Skip to main content
Log in

IFT54 regulates IFT20 stability but is not essential for tubulin transport during ciliogenesis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Intraflagellar transport (IFT) is required for ciliogenesis by ferrying ciliary components using IFT complexes as cargo adaptors. IFT54 is a component of the IFT-B complex and is also associated with cytoplasmic microtubules (MTs). Loss of IFT54 impairs cilia assembly as well as cytoplasmic MT dynamics. The N-terminal calponin homology (CH) domain of IFT54 interacts with tubulins/MTs and has been proposed to transport tubulin during ciliogenesis, whereas the C-terminal coiled-coil (CC) domain binds IFT20. However, the precise function of these domains in vivo is not well understood. We showed that in Chlamydomonas, loss of IFT54 completely blocks ciliogenesis but does not affect spindle formation and proper cell cycle progression, even though IFT54 interacts with mitotic MTs. Interestingly, IFT54 lacking the CH domain allows proper flagellar assembly. The CH domain is required for the association of IFT54 with the axoneme but not with mitotic MTs, and also regulates the flagellar import of IFT54 but not IFT81 and IFT46. The C-terminal CC domain is essential for IFT54 to bind IFT20, and for its recruitment to the basal body and incorporation into IFT complexes. Complete loss of IFT54 or the CC domain destabilizes IFT20. ift54 mutant cells expressing the CC domain alone rescue the stability of IFT20 and form stunted flagella with accumulation of both IFT-A component IFT43 and IFT-B component IFT46, indicating that IFT54 also functions in IFT turn-around at the flagellar tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CH domain:

Calponin homology domain

CrIFT54:

Chlamydomonas IFT54

CC domain:

Coiled-coil domain

IFT:

Intraflagellar transport

DIC:

Differential interference contrast microscopy

Microtubules:

MTs

References

  1. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825

    Article  CAS  PubMed  Google Scholar 

  2. Taschner, M, Lorentzen, E (2016) The intraflagellar transport machinery. Cold Spring Harb Perspect Biol 8

  3. He M, Agbu S, Anderson KV (2016) Microtubule motors drive hedgehog signaling in primary Cilia. Trends Cell Biol

  4. Lechtreck KF (2015) IFT-Cargo interactions and protein transport in Cilia. Trends Biochem Sci 40:765–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141:993–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Piperno G, Mead K (1997) Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci USA 94:4457–4462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Behal RH, Miller MS, Qin H, Lucker BF, Jones A, Cole DG (2012) Subunit interactions and organization of the Chlamydomonas reinhardtii intraflagellar transport complex A proteins. J Biol Chem 287:11689–11703

    Article  CAS  PubMed  Google Scholar 

  8. Lucker BF, Miller MS, Dziedzic SA, Blackmarr PT, Cole DG (2010) Direct interactions of intraflagellar transport complex B proteins IFT88, IFT52, and IFT46. J Biol Chem 285:21508–21518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taschner M, Weber K, Mourao A, Vetter M, Awasthi M, Stiegler M, Bhogaraju S, Lorentzen E (2016) Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. EMBO J 35:773–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ling L, Goeddel DV (2000) MIP-T3, a novel protein linking tumor necrosis factor receptor-associated factor 3 to the microtubule network. J Biol Chem 275:23852–23860

    Article  CAS  PubMed  Google Scholar 

  11. Bizet AA, Becker-Heck A, Ryan R, Weber K, Filhol E, Krug P, Halbritter J, Delous M, Lasbennes MC, Linghu B et al (2015) Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization. Nat Commun 6:8666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berbari NF, Kin NW, Sharma N, Michaud EJ, Kesterson RA, Yoder BK (2011) Mutations in Traf3ip1 reveal defects in ciliogenesis, embryonic development, and altered cell size regulation. Dev Biol 360:66–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li C, Inglis PN, Leitch CC, Efimenko E, Zaghloul NA, Mok CA, Davis EE, Bialas NJ, Healey MP, Heon E et al (2008) An essential role for DYF-11/MIP-T3 in assembling functional intraflagellar transport complexes. PLoS Genet 4:e1000044

