Cellular and Molecular Life Sciences

, Volume 74, Issue 20, pp 3827–3840 | Cite as

OX40 promotes obesity-induced adipose inflammation and insulin resistance

  • Bing Liu
  • Hengchi Yu
  • Guangyong Sun
  • Xiaojing Sun
  • Hua Jin
  • Chunpan Zhang
  • Wen Shi
  • Dan Tian
  • Kai Liu
  • Hufeng Xu
  • Xinmin Li
  • Jie Yin
  • Xu Hong
  • Dong Zhang
Original Article

Abstract

Adaptive immunity plays a critical role in IR and T2DM development; however, the biological mechanisms linking T cell costimulation and glucose metabolism have not been fully elucidated. In this study, we demonstrated that the costimulatory molecule OX40 controls T cell activation and IR development. Inflammatory cell accumulation and enhanced proinflammatory gene expression, as well as high OX40 expression levels on CD4+ T cells, were observed in the adipose tissues of mice with diet-induced obesity. OX40-KO mice exhibited significantly less weight gain and lower fasting glucose levels than those of WT mice, without obvious adipose tissue inflammation. The effects of OX40 on IR are mechanistically linked to the promotion of T cell activation, Th1 cell differentiation and proliferation—as well as the attenuation of Treg suppressive activity and the enhancement of proinflammatory cytokine production—in adipose tissues. Furthermore, OX40 expression on T cells was positively associated with obesity in humans, suggesting that our findings are clinically relevant. In summary, our study revealed that OX40 in CD4+ T cells is crucial for adipose tissue inflammation and IR development. Therefore, the OX40 signaling pathway may be a new target for preventing or treating obesity-related IR and T2DM.

Keywords

Adipocyte Adipose inflammation Costimulation molecule Diet-induced obesity High-fat diet IFN-γ IL-17a Immunology Th1 Th17 Regulatory T cells 

Abbreviations

APC

Antigen presenting cell

DIO

Diet-induced obesity

EdU

5-Ethynyl-2′-deoxyuridine

FACS

Fluorescence-activated cell sorting

Foxp3

Transcription factor forkhead box P3

Gata3

Transcription factor GATA binding protein 3

GTT

Glucose tolerance test

HBSS

Hanks’ balanced salt solution

HE

Hematoxylin–eosin

HFD

High-fat diet

IL-2

Interleukin 2

IL-4

Interleukin 4

IL-6

Interleukin 6

IL-10

Interleukin 10

IL-17a

Interleukin 17a

IFN-γ

Interferon-γ

IR

Insulin resistance

ITT

Insulin tolerance test

KO

Knockout

mAb

Monoclonal antibody

MHC-II

MHC class II

NCD

Normal control diet

NKT

Natural killer T cells

PBMC

Peripheral blood mononuclear cell

T2DM

Type 2 diabetes mellitus

Tbx21

T-box transcription factor TBX21

Th1

T helper 1

TNF-α

Tumor necrosis factor alpha

Tregs

T regulatory cells

VAT

Visceral adipose tissue

WT

Wide type

Supplementary material

18_2017_2552_MOESM1_ESM.tif (352 kb)
Supplementary Figure 1. The gating strategy for flow cytometry. Representative flow cytometry image of gating strategy used for flow cytometry analysis (TIFF 351 kb)
18_2017_2552_MOESM2_ESM.tif (109 kb)
Supplementary Figure 2. OX40 upregulation in T cells promotes DIO and IR. B6.Rag2/Il2rg double knock mice were selectively repopulated with purified CD3 T cells from WT or OX40-KO mice. After 16 weeks HFD feeding, the body weight and plasma fasting glucose levels were measured (n=5 in each group) (TIFF 108 kb)
18_2017_2552_MOESM3_ESM.tif (905 kb)
Supplementary Figure 3. OX40 deficiency suppressed CD4+T cell activation and differentiation. The percentages of CD44+ cells relative to the total numbers of CD3+, CD4+ and CD8+ T cells were determined by flow cytometry in the indicated groups (n=5 in each group) (A). Absolute number of Th1 (CD4+ IFN-γ+ cells) and Treg (CD4+ Foxp3+ cells) in the adipose tissue and spleen of mice from each group (B). Flow cytometry analysis of CD4+ IL-4+ cells and CD4+ IL-17+ cells relative to the total numbers of CD4+ T cells in the adipose tissue and spleen of mice from each group, expressed as lymphocyte percentages (C) (TIFF 905 kb)
18_2017_2552_MOESM4_ESM.docx (29 kb)
Supplementary material 4 (DOCX 29 kb)

