Stress and the nonsense-mediated RNA decay pathway

Abstract

Cells respond to internal and external cellular stressors by activating stress-response pathways that re-establish homeostasis. If homeostasis is not achieved in a timely manner, stress pathways trigger programmed cell death (apoptosis) to preserve organism integrity. A highly conserved stress pathway is the unfolded protein response (UPR), which senses excessive amounts of unfolded proteins in the ER. While a physiologically beneficial pathway, the UPR requires tight regulation to provide a beneficial outcome and avoid deleterious consequences. Recent work has demonstrated that a conserved and highly selective RNA degradation pathway—nonsense-mediated RNA decay (NMD)—serves as a major regulator of the UPR pathway. NMD degrades mRNAs encoding UPR components to prevent UPR activation in response to innocuous ER stress. In response to strong ER stress, NMD is inhibited by the UPR to allow for a full-magnitude UPR response. Recent studies have indicated that NMD also has other stress-related functions, including promoting the timely termination of the UPR to avoid apoptosis; NMD also regulates responses to non-ER stressors, including hypoxia, amino-acid deprivation, and pathogen infection. NMD regulates stress responses in species across the phylogenetic scale, suggesting that it has conserved roles in shaping stress responses. Stress pathways are frequently constitutively activated or dysregulated in human disease, raising the possibility that “NMD therapy” may provide clinical benefit by downmodulating stress responses.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history

  • 13 September 2017

    The original version of this article unfortunately contained errors in the section entitled “NMD in stress responses in plants”.

References

  1. 1.

    Hoozemans JJM, Scheper W (2012) Endoplasmic reticulum: the unfolded protein response is tangled in neurodegeneration. Int J Biochem Cell Biol 44:1295–1298. doi:10.1016/j.biocel.2012.04.023

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Giampietri C, Petrungaro S, Conti S et al (2015) Cancer microenvironment and endoplasmic reticulum stress response. Mediat Inflamm 2015:417281. doi:10.1155/2015/417281

    Article  CAS  Google Scholar 

  3. 3.

    Rodvold JJ, Mahadevan NR, Zanetti M (2015) Immune modulation by ER stress and inflammation in the tumor microenvironment. Cancer Lett. doi:10.1016/j.canlet.2015.09.009

    PubMed  Google Scholar 

  4. 4.

    Hasmim M, Messai Y, Ziani L et al (2015) Critical role of tumor microenvironment in shaping NK cell functions: implication of hypoxic stress. Front Immunol 6:482. doi:10.3389/fimmu.2015.00482

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Chan S-W (2014) The unfolded protein response in virus infections. Front Microbiol 5:518. doi:10.3389/fmicb.2014.00518

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Duwi Fanata WI, Lee SY, Lee KO (2013) The unfolded protein response in plants: a fundamental adaptive cellular response to internal and external stresses. J Proteom 93:356–368. doi:10.1016/j.jprot.2013.04.023

    Article  CAS  Google Scholar 

  7. 7.

    Peccarelli M, Kebaara BW (2014) Regulation of natural mRNAs by the nonsense-mediated mRNA decay pathway. Eukaryot Cell 13:1126–1135. doi:10.1128/EC.00090-14

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Chang Y-F, Imam JS, Wilkinson MF (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76:51–74. doi:10.1146/annurev.biochem.76.050106.093909

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Fatscher T, Boehm V, Gehring NH (2015) Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci. doi:10.1007/s00018-015-2017-9

    PubMed  Google Scholar 

  10. 10.

    Mendell JT, Sharifi NA, Meyers JL et al (2004) Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat Genet 36:1073–1078. doi:10.1038/ng1429

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Weischenfeldt J, Damgaard I, Bryder D et al (2008) NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev 22:1381–1396. doi:10.1101/gad.468808

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Lareau LF, Inada M, Green RE et al (2007) Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446:926–929. doi:10.1038/nature05676

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Ni JZ, Grate L, Donohue JP et al (2007) Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev 21:708–718. doi:10.1101/gad.1525507.NMD-mediated

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Hurt JA, Robertson AD, Burge CB (2013) Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res 23:1636–1650. doi:10.1101/gr.157354.113

