanover A (2012) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin–proteasome system and onto human diseases and drug targeting. Biochim Biophys Acta 1824:3–13

    Article  CAS  PubMed  Google Scholar 

  39. Tomko RJ Jr, Hochstrasser M (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82:415–445

    Article  CAS  PubMed  Google Scholar 

  40. Varshavsky A (1991) Naming a targeting signal. Cell 64:13–15

    Article  CAS  PubMed  Google Scholar 

  41. Inobe T, Fishbain S, Prakash S, Matouschek A (2011) Defining the geometry of the two-component proteasome degron. Nat Chem Biol 7:161–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin–proteasome system. Nat Rev Mol Cell Biol 9:679–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prakash S, Tian L, Ratliff KS, Lehotzky RE, Matouschek A (2004) An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat Struct Mol Biol 11:830–837

    Article  CAS  PubMed  Google Scholar 

  44. Guharoy M, Bhowmick P, Sallam M, Tompa P (2016) Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin–proteasome system. Nat Commun 7:10239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein-folding—a synthesis. Proteins 21:167–195

    Article  CAS  PubMed  Google Scholar 

  46. Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tompa P, Fuxreiter M (2008) Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem Sci 33:2–8

    Article  CAS  PubMed  Google Scholar 

  48. Tompa P (2012) On the supertertiary structure of proteins. Nat Chem Biol 8:597–600

    Article  CAS  PubMed  Google Scholar 

  49. Uversky VN (2014) The triple power of D 3: protein intrinsic disorder in degenerative diseases. Front Biosci (Landmark edition) 19:181–258

    Article  CAS  Google Scholar 

  50. Guharoy M, Pauwels K, Tompa P (2015) SnapShot: intrinsic structural disorder. Cell 161(1230–1230):e1

    Google Scholar 

  51. Pauwels K, Tompa P (2016) Editorial: function and flexibility: friend or foe? Front Mol Biosci 3:31

    Article  PubMed  PubMed Central  Google Scholar 

  52. Babu MM, van der Lee R, de Groot NS, Gsponer J (2011) Intrinsically disordered proteins: regulation and disease. Curr Opin Struct Biol 21:1–9

    Article  CAS  Google Scholar 

  53. Bodart JF, Wieruszeski JM, Amniai L, Leroy A, Landrieu I, Rousseau-Lescuyer A, Vilain JP, Lippens G (2008) NMR observation of Tau in Xenopus oocytes. J Magn Reson 192:252–257

    Article  CAS  PubMed  Google Scholar 

  54. Theillet F-X, Binolfi A, Bekei B, Martorana A, Rose HM, Stuiver M, Verzini S, Lorenz D, van Rossum M, Goldfarb D, Selenko P (2016) Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530:45–50

    Article  CAS  PubMed  Google Scholar 

  55. Bernadó P, Svergun DI (2011) Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol Biosyst 8:151–167

    Article  PubMed  Google Scholar 

  56. Receveur-Brechot V, Durand D (2012) How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Pept Sci 13:55–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fontana A, De Laureto PP, Spolaore B, Frare E, Picotti P, Zambonin M (2004) Probing protein structure by limited proteolysis. Acta Biochim Pol 51:299–321

    CAS  PubMed  Google Scholar 

  58. Luchinat E, Banci L (2016) A unique tool for cellular structural biology: in-cell NMR. J Biol Chem 291:3776–3784

    Article  CAS  PubMed  Google Scholar 

  59. Varadi M, Vranken W, Guharoy M, Tompa P (2015) Computational approaches for inferring the functions of intrinsically disordered proteins. Front Mol Biosci 2:1–8

    Article  CAS  Google Scholar 

  60. Uversky VN (2013) Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta Proteins Proteom 1834:932–951

    Article  CAS  Google Scholar 

  61. Uversky VN (2015) Biophysical methods to investigate intrinsically disordered proteins: avoiding an “elephant and blind men” situation. Adv Exp Med Biol 870:215–260

    Article  CAS  PubMed  Google Scholar 

  62. Anfinsen C (1972) Nobel lecture: studies on the principles that govern the folding of protein chains. Nobelprize.org. Nobel Media AB 2014. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1972/anfinsen-lecture.html. Accessed 12 Jun 2017