References

  1. 1.
    Mathis D (2013) Immunological goings-on in visceral adipose tissue. Cell Metab 17(6):851–859. doi:10.1016/j.cmet.2013.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kalupahana NS, Moustaid-Moussa N, Claycombe KJ (2012) Immunity as a link between obesity and insulin resistance. Mol Aspects Med 33(1):26–34. doi:10.1016/j.mam.2011.10.011 CrossRefPubMedGoogle Scholar
  3. 3.
    Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11(2):85–97. doi:10.1038/nri2921 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445. doi:10.1146/annurev-immunol-031210-101322 CrossRefPubMedGoogle Scholar
  5. 5.
    Cildir G, Akincilar SC, Tergaonkar V (2013) Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med 19(8):487–500. doi:10.1016/j.molmed.2013.05.001 CrossRefPubMedGoogle Scholar
  6. 6.
    McNelis JC, Olefsky JM (2014) Macrophages, immunity, and metabolic disease. Immunity 41(1):36–48. doi:10.1016/j.immuni.2014.05.010 CrossRefPubMedGoogle Scholar
  7. 7.
    Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, Fischer-Posovszky P, Barth TF, Dragun D, Skurk T, Hauner H, Bluher M, Unger T, Wolf AM, Knippschild U, Hombach V, Marx N (2008) T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 28(7):1304–1310. doi:10.1161/ATVBAHA.108.165100 CrossRefPubMedGoogle Scholar
  8. 8.
    Lee BC (1842) Lee J (2014) Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta 3:446–462. doi:10.1016/j.bbadis.2013.05.017 Google Scholar
  9. 9.
    Seijkens T, Kusters P, Chatzigeorgiou A, Chavakis T, Lutgens E (2014) Immune cell crosstalk in obesity: a key role for costimulation? Diabetes 63(12):3982–3991. doi:10.2337/db14-0272 CrossRefPubMedGoogle Scholar
  10. 10.
    Deng T, Lyon CJ, Minze LJ, Lin J, Zou J, Liu JZ, Ren Y, Yin Z, Hamilton DJ, Reardon PR, Sherman V, Wang HY, Phillips KJ, Webb P, Wong ST, Wang RF, Hsueh WA (2013) Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab 17(3):411–422. doi:10.1016/j.cmet.2013.02.009 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, Dorfman R, Wang Y, Zielenski J, Mastronardi F, Maezawa Y, Drucker DJ, Engleman E, Winer D, Dosch HM (2009) Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15(8):921–929. doi:10.1038/nm.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, Blin-Wakkach C, Anty R, Iannelli A, Gugenheim J, Tran A, Bouloumie A, Gual P, Wakkach A (2012) Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61(9):2238–2247. doi:10.2337/db11-1274 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Morris DL, Cho KW, Delproposto JL, Oatmen KE, Geletka LM, Martinez-Santibanez G, Singer K, Lumeng CN (2013) Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice. Diabetes 62(8):2762–2772. doi:10.2337/db12-1404 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wu H, Perrard XD, Wang Q, Perrard JL, Polsani VR, Jones PH, Smith CW, Ballantyne CM (2010) CD11c expression in adipose tissue and blood and its role in diet-induced obesity. Arterioscler Thromb Vasc Biol 30(2):186–192. doi:10.1161/ATVBAHA.109.198044 CrossRefPubMedGoogle Scholar
  15. 15.
    Cho KW, Morris DL, DelProposto JL, Geletka L, Zamarron B, Martinez-Santibanez G, Meyer KA, Singer K, O’Rourke RW, Lumeng CN (2014) An MHC II-dependent activation loop between adipose tissue macrophages and CD4+ T cells controls obesity-induced inflammation. Cell Rep 9(2):605–617. doi:10.1016/j.celrep.2014.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242. doi:10.1038/nri3405 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Croft M (2010) Control of immunity by the TNFR-related molecule OX40 (CD134). Annu Rev Immunol 28:57–78. doi:10.1146/annurev-immunol-030409-101243 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246. doi:10.1146/annurev-physiol-021909-135846 CrossRefPubMedGoogle Scholar
  19. 19.
    Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI (1998) Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394(6696):897–901. doi:10.1038/29795 CrossRefPubMedGoogle Scholar
  20. 20.
    Sell H, Habich C, Eckel J (2012) Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 8(12):709–716. doi:10.1038/nrendo.2012.114 CrossRefPubMedGoogle Scholar
  21. 21.
    Chng MH, Alonso MN, Barnes SE, Nguyen KD, Engleman EG (2015) Adaptive immunity and antigen-specific activation in obesity-associated insulin resistance. Mediat Inflamm 2015:593075. doi:10.1155/2015/593075 CrossRefGoogle Scholar
  22. 22.