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Yepiskoposyan H, Aeschimann F, Nilsson D et al (2011) Autoregulation of the nonsense-mediated mRNA decay pathway in human cells. RNA 17:2108–2118. doi:10.1261/rna.030247.111

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Somers J, Pöyry T, Willis AE (2013) A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol 45:1690–1700. doi:10.1016/j.biocel.2013.04.020

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Ramani AK, Nelson AC, Kapranov P et al (2009) High resolution transcriptome maps for wild-type and nonsense-mediated decay-defective Caenorhabditis elegans. Genome Biol 10:R101. doi:10.1186/gb-2009-10-9-r101

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Huang L, Lou C-H, Chan W et al (2011) RNA homeostasis governed by cell type-specific and branched feedback loops acting on NMD. Mol Cell 43:950–961. doi:10.1016/j.molcel.2011.06.031

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Hogg JR, Goff SP (2010) Upf1 senses 3′UTR length to potentiate mRNA decay. Cell 143:379–389. doi:10.1016/j.cell.2010.10.005

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Eberle AB, Stalder L, Mathys H et al (2008) Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biol 6:e92. doi:10.1371/journal.pbio.0060092

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Singh G, Rebbapragada I, Lykke-Andersen J (2008) A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol 6:e111. doi:10.1371/journal.pbio.0060111

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Buhler M, Steiner S, Mohn F et al (2006) EJC-independent degradation of nonsense immunoglobulin-μ mRNA depends on 3′UTR length. Nat Struct Mol Biol 13:462–464. doi:10.1038/nsmb1081

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Li T, Shi Y, Wang P et al (2015) Smg6/Est1 licenses embryonic stem cell differentiation via nonsense-mediated mRNA decay. EMBO J 34:1630–1647. doi:10.15252/embj.201489947

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    McIlwain DR, Pan Q, Reilly PT et al (2010) Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. Proc Natl Acad Sci USA 107:12186–12191. doi:10.1073/pnas.1007336107

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Medghalchi SM, Frischmeyer PA, Mendell JT et al (2001) Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum Mol Genet 10:99–105

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Shum EY, Jones SH, Shao A et al (2016) The antagonistic gene paralogs Upf3a and Upf3b govern nonsense-mediated RNA decay. Cell 165:382–395. doi:10.1016/j.cell.2016.02.046

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Hwang J, Maquat LE (2011) Nonsense-mediated mRNA decay (NMD) in animal embryogenesis: to die or not to die, that is the question. Curr Opin Genet Dev 21:422–430. doi:10.1016/j.gde.2011.03.008

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Lou C, Dumdie J, Goetz A et al (2016) Nonsense-mediated RNA decay influences human embryonic stem cell fate. Stem Cell Reports 6:844–857. doi:10.1016/j.stemcr.2016.05.008

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Lou CH, Shao A, Shum EY et al (2014) Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated rna decay pathway. Cell Rep 6:748–764. doi:10.1016/j.celrep.2014.01.028

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Jolly LA, Homan CC, Jacob R et al (2013) The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth. Hum Mol Genet 22:4673–4687. doi:10.1093/hmg/ddt315

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Metzstein MM, Krasnow MA (2006) Functions of the nonsense-mediated mRNA decay pathway in Drosophila development. PLoS Genet 2:e180. doi:10.1371/journal.pgen.0020180

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Wittkopp N, Huntzinger E, Weiler C et al (2009) Nonsense-mediated mRNA decay effectors are essential for zebrafish embryonic development and survival. Mol Cell Biol 29:3517–3528. doi:10.1128/MCB.00177-09

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Nguyen LS, Wilkinson MF, Gecz J (2014) Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci Biobehav Rev 46(Pt 2):175–186. doi:10.1016/j.neubiorev.2013.10.016

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Tarpey PS, Raymond FL, Nguyen LS et al (2007) Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat Genet 39:1127–1133. doi:10.1038/ng2100

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Nguyen LS, Kim H-G, Rosenfeld JA et al (2013) Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Hum Mol Genet 22:1816–1825. doi:10.1093/hmg/ddt035

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Thoren LA, Nørgaard GA, Weischenfeldt J et al (2010) UPF2 is a critical regulator of liver development, function and regeneration. PLoS One 5:e11650. doi:10.1371/journal.pone.0011650

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    Gong C, Kim YK, Woeller CF et al (2009) SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev 23:54–66. doi:10.1101/gad.1717309

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Huang L, Wilkinson MF (2012) Regulation of nonsense-mediated mRNA decay. Wiley Interdiscip Rev RNA 3:807–828. doi:10.1002/wrna.1137

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Karam R, Wengrod J, Gardner LB, Wilkinson MF (2013) Regulation of nonsense-mediated mRNA decay: implications for physiology and disease. Biochim Biophys Acta Gene Regul Mech 1829:624–633. doi:10.1016/j.bbagrm.2013.03.002

    CAS  Article  Google Scholar 

  40. 40.