  63. Gershenson A, Gierasch LM, Pastore A, Radford SE (2014) Energy landscapes of functional proteins are inherently risky. Nat Chem Biol 10:884–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ellis RJ (2001) Macromolecular crowding: obvious but under appreciated. Trends Biochem Sci 26:597–604

    Article  CAS  PubMed  Google Scholar 

  65. Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    Article  CAS  PubMed  Google Scholar 

  66. Politou A, Temussi PA (2015) Revisiting a dogma: the effect of volume exclusion in molecular crowding. Curr Opin Struct Biol 30:1–6

    Article  CAS  PubMed  Google Scholar 

  67. Rivas G, Minton AP (2016) Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem Sci 41:970–981

    Article  CAS  PubMed  Google Scholar 

  68. Ellis RJ, Minton AP (2003) Join the crowd. Nature 425:27–28

    Article  CAS  PubMed  Google Scholar 

  69. Szasz C, Alexa A, Toth K, Rakacs M, Langowski J, Tompa P (2011) Protein disorder prevails under crowded conditions. Biochemistry 50:5834–5844

    Article  CAS  PubMed  Google Scholar 

  70. Schuler B, Soranno A, Hofmann H, Nettels D (2016) Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu Rev Biophys 45:207–231

    Article  CAS  PubMed  Google Scholar 

  71. Soranno A, Koenig I, Borgia MB, Hofmann H, Zosel F, Nettels D, Schuler B (2014) Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. Proc Natl Acad Sci USA 111:4874–4879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Flaugh SL, Lumb KJ (2001) Effects of macromolecular crowding on the intrinsically disordered proteins c-Fos and p27(Kip1). Biomacromolecules 2:538–540

    Article  CAS  PubMed  Google Scholar 

  73. Kuznetsova IM, Turoverov KK, Uversky VN (2014) What macromolecular crowding can do to a protein. Int J Mol Sci 15:23090–23140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P (2014) Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 114:6661–6714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pastore A, Temussi PA (2012) The two faces of Janus: functional interactions and protein aggregation. Curr Opin Struct Biol 22:30–37

    Article  CAS  PubMed  Google Scholar 

  76. Wirth AJ, Gruebele M (2013) Quinary protein structure and the consequences of crowding in living cells: leaving the test-tube behind. BioEssays 35:984–993

    Article  CAS  PubMed  Google Scholar 

  77. Serber Z, Doetsch V (2001) In-cell NMR spectroscopy. Biochemistry 40:14317–14323

    Article  CAS  PubMed  Google Scholar 

  78. Daniels AJ, Williams RJP, Wright PE (1978) The character of the stored molecules in chromaffin granules of the adrenal medulla: a nuclear magnetic resonance study. Neuroscience 3:573–585

    Article  CAS  PubMed  Google Scholar 

  79. Gibson TJ, Seiler M, Veitia RA (2013) The transience of transient overexpression. Nat Methods 10:715–721

    Article  CAS  PubMed  Google Scholar 

  80. Banci L, Barbieri L, Bertini I, Luchinat E, Secci E, Zhao Y, Aricescu AR (2013) Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat Chem Biol 9:297–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barbieri L, Luchinat E, Banci L (2016) Characterization of proteins by in-cell NMR spectroscopy in cultured mammalian cells. Nat Protoc 11:1101–1111

    Article  CAS  PubMed  Google Scholar 

  82. Bekei B, Rose HM, Herzig M, Dose A, Schwarzer D, Selenko P (2012) In-cell NMR in mammalian cells: part 1. Methods Mol Biol 895:43–54

    Article  CAS  PubMed  Google Scholar 

  83. Ogino S, Kubo S, Umemoto R, Huang S, Nishida N, Shimada I (2009) Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O. J Am Chem Soc 131:10834–10835

    Article  CAS  PubMed  Google Scholar 

  84. Amata I, Maffei M, Igea A, Gay M, Vilaseca M, Nebreda AR, Pons M (2013) Multi-phosphorylation of the intrinsically disordered unique domain of c-src studied by in-cell and real-time NMR spectroscopy. ChemBioChem 14:1820–1827

    Article  CAS  PubMed  Google Scholar 

  85. Bekei B, Rose HM, Herzig M, Stephanowitz H, Krause E, Selenko P (2012) In cell NMR in mammalian cells: part 3. Methods Mol Biol 896:107–122