    Article  PubMed  PubMed Central  Google Scholar 

  14. Omori Y, Zhao C, Saras A, Mukhopadhyay S, Kim W, Furukawa T, Sengupta P, Veraksa A, Malicki J (2008) Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat Cell Biol 10:437–444

    Article  CAS  PubMed  Google Scholar 

  15. Berbari NF, O’Connor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19:R526–R535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kunitomo H, Iino Y (2008) Caenorhabditis elegans DYF-11, an orthologue of mammalian Traf3ip1/MIP-T3, is required for sensory cilia formation. Genes Cells 13:13–25

    Article  CAS  PubMed  Google Scholar 

  17. Wei Q, Xu Q, Zhang Y, Li Y, Zhang Q, Hu Z, Harris PC, Torres VE, Ling K, Hu J (2013) Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes. Nat Commun 4:2750

    PubMed  PubMed Central  Google Scholar 

  18. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC et al (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201–1213

    Article  CAS  PubMed  Google Scholar 

  19. Sager R, Granick S (1953) Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci 56:831–838

    Article  CAS  PubMed  Google Scholar 

  20. Hu Z, Liang Y, He W, Pan J (2015) Cilia disassembly with two distinct phases of regulation. Cell Rep 10:1803–1810

    Article  CAS  PubMed  Google Scholar 

  21. Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277:221–229

    Article  CAS  PubMed  Google Scholar 

  22. Liang Y, Pan J (2013) Regulation of flagellar biogenesis by a calcium dependent protein kinase in Chlamydomonas reinhardtii. PLoS One 8:e69902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meng D, Cao M, Oda T, Pan J (2014) The conserved ciliary protein Bug22 controls planar beating of Chlamydomonas flagella. J Cell Sci 127:281–287

    Article  CAS  PubMed  Google Scholar 

  24. Gonzalez-Ballester D, de Montaigu A, Galvan A, Fernandez E (2005) Restriction enzyme site-directed amplification PCR: a tool to identify regions flanking a marker DNA. Anal Biochem 340:330–335

    Article  CAS  PubMed  Google Scholar 

  25. Lechtreck KF, Luro S, Awata J, Witman GB (2009) HA-tagging of putative flagellar proteins in Chlamydomonas reinhardtii identifies a novel protein of intraflagellar transport complex B. Cell Motil Cytoskeleton 66:469–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Craige B, Brown JM, Witman GB (2013) Isolation of Chlamydomonas flagella. Curr Protoc Cell Biol Chapter 3: Unit 3 41 41–49

  27. Piao T, Luo M, Wang L, Guo Y, Li D, Li P, Snell WJ, Pan J (2009) A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas. Proc Natl Acad Sci USA 106:4713–4718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pan J, Snell WJ (2003) Kinesin II and regulated intraflagellar transport of Chlamydomonas aurora protein kinase. J Cell Sci 116:2179–2186

    Article  CAS  PubMed  Google Scholar 

  29. Craige B, Tsao CC, Diener DR, Hou Y, Lechtreck KF, Rosenbaum JL, Witman GB (2010) CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 190:927–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lucker BF, Behal RH, Qin H, Siron LC, Taggart WD, Rosenbaum JL, Cole DG (2005) Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits. J Biol Chem 280:27688–27696

    Article  CAS  PubMed  Google Scholar 

  31. Brazelton WJ, Amundsen CD, Silflow CD, Lefebvre PA (2001) The bld1 mutation identifies the Chlamydomonas osm-6 homolog as a gene required for flagellar assembly. Curr Biol 11:1591–1594

    Article  CAS  PubMed  Google Scholar 

  32. Matsuura K, Lefebvre PA, Kamiya R, Hirono M (2002) Kinesin-II is not essential for mitosis and cell growth in Chlamydomonas. Cell Motil Cytoskeleton 52:195–201

    Article  CAS  PubMed  Google Scholar 

  33. Hou Y, Qin H, Follit JA, Pazour GJ, Rosenbaum JL, Witman GB (2007) Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. J Cell Biol 176:653–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brown JM, Cochran DA, Craige B, Kubo T, Witman GB (2015) Assembly of IFT trains at the ciliary base depends on IFT74. Curr Biol 25:1583–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Katoh Y, Terada M, Nishijima Y, Takei R, Nozaki S, Hamada H, Nakayama K (2016) Overall architecture of the intraflagellar transport (IFT)-B complex containing Cluap1/IFT38 as an essential component of the IFT-B peripheral subcomplex. J Biol Chem 291:10962–10975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cavalier-Smith T (1974) Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J Cell Sci 16:529–556