    Zetoune AB, Fontanière S, Magnin D et al (2008) Comparison of nonsense-mediated mRNA decay efficiency in various murine tissues. BMC Genet 9:83. doi:10.1186/1471-2156-9-83

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Lu J, Plank T-D, Su F et al (2016) The nonsense-mediated RNA decay pathway is disrupted in inflammatory myofibroblastic tumors. J Clin Invest 126:3058–3062. doi:10.1172/JCI86508

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Hug N, Longman D, Caceres JF (2016) Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res 44:1483–1495. doi:10.1093/nar/gkw010

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Alonso CR, Akam M (2003) A Hox gene mutation that triggers nonsense-mediated RNA decay and affects alternative splicing during Drosophila development. Nucleic Acids Res 31:3873–3880

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Bruno IG, Karam R, Huang L et al (2011) Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol Cell 42:500–510. doi:10.1016/j.molcel.2011.04.018

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Barberan-soler S, Lambert NJ, Zahler AM (2009) Global analysis of alternative splicing uncovers developmental regulation of nonsense-mediated decay in C. elegans. RNA 15:1652–1660. doi:10.1261/rna.1711109.decay

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Bao J, Vitting-seerup K, Waage J, Tang C (2016) UPF2-dependent nonsense-mediated mRNA decay pathway is essential for spermatogenesis by selectively eliminating longer 3′UTR transcripts. PLoS Genet 12:e1005863. doi:10.1371/journal.pgen.1005863

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Fanourgakis G, Lesche M, Akpinar M, Dahl A (2016) Chromatoid body protein TDRD6 supports long 3′UTR triggered nonsense mediated mRNA decay. PLoS Genet 12:e1005857. doi:10.1371/journal.pgen.1005857

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. 48.

    Cho H, Kim KM, Han S et al (2012) Staufen1-mediated mRNA decay functions in adipogenesis. Mol Cell 46:495–506. doi:10.1016/j.molcel.2012.03.009

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Hetz C, Martinon F, Rodriguez D, Glimcher LH (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol Rev 91:1219–1243. doi:10.1152/physrev.00001.2011

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Moore KA, Hollien J (2011) The unfolded protein response in secretory cell function. Annu Rev Genet 46:120830114430006. doi:10.1146/annurev-genet-110711-155644

    Google Scholar 

  51. 51.

    Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086. doi:10.1126/science.1209038

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529. doi:10.1038/nrm2199

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Ma Y, Hendershot LM (2004) The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 4:966–977. doi:10.1038/nrc1505

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Yoshida H, Matsui T, Yamamoto A et al (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Calfon M, Zeng H, Urano F et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96. doi:10.1038/415092a

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Oslowski CM, Urano F (2011) Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol 490:71–92. doi:10.1016/B978-0-12-385114-7.00004-0

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Yoshida K, Miki Y (2010) The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Sci 101:831–835. doi:10.1111/j.1349-7006.2010.01488.x

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Sun T, Cui J (2015) Dynamics of P53 in response to DNA damage: mathematical modeling and perspective. Prog Biophys Mol Biol 119:175–182. doi:10.1016/j.pbiomolbio.2015.08.017

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Brewer JW (2014) Regulatory crosstalk within the mammalian unfolded protein response. Cell Mol Life Sci 71:1067–1079. doi:10.1007/s00018-013-1490-2

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Gardner LB (2008) Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the integrated stress response. Mol Cell Biol 28:3729–3741. doi:10.1128/MCB.02284-07

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Karam R, Lou C-H, Kroeger H et al (2015) The unfolded protein response is shaped by the NMD pathway. EMBO Rep 16:599–609. doi:10.15252/embr.201439696