    Gramaglia I, Jember A, Pippig SD, Weinberg AD, Killeen N, Croft M (2000) The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol 165(6):3043–3050CrossRefPubMedGoogle Scholar
  23. 23.
    Bansal-Pakala P, Halteman BS, Cheng MH, Croft M (2004) Costimulation of CD8 T cell responses by OX40. J Immunol 172(8):4821–4825CrossRefPubMedGoogle Scholar
  24. 24.
    Lee SW, Park Y, Song A, Cheroutre H, Kwon BS, Croft M (2006) Functional dichotomy between OX40 and 4-1BB in modulating effector CD8 T cell responses. J Immunol 177(7):4464–4472CrossRefPubMedGoogle Scholar
  25. 25.
    Croft M, So T, Duan W, Soroosh P (2009) The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 229(1):173–191. doi:10.1111/j.1600-065X.2009.00766.x CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ward-Kavanagh LK, Lin WW, Sedy JR, Ware CF (2016) The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity 44(5):1005–1019. doi:10.1016/j.immuni.2016.04.019 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kaur D, Brightling C (2012) OX40/OX40 ligand interactions in T-cell regulation and asthma. Chest 141(2):494–499. doi:10.1378/chest.11-1730 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cipolletta D, Kolodin D, Benoist C, Mathis D (2011) Tissular T(regs): a unique population of adipose-tissue-resident Foxp3+CD4+ T cells that impacts organismal metabolism. Semin Immunol 23(6):431–437. doi:10.1016/j.smim.2011.06.002 CrossRefPubMedGoogle Scholar
  29. 29.
    Winer S, Winer DA (2012) The adaptive immune system as a fundamental regulator of adipose tissue inflammation and insulin resistance. Immunol Cell Biol 90(8):755–762. doi:10.1038/icb.2011.110 CrossRefPubMedGoogle Scholar
  30. 30.
    Bour-Jordan H, Bluestone JA (2009) Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol Rev 229(1):41–66. doi:10.1111/j.1600-065X.2009.00775.x CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhong J, Rao X, Braunstein Z, Taylor A, Narula V, Hazey J, Mikami D, Needleman B, Rutsky J, Sun Q, Deiuliis JA, Satoskar AR, Rajagopalan S (2014) T-cell costimulation protects obesity-induced adipose inflammation and insulin resistance. Diabetes 63(4):1289–1302. doi:10.2337/db13-1094 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wolf D, Jehle F, Michel NA, Bukosza EN, Rivera J, Chen YC, Hoppe N, Dufner B, Rodriguez AO, Colberg C, Nieto L, Rupprecht B, Wiedemann A, Schulte L, Peikert A, Bassler N, Lozhkin A, Hergeth SP, Stachon P, Hilgendorf I, Willecke F, von Zur Muhlen C, von Elverfeldt D, Binder CJ, Aichele P, Varo N, Febbraio MA, Libby P, Bode C, Peter K, Zirlik A (2014) Coinhibitory suppression of T cell activation by CD40 protects against obesity and adipose tissue inflammation in mice. Circulation 129(23):2414–2425. doi:10.1161/CIRCULATIONAHA.113.008055 CrossRefPubMedGoogle Scholar
  33. 33.
    Yi Z, Bishop GA (2015) Regulatory role of CD40 in obesity-induced insulin resistance. Adipocyte 4(1):65–69. doi:10.4161/adip.32214 CrossRefPubMedGoogle Scholar
  34. 34.
    Vu MD, Xiao X, Gao W, Degauque N, Chen M, Kroemer A, Killeen N, Ishii N, Li XC (2007) OX40 costimulation turns off Foxp3+ Tregs. Blood 110(7):2501–2510CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Xiao X, Gong W, Demirci G, Liu W, Spoerl S, Chu X, Bishop DK, Turka LA, Li XC (2012) New insights on OX40 in the control of T cell immunity and immune tolerance in vivo. J Immunol 188(2):892–901. doi:10.4049/jimmunol.1101373 CrossRefPubMedGoogle Scholar
  36. 36.
    Bai Y, Sun Q (2015) Macrophage recruitment in obese adipose tissue. Obes Rev 16(2):127–136. doi:10.1111/obr.12242 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chung KJ, Chatzigeorgiou A, Economopoulou M, Garcia-Martin R, Alexaki VI, Mitroulis I, Nati M, Gebler J, Ziemssen T, Goelz SE, Phieler J, Lim JH, Karalis KP, Papayannopoulou T, Bluher M, Hajishengallis G, Chavakis T (2017) A self-sustained loop of inflammation-driven inhibition of beige adipogenesis in obesity. Nat Immunol 18(6):654–664. doi:10.1038/ni.3728 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Endocrinology Department, Beijing Friendship HospitalCapital Medical UniversityBeijingPeople’s Republic of China
  2. 2.Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical UniversityBeijingPeople’s Republic of China
  3. 3.Beijing Key Laboratory of Tolerance Induction and Organ Protection in TransplantationBeijingPeople’s Republic of China
  4. 4.Beijing Clinical Research InstituteBeijingPeople’s Republic of China

Personalised recommendations