    CAS  PubMed  Google Scholar 

  37. Piasecki BP, LaVoie M, Tam LW, Lefebvre PA, Silflow CD (2008) The Uni2 phosphoprotein is a cell cycle regulated component of the basal body maturation pathway in Chlamydomonas reinhardtii. Mol Biol Cell 19:262–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Delaval B, Bright A, Lawson ND, Doxsey S (2011) The cilia protein IFT88 is required for spindle orientation in mitosis. Nat Cell Biol 13:461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Follit JA, Tuft RA, Fogarty KE, Pazour GJ (2006) The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol Biol Cell 17:3781–3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deane JA, Cole DG, Seeley ES, Diener DR, Rosenbaum JL (2001) Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr Biol 11:1586–1590

    Article  CAS  PubMed  Google Scholar 

  41. Iomini C, Tejada K, Mo W, Vaananen H, Piperno G (2004) Primary cilia of human endothelial cells disassemble under laminar shear stress. J Cell Biol 164:811–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wood CR, Wang Z, Diener D, Zones JM, Rosenbaum J, Umen JG (2012) IFT proteins accumulate during cell division and localize to the cleavage furrow in Chlamydomonas. PLoS One 7:e30729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim S, Zaghloul NA, Bubenshchikova E, Oh EC, Rankin S, Katsanis N, Obara T, Tsiokas L (2011) Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat Cell Biol 13:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li A, Saito M, Chuang JZ, Tseng YY, Dedesma C, Tomizawa K, Kaitsuka T, Sung CH (2011) Ciliary transition zone activation of phosphorylated Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors. Nat Cell Biol 13:402–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taschner M, Bhogaraju S, Lorentzen E (2012) Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 83:S12–S22

    Article  CAS  PubMed  Google Scholar 

  46. Engel BD, Ishikawa H, Wemmer KA, Geimer S, Wakabayashi K, Hirono M, Craige B, Pazour GJ, Witman GB, Kamiya R et al (2012) The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. J Cell Biol 199:151–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kubo T, Brown JM, Bellve K, Craige B, Craft JM, Fogarty K, Lechtreck KF, Witman GB (2016) Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin. J Cell Sci 129:2106–2119

    Article  CAS  PubMed  Google Scholar 

  48. Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K, Taschner M, Mizuno N, Lamla S, Bastin P, Nigg EA et al (2013) Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341:1009–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jonassen JA, SanAgustin J, Baker SP, Pazour GJ (2012) Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation. J Am Soc Nephrol 23:641–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hao L, Thein M, Brust-Mascher I, Civelekoglu-Scholey G, Lu Y, Acar S, Prevo B, Shaham S, Scholey JM (2011) Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat Cell Biol 13:790–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pedersen LB, Miller MS, Geimer S, Leitch JM, Rosenbaum JL, Cole DG (2005) Chlamydomonas IFT172 is encoded by FLA11, interacts with CrEB1, and regulates IFT at the flagellar tip. Curr Biol 15:262–266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Roger Sloboda for critical review of this manuscript. We are also grateful to Dr. Karl Lechtreck for sharing unpublished data, and Drs. Joel Rosenbaum, Dennis Diener, George Witman, Robert Bloodgood and Kaiyao Huang for providing antibodies and plasmids. This work was supported by the following awards (to J.P.) from the National Basic Research Program of China (973 program) (2013CB910700), National Natural Science Foundation of China (31330044, 31671387) and Sino-German Center for Research Promotion (GZ990).

Author contributions

XZ., Y.L. and F.G. designed and performed the experiments and analyzed the data. J.P. designed the study, analyzed the data and wrote the paper together with X.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Pan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Liang, Y., Gao, F. et al. IFT54 regulates IFT20 stability but is not essential for tubulin transport during ciliogenesis. Cell. Mol. Life Sci. 74, 3425–3437 (2017). https://doi.org/10.1007/s00018-017-2525-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2525-x

Keywords

Navigation