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Chan W-K, Huang L, Gudikote JP et al (2007) An alternative branch of the nonsense-mediated decay pathway. EMBO J 26:1820–1830. doi:10.1038/sj.emboj.7601628

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Nguyen LS, Wilkinson MF, Gecz J (2013) Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci Biobehav Rev 46:175–186. doi:10.1016/j.neubiorev.2013.10.016

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Weng WC, Lee WT, Hsu WM et al (2011) Role of glucose-regulated protein 78 in embryonic development and neurological disorders. J Formos Med Assoc 110:428–437. doi:10.1016/S0929-6646(11)60064-8

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Zhao L, Longo-Guess C, Harris BS et al (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet 37:974–979. doi:10.1038/ng1620

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Luo S, Mao C, Lee B, Lee AS (2006) GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol 26:5688–5697. doi:10.1128/MCB.00779-06

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Dostie J, Dreyfuss G (2002) Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr Biol 12:1060–1067

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Le Hir H, Izaurralde E, Maquat LE, Moore MJ (2000) The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19:6860–6869. doi:10.1093/emboj/19.24.6860

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Kataoka N, Yong J, Kim VN et al (2000) Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol Cell 6:673–682

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    He F, Li X, Spatrick P et al (2003) Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5′ to 3′ mRNA decay pathways in yeast. Mol Cell 12:1439–1452

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Chapin A, Hu H, Rynearson SG et al (2014) In vivo determination of direct targets of the nonsense-mediated decay pathway in Drosophila. G3 (Bethesda) 4:485–496. doi:10.1534/g3.113.009357

    PubMed Central  Article  CAS  Google Scholar 

  72. 72.

    Popp MW-L, Maquat LE (2013) Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev Genet 47:139–165. doi:10.1146/annurev-genet-111212-133424

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Sieber J, Hauer C, Bhuvanagiri M et al (2016) Proteomic analysis reveals branch-specific regulation of the unfolded protein response by nonsense-mediated mRNA decay. Mol Cell Proteom. doi:10.1074/mcp.M115.054056

    Google Scholar 

  74. 74.

    Nelson JO, Moore KA, Chapin A et al (2016) Degradation of Gadd45 mRNA by nonsense-mediated decay is essential for viability. Elife. doi:10.7554/eLife.12876

    Google Scholar 

  75. 75.

    Wang D, Zavadil J, Martin L et al (2011) Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis. Mol Cell Biol 31:3670–3680. doi:10.1128/MCB.05704-11

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Usuki F, Fujimura M, Yamashita A (2013) Endoplasmic reticulum stress preconditioning attenuates methylmercury-induced cellular damage by inducing favorable stress responses. Sci Rep 3:2346. doi:10.1038/srep02346

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Li Z, Vuong JK, Zhang M et al (2016) Inhibition of nonsense-mediated RNA decay by ER stress. RNA. doi:10.1261/rna.058040.116

    Google Scholar 

  78. 78.

    Carter MS, Doskow J, Morris P et al (1995) A regulatory mechanism that detects premature nonsense codons in T-cell receptor transcripts in vivo is reversed by protein synthesis inhibitors in vitro. J Biol Chem 270:28995–29003. doi:10.1074/jbc.270.48.28995

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Li S, Leonard D, Wilkinson MF (1997) T cell receptor (TCR) mini-gene mRNA expression regulated by nonsense codons: a nuclear-associated translation-like mechanism. J Exp Med 185:985–992

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Wek RC, Jiang H-Y, Anthony TG et al (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11. doi:10.1042/BST20060007

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Qian L, Vu MN, Carter MS et al (1993) T cell receptor-beta mRNA splicing during thymic maturation in vivo and in an inducible T cell clone in vitro. J Immunol 151:6801–6814

    CAS  PubMed  Google Scholar 

  82. 82.

    Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101:11269–11274. doi:10.1073/pnas.0400541101

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327. doi:10.1038/nrm1618

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Sakaki K, Yoshina S, Shen X et al (2012) RNA surveillance is required for endoplasmic reticulum homeostasis. Proc Natl Acad Sci 109:8079–8084. doi:10.1073/pnas.1110589109

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Mascarenhas R, Dougherty JA, Schoenberg DR (2013) SMG6 cleavage generates metastable decay intermediates from nonsense-containing β-globin mRNA. PLoS One 8:e74791. doi:10.1371/journal.pone.0074791

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Frizzell KA, Rynearson SG, Metzstein MM (2012) Drosophila mutants show NMD pathway activity is reduced, but not eliminated, in the absence of Smg6. RNA 18:1475–1486. doi:10.1261/rna.032821.112

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Reichenbach P, Höss M, Azzalin CM et al (2003) A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr Biol 13:568–574

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Protter DSW, Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26:668–679. doi:10.1016/j.tcb.2016.05.004

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Kedersha N, Anderson P (2007) Mammalian stress granules and processing bodies. Methods Enzymol 431:61–81. doi:10.1016/S0076-6879(07)31005-7

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Gardner LB (2010) Nonsense-mediated RNA decay regulation by cellular stress: implications for tumorigenesis. Mol Cancer Res 8:295–308. doi:10.1158/1541-7786.MCR-09-0502

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Wang D, Wengrod J, Gardner LB (2011) Overexpression of the c-myc oncogene inhibits nonsense-mediated RNA decay in B lymphocytes. J Biol Chem 286:40038–40043. doi:10.1074/jbc.M111.266361

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730. doi:10.1016/j.cell.2009.01.044

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36:932–941. doi:10.1016/j.molcel.2009.11.020

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Brown JAL, Roberts TL, Richards R et al (2011) A novel role for hSMG-1 in stress granule formation. Mol Cell Biol 31:4417–4429. doi:10.1128/MCB.05987-11

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Abrahamyan LG, Chatel-Chaix L, Ajamian L et al (2010) Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA. J Cell Sci 123:369–383. doi:10.1242/jcs.055897

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Louros SR, Osterweil EK (2016) Perturbed proteostasis in autism spectrum disorders. J Neurochem. doi:10.1111/jnc.13723

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Thomas MG, Martinez Tosar LJ, Desbats MA et al (2009) Mammalian Staufen 1 is recruited to stress granules and impairs their assembly. J Cell Sci 122:563–573. doi:10.1242/jcs.038208

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Leung AKL, Calabrese JM, Sharp PA (2006) Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci USA 103:18125–18130. doi:10.1073/pnas.0608845103

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Leung AKL, Vyas S, Rood JE et al (2011) Poly(ADP-Ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 42:489–499. doi:10.1016/j.molcel.2011.04.015

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Leung AKL (2015) The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol 25:601–610. doi:10.1016/j.tcb.2015.07.005

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Wiesen JL, Tomasi TB (2009) Dicer is regulated by cellular stresses and interferons. Mol Immunol 46:1222–1228. doi:10.1016/j.molimm.2008.11.012

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Mori MA, Raghavan P, Thomou T et al (2012) Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab 16:336–347. doi:10.1016/j.cmet.2012.07.017

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Anderson P, Kedersha N (2002) Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperones 7:213–221

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Wu S, Lin L, Zhao W et al (2014) AUF1 is recruited to the stress granules induced by coxsackievirus B3. Virus Res 192:52–61. doi:10.1016/j.virusres.2014.08.003

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Fred RG, Mehrabi S, Adams CM, Welsh N (2016) PTB and TIAR binding to insulin mRNA 3′- and 5′UTRs; implications for insulin biosynthesis and messenger stability. Heliyon. doi:10.1016/j.heliyon.2016.e00159

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Aulas A, Caron G, Gkogkas CG et al (2015) G3BP1 promotes stress-induced RNA granule interactions to preserve polyadenylated mRNA. J Cell Biol 209:73–84. doi:10.1083/jcb.201408092

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Bley N, Lederer M, Pfalz B et al (2015) Stress granules are dispensable for mRNA stabilization during cellular stress. Nucleic Acids Res 43:e26. doi:10.1093/nar/gku1275

    PubMed  Article  CAS  Google Scholar 

  108. 108.