    Google Scholar 

  86. Bryant JE (2006) Retracted article: In-cell protein dynamics. Mol Biosyst 2:406–410

    Article  CAS  PubMed  Google Scholar 

  87. Bryant JE, Lecomte JTJ, Lee AL, Young GB, Pielak GJ (2007) Protein dynamics in living cells. Biochemistry 46:8206–8207

    Article  CAS  Google Scholar 

  88. Waudby CA, Mantle MD, Cabrita LD, Gladden LF, Dobson CM, Christodoulou J (2012) Rapid distinction of intracellular and extracellular proteins using NMR diffusion measurements. J Am Chem Soc 134:11312–11315

    Article  CAS  PubMed  Google Scholar 

  89. Barnes CO, Pielak GJ (2011) In-cell protein NMR and protein leakage. Proteins 79:347–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Axford D, Ji X, Stuart DI, Sutton G (2014) In cellulo structure determination of a novel cypovirus polyhedrin. Acta Crystallogr D Biol Crystallogr 70:1435–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Doerr A (2016) Single-particle cryo-electron microscopy. Nat Methods 13:23–24

    Article  CAS  PubMed  Google Scholar 

  92. Yi P, Wang Z, Feng Q, Pintilie Grigore D, Foulds Charles E, Lanz Rainer B, Ludtke Steven J, Schmid Michael F, Chiu W, O’Malley Bert W (2015) Structure of a biologically active estrogen receptor-coactivator complex on DNA. Mol Cell 57:1047–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R, Kuhn Cuellar L, Förster F, Hyman AA, Plitzko JM, Baumeister W (2016) Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351:969–972

    Article  CAS  PubMed  Google Scholar 

  94. Doerr A (2017) Cryo-electron tomography. Nat Methods 14:34

    Article  CAS  Google Scholar 

  95. Feng Y, De Franceschi G, Kahraman A, Soste M, Melnik A, Boersema PJ, De Laureto PP, Nikolaev Y, Oliveira AP, Picotti P (2014) Global analysis of protein structural changes in complex proteomes. Nat Biotechnol 32:1036–1044

    Article  CAS  PubMed  Google Scholar 

  96. Ebbinghaus S, Dhar A, McDonald JD, Gruebele M (2010) Protein folding stability and dynamics imaged in a living cell. Nat Methods 7:319–323

    Article  CAS  PubMed  Google Scholar 

  97. Frederick KK, Michaelis VK, Corzilius B, Ong TC, Jacavone AC, Griffin RG, Lindquist S (2016) Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. Cell 163:620–628

    Article  CAS  Google Scholar 

  98. Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767

    Article  CAS  PubMed  Google Scholar 

  99. Aumiller WM Jr, Keating CD (2016) Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat Chem 8:129–137

    CAS  PubMed  Google Scholar 

  100. Brangwynne CP, Tompa P, Pappu RV (2015) Polymer physics of intracellular phase transitions. Nat Phys 11:899–904

    Article  CAS  Google Scholar 

  101. Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154:727–736

    Article  CAS  PubMed  Google Scholar 

  102. Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tompa P (2013) Hydrogel formation by multivalent IDPs. A reincarnation of the microtrabecular lattice? Intrinsically Disord Proteins 1:e24068

    Article  PubMed  PubMed Central  Google Scholar 

  104. Burke KA, Janke AM, Rhine CL, Fawzi NL (2015) Residue-by-residue view of in vitro FUS granules that bind the c-terminal domain of RNA polymerase II. Mol Cell 60:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57:936–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, Pozniakovski A, Poser I, Maghelli N, Royer LA, Weigert M, Myers EW, Grill S, Drechsel D, Hyman AA, Alberti S (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–1077

    Article  CAS  PubMed  Google Scholar 

  107. Brangwynne CP (2013) Phase transitions and size scaling of membrane-less organelles. J Cell Biol 203:875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bertini I, Felli IC, Gonnelli L, Kumar MVV, Pierattelli R (2011) 13C direct-detection biomolecular NMR spectroscopy in living cells. Angew Chem Int Ed Engl 50:2339–2341