    Kedersha N, Panas MD, Achom C et al (2016) G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol 212:845–860

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Liu C, Karam R, Zhou Y et al (2014) The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. Nat Med 20:596–598. doi:10.1038/nm.3548

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Cho H, Han S, Park OH, Kim YK (2013) SMG1 regulates adipogenesis via targeting of staufen1-mediated mRNA decay. Biochim Biophys Acta 1829:1276–1287. doi:10.1016/j.bbagrm.2013.10.004

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43:143–181. doi:10.1080/10408360500523878

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. doi:10.1016/j.biocel.2006.07.001

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Lewerenz J, Hewett SJ, Huang Y et al (2013) The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18:522–555. doi:10.1089/ars.2011.4391

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Martin L, Gardner LB (2015) Stress-induced inhibition of nonsense-mediated RNA decay regulates intracellular cystine transport and intracellular glutathione through regulation of the cystine/glutamate exchanger SLC7A11. Oncogene 34:4211–4218. doi:10.1038/onc.2014.352

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Garcia-Huerta P, Troncoso-Escudero P, Jerez C et al (2016) The intersection between growth factors, autophagy and ER stress: a new target to treat neurodegenerative diseases? Brain Res. doi:10.1016/j.brainres.2016.02.052

    Google Scholar 

  116. 116.

    Kania E, Pająk B, Orzechowski A (2015) Calcium homeostasis and ER stress in control of autophagy in cancer cells. Biomed Res Int 2015:352794. doi:10.1155/2015/352794

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. 117.

    Wengrod J, Martin L, Wang D et al (2013) Inhibition of nonsense-mediated RNA decay activates autophagy. Mol Cell Biol 33:2128–2135. doi:10.1128/MCB.00174-13

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Sun X, Perlick HA, Dietz HC, Maquat LE (1998) A mutated human homologue to yeast Upf1 protein has a dominant-negative effect on the decay of nonsense-containing mRNAs in mammalian cells. Proc Natl Acad Sci USA 95:10009–10014

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Oren YS, McClure ML, Rowe SM et al (2014) The unfolded protein response affects readthrough of premature termination codons. EMBO Mol Med 6:685–701. doi:10.1002/emmm.201303347

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Rouschop KMA, Ramaekers CHMA, Schaaf MBE et al (2009) Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiother Oncol 92:411–416. doi:10.1016/j.radonc.2009.06.029

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Ondrej M, Cechakova L, Durisova K et al (2016) To live or let die: unclear task of autophagy in the radiosensitization battle. Radiother Oncol 119:265–275. doi:10.1016/j.radonc.2016.02.028

    PubMed  Article  Google Scholar 

  122. 122.

    Xie W-Y, Zhou X-D, Yang J et al (2016) Inhibition of autophagy enhances heat-induced apoptosis in human non-small cell lung cancer cells through ER stress pathways. Arch Biochem Biophys 607:55–66. doi:10.1016/j.abb.2016.08.016

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Jia J, Furlan A, Gonzalez-Hilarion S et al (2015) Caspases shutdown nonsense-mediated mRNA decay during apoptosis. Cell Death Differ 22:1754–1763. doi:10.1038/cdd.2015.18

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Popp MW, Maquat LE (2015) Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics. Nat Commun 6:6632. doi:10.1038/ncomms7632

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95:521–530

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Peretz G, Bakhrat A, Abdu U (2007) Expression of the Drosophila melanogaster GADD45 homolog (CG11086) affects egg asymmetric development that is mediated by the c-Jun N-terminal kinase pathway. Genetics 177:1691–1702. doi:10.1534/genetics.107.079517

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Rehwinkel J, Letunic I, Raes J et al (2005) Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA 11:1530–1544. doi:10.1261/rna.2160905

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Tani H, Imamachi N, Salam KA et al (2012) Identification of hundreds of novel UPF1 target transcripts by direct determination of whole transcriptome stability. RNA Biol 9:1370–1379. doi:10.4161/rna.22360

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Kurosaki T, Li W, Hoque M et al (2014) A post-translational regulatory switch on UPF1 controls targeted mRNA degradation. Genes Dev 28:1900–1916. doi:10.1101/gad.245506.114

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Viegas MH, Gehring NH, Breit S et al (2007) The abundance of RNPS1, a protein component of the exon junction complex, can determine the variability in efficiency of the nonsense mediated decay pathway. Nucleic Acids Res 35:4542–4551. doi:10.1093/nar/gkm461

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Yue F, Cheng Y, Breschi A et al (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515:355–364. doi:10.1038/nature13992

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Mocquet V, Neusiedler J, Rende F et al (2012) The human T-lymphotropic virus type 1 tax protein inhibits nonsense-mediated mRNA decay by interacting with INT6/EIF3E and UPF1. J Virol 86:7530–7543. doi:10.1128/JVI.07021-11

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Tani H, Torimura M, Akimitsu N (2013) The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS One 8:e55684. doi:10.1371/journal.pone.0055684

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Tani H, Mizutani R, Salam KA et al (2012) Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res 22:947–956. doi:10.1101/gr.130559.111

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Deveraux QL, Reed JC (1999) IAP family proteins—suppressors of apoptosis. Genes Dev 13:239–252

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Mikosz CA, Brickley DR, Sharkey MS et al (2001) Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J Biol Chem 276:16649–16654. doi:10.1074/jbc.M010842200

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Kino T, Hurt DE, Ichijo T et al (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:ra8. doi:10.1126/scisignal.2000568

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Ideue T, Sasaki YTF, Hagiwara M, Hirose T (2007) Introns play an essential role in splicing-dependent formation of the exon junction complex. Genes Dev 21:1993–1998. doi:10.1101/gad.1557907

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Blattner C, Kannouche P, Litfin M et al (2000) UV-Induced stabilization of c-fos and other short-lived mRNAs. Mol Cell Biol 20:3616–3625

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Friedel CC, Dölken L, Ruzsics Z et al (2009) Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucleic Acids Res 37:e115. doi:10.1093/nar/gkp542

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  141. 141.

    Pal M, Ishigaki Y, Nagy E, Maquat LE (2001) Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA 7:5–15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Clerici M, Deniaud A, Boehm V et al (2014) Structural and functional analysis of the three MIF4G domains of nonsense-mediated decay factor UPF2. Nucleic Acids Res 42:2673–2686. doi:10.1093/nar/gkt1197

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Rayson S, Arciga-Reyes L, Wootton L et al (2012) A role for nonsense-mediated mRNA decay in plants: pathogen responses are induced in Arabidopsis thaliana NMD mutants. PLoS One 7:e31917. doi:10.1371/journal.pone.0031917

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Shi C, Baldwin IT, Wu J (2012) Arabidopsis plants having defects in nonsense-mediated mRNA decay factors UPF1, UPF2, and UPF3 show photoperiod-dependent phenotypes in development and stress responses. J Integr Plant Biol 54:99–114. doi:10.1111/j.1744-7909.2012.01093.x

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Yoine M, Ohto M, Onai K et al (2006) The lba1 mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signalling in Arabidopsis. Plant J 47:49–62. doi:10.1111/j.1365-313X.2006.02771.x

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Arciga-Reyes L, Wootton L, Kieffer M, Davies B (2006) UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis. Plant J 47:480–489. doi:10.1111/j.1365-313X.2006.02802.x

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Hori K, Watanabe Y (2005) UPF3 suppresses aberrant spliced mRNA in Arabidopsis. Plant J 43:530–540. doi:10.1111/j.1365-313X.2005.02473.x

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Kalyna M, Simpson CG, Syed NH et al (2012) Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res 40:2454–2469. doi:10.1093/nar/gkr932

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Kertész S, Kerényi Z, Mérai Z et al (2006) Both introns and long 3′-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants. Nucleic Acids Res 34:6147–6157. doi:10.1093/nar/gkl737

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  150. 150.

    Nyikó T, Kerényi F, Szabadkai L et al (2013) Plant nonsense-mediated mRNA decay is controlled by different autoregulatory circuits and can be induced by an EJC-like complex. Nucleic Acids Res 41:6715–6728. doi:10.1093/nar/gkt366

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  151. 151.

    Nyikó T, Sonkoly B, Mérai Z et al (2009) Plant upstream ORFs can trigger nonsense-mediated mRNA decay in a size-dependent manner. Plant Mol Biol 71:367–378. doi:10.1007/s11103-009-9528-4

    PubMed  Article  CAS  Google Scholar 

  152. 152.

    Saul H, Elharrar E, Gaash R et al (2009) The upstream open reading frame of the Arabidopsis AtMHX gene has a strong impact on transcript accumulation through the nonsense-mediated mRNA decay pathway. Plant J 60:1031–1042. doi:10.1111/j.1365-313X.2009.04021.x

    CAS  PubMed  Article  Google Scholar 

  153. 153.