    Article  CAS  PubMed  Google Scholar 

  109. Bartels T, Choi JG, Selkoe DJ (2011) Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LT, Liao J, Auclair JR, Johnson D, Landeru A, Simorellis AK, Ju S, Cookson MR, Asturias FJ, Agar JN, Webb BN, Kang C, Ringe D, Petsko GA, Pochapsky TC, Hoang QQ (2011) A soluble alpha-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci USA 108:17797–17802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Iljina M, Tosatto L, Choi ML, Sang JC, Ye Y, Hughes CD, Bryant CE, Gandhi S, Klenerman D (2016) Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein. Sci Rep 6:33928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815

    CAS  PubMed  Google Scholar 

  113. Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35:13709–13715

    Article  CAS  PubMed  Google Scholar 

  115. Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276:10737–10744

    Article  CAS  PubMed  Google Scholar 

  116. Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307:1061–1073

    Article  CAS  PubMed  Google Scholar 

  117. Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449

    Article  CAS  PubMed  Google Scholar 

  118. Trexler AJ, Rhoades E (2012) N-terminal acetylation is critical for forming alpha-helical oligomer of alpha-synuclein. Protein Sci 21:601–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, Tsika E, Coune P, Prudent M, Lion N, Eliezer D, Moore DJ, Schneider B, Aebischer P, El-Agnaf OM, Masliah E, Lashuel HA (2012) Alpha-synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem 287:15345–15364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Binolfi A, Theillet FX, Selenko P (2012) Bacterial in-cell NMR of human alpha-synuclein: a disordered monomer by nature? Biochem Soc Trans 40:950–954

    Article  CAS  PubMed  Google Scholar 

  121. Dettmer U, Newman AJ, Luth ES, Bartels T, Selkoe D (2013) In vivo cross-linking reveals principally oligomeric forms of alpha-synuclein and beta-synuclein in neurons and non-neural cells. J Biol Chem 288:6371–6385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ohrfelt A, Zetterberg H, Andersson K, Persson R, Secic D, Brinkmalm G, Wallin A, Mulugeta E, Francis PT, Vanmechelen E, Aarsland D, Ballard C, Blennow K, Westman-Brinkmalm A (2011) Identification of novel alpha-synuclein isoforms in human brain tissue by using an online nanoLC–ESI–FTICR–MS method. Neurochem Res 36:2029–2042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Johnson M, Coulton AT, Geeves MA, Mulvihill DP (2010) Targeted amino-terminal acetylation of recombinant proteins in E. coli. PLoS One 5:e15801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Maltsev AS, Ying J, Bax A (2012) Impact of N-terminal acetylation of alpha-synuclein on its random coil and lipid binding properties. Biochemistry 51:5004–5013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kang L, Moriarty GM, Woods LA, Ashcroft AE, Radford SE, Baum J (2012) N-terminal acetylation of alpha-synuclein induces increased transient helical propensity and decreased aggregation rates in the intrinsically disordered monomer. Protein Sci 21:911–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gurry T, Ullman O, Fisher CK, Perovic I, Pochapsky T, Stultz CM (2013) The dynamic structure of alpha-synuclein multimers. J Am Chem Soc 135:3865–3872

    Article  CAS  PubMed  Google Scholar 

  127. Dettmer U, Newman AJ, Soldner F, Luth ES, Kim NC, von Saucken VE, Sanderson JB, Jaenisch R, Bartels T, Selkoe D (2015) Parkinson-causing alpha-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat Commun 6:7314

    Article  PubMed  PubMed Central  Google Scholar 

  128. Daughdrill GW, Hanely LJ, Dahlquist FW (1998) The C-terminal half of the anti-sigma factor FlgM contains a dynamic equilibrium solution structure favoring helical conformations. Biochemistry 37:1076–1082

    Article  CAS  PubMed  Google Scholar 

  129. Dedmon MM, Patel CN, Young GB, Pielak GJ (2002) FlgM gains structure in living cells. Proc Natl Acad Sci USA 99:12681–12684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Smith AE, Zhou LZ, Pielak GJ (2015) Hydrogen exchange of disordered proteins in Escherichia coli. Protein Sci 24:706–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247

    Article  CAS  PubMed  Google Scholar 

  132. Smet C, Leroy A, Sillen A, Wieruszeski JM, Landrieu I, Lippens G (2004) Accepting its random coil nature allows a partial NMR assignment of the neuronal Tau protein. ChemBioChem 5:1639–1646

    Article  CAS  PubMed  Google Scholar 

  133. Harbison NW, Bhattacharya S, Eliezer D (2012) Assigning backbone NMR resonances for full length tau isoforms: efficient compromise between manual assignments and reduced dimensionality. PLoS One 7:e34679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Luchinat E, Barbieri L, Rubino JT, Kozyreva T, Cantini F, Banci L (2014) In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants. Nat Commun 5:5502

    Article  CAS  PubMed  Google Scholar 

  135. Bhowmick A, Brookes DH, Yost SR, Dyson HJ, Forman-Kay JD, Gunter D, Head-Gordon M, Hura GL, Pande VS, Wemmer DE, Wright PE, Head-Gordon T (2016) Finding our way in the dark proteome. J Am Chem Soc 138:9730–9742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Perdigao N, Heinrich J, Stolte C, Sabir KS, Buckley MJ, Tabor B, Signal B, Gloss BS, Hammang CJ, Rost B, Schafferhans A, O’Donoghue SI (2015) Unexpected features of the dark proteome. Proc Natl Acad Sci USA 112:15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. O’Donoghue SI, Sabir KS, Kalemanov M, Stolte C, Wellmann B, Ho V, Roos M, Perdigao N, Buske FA, Heinrich J, Rost B, Schafferhans A (2015) Aquaria: simplifying discovery and insight from protein structures. Nat Methods 12:98–99

    Article  PubMed  CAS  Google Scholar 

  139. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21:3433–3434

    Article  CAS  PubMed  Google Scholar 

  140. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42:38–48

    Article  CAS  PubMed  Google Scholar 

  141. Huntley MA, Golding GB (2002) Simple sequences are rare in the protein data bank. Proteins 48:134–140

    Article  CAS  PubMed  Google Scholar 

  142. Tompa P, Varadi M (2014) Predicting the predictive power of IDP ensembles. Structure 22:177–178

    Article  CAS  PubMed  Google Scholar 

  143. Aznauryan M, Delgado L, Soranno A, Nettels D, Huang JR, Labhardt AM, Grzesiek S, Schuler B (2016) Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. Proc Natl Acad Sci USA 113:E5389–E5398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fisher CK, Stultz CM (2011) Constructing ensembles for intrinsically disordered proteins. Curr Opin Struct Biol 21:426–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ito Y, Selenko P (2010) Cellular structural biology. Curr Opin Struct Biol 20:640–648

    Article  CAS  PubMed  Google Scholar 

  146. Borcherds W, Theillet FX, Katzer A, Finzel A, Mishall KM, Powell AT, Wu H, Manieri W, Dieterich C, Selenko P, Loewer A, Daughdrill GW (2014) Disorder and residual helicity alter p53–Mdm2 binding affinity and signaling in cells. Nat Chem Biol 10:1000–1002

    Article  CAS  PubMed  Google Scholar 

  147. Banci L, Barbieri L, Bertini I, Cantini F, Luchinat E (2011) In-cell NMR in E. coli to monitor maturation steps of hSOD1. PLoS One 6:e23561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Danielsson J, Inomata K, Murayama S, Tochio H, Lang L, Shirakawa M, Oliveberg M (2013) Pruning the ALS-associated protein SOD1 for in-cell NMR. J Am Chem Soc 135:10266–10269

    Article  CAS  PubMed  Google Scholar 

  149. König I, Zarrine-Afsar A, Aznauryan M, Soranno A, Wunderlich B, Dingfelder F, Stüber JC, Plückthun A, Nettels D, Schuler B (2015) Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat Methods 12:773–779

    Article  PubMed  CAS  Google Scholar 

  150. Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:W13–W17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Ait-Bara S, Carpousis AJ, Quentin Y (2015) RNase E in the gamma-proteobacteria: conservation of intrinsically disordered noncatalytic region and molecular evolution of microdomains. Mol Genet Genom 290:847–862

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Odysseus Grant G.0029.12 from Research Foundation Flanders (FWO). KP is the recipient of a FWO long-term postdoctoral fellowship. The authors thank Jesper Oemig, Katrien Willegems and Alexander Shkumatov for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Tompa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauwels, K., Lebrun, P. & Tompa, P. To be disordered or not to be disordered: is that still a question for proteins in the cell?. Cell. Mol. Life Sci. 74, 3185–3204 (2017). https://doi.org/10.1007/s00018-017-2561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2561-6

Keywords