    Toma KG, Rebbapragada I, Durand S, Lykke-Andersen J (2015) Identification of elements in human long 3′UTRs that inhibit nonsense-mediated decay. RNA 21:887–897. doi:10.1261/rna.048637.114

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Mocquet V, Durand S, Jalinot P (2015) How retroviruses escape the nonsense-mediated mRNA decay. AIDS Res Hum Retrovir 31:948–958. doi:10.1089/AID.2014.0326

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Rodríguez-Gabriel MA, Watt S, Bähler J, Russell P (2006) Upf1, an RNA helicase required for nonsense-mediated mRNA decay, modulates the transcriptional response to oxidative stress in fission yeast. Mol Cell Biol 26:6347–6356. doi:10.1128/MCB.00286-06

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  156. 156.

    Isken O, Maquat LE (2008) The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nat Rev Genet 9:699–712. doi:10.1038/nrg2402

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Azzalin CM, Lingner J (2006) The human RNA surveillance factor UPF1 is required for S phase progression and genome stability. Curr Biol 16:433–439. doi:10.1016/j.cub.2006.01.018

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Brogna S, McLeod T, Petric M (2016) The meaning of NMD: translate or perish. Trends Genet 32:395–407. doi:10.1016/j.tig.2016.04.007

    CAS  PubMed  Article  Google Scholar 

  159. 159.

    Nijhawan D, Honarpour N, Wang X (2000) Apoptosis in neural development and disease. Annu Rev Neurosci 23:73–87. doi:10.1146/annurev.neuro.23.1.73

    CAS  PubMed  Article  Google Scholar 

  160. 160.

    Opferman JT, Korsmeyer SJ (2003) Apoptosis in the development and maintenance of the immune system. Nat Immunol 4:410–415. doi:10.1038/ni0503-410

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Greenhalgh DG (1998) The role of apoptosis in wound healing. Int J Biochem Cell Biol 30:1019–1030

    CAS  PubMed  Article  Google Scholar 

  162. 162.

    Kawashima T, Douglass S, Gabunilas J et al (2014) Widespread use of non-productive alternative splice sites in Saccharomyces cerevisiae. PLoS Genet 10:e1004249. doi:10.1371/journal.pgen.1004249

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  163. 163.

    Garre E, Romero-Santacreu L, Barneo-Muñoz M et al (2013) Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress. PLoS One 8:e61240. doi:10.1371/journal.pone.0061240

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. 164.

    Lim Y, Cho H, Kim E-K (2016) Brain metabolism as a modulator of autophagy in neurodegeneration. Brain Res 1649:158–165

    CAS  PubMed  Article  Google Scholar 

  165. 165.

    Atwood CS, Bowen RL (2015) A unified hypothesis of early- and late-onset Alzheimer’s disease pathogenesis. J Alzheimers Dis 47:33–47. doi:10.3233/JAD-143210

    PubMed  PubMed Central  Article  Google Scholar 

  166. 166.

    Singh S, Mishra A, Srivastava N, Shukla S (2016) MK-801 (Dizocilpine) regulates multiple steps of adult hippocampal neurogenesis and alters psychological symptoms via Wnt/β-catenin signaling in parkinsonian rats. ACS Chem Neurosci. doi:10.1021/acschemneuro.6b00354

    Google Scholar 

  167. 167.

    Eixarch H, Calvo-Barreiro L, Montalban X, Espejo C (2017) Bone morphogenetic proteins in multiple sclerosis: role in neuroinflammation. Brain Behav Immun. doi:10.1016/j.bbi.2017.02.019

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the NIH (RO1 GM111838) for financial support. The first author was also supported by the NIH P42 Superfund Training grant (ES010337).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miles Wilkinson.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s00018-017-2642-6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goetz, A.E., Wilkinson, M. Stress and the nonsense-mediated RNA decay pathway. Cell. Mol. Life Sci. 74, 3509–3531 (2017). https://doi.org/10.1007/s00018-017-2537-6

Download citation

Keywords

  • Stress granules
  • Autophagy
  • Apoptosis
  • eIF2α phosphorylation