Advertisement

Cellular and Molecular Life Sciences

, Volume 74, Issue 14, pp 2525–2535 | Cite as

Advances in anti-viral immune defence: revealing the importance of the IFN JAK/STAT pathway

  • Nicola Raftery
  • Nigel J. StevensonEmail author
Review

Abstract

Interferon-alpha (IFN-α) is a potent anti-viral cytokine, critical to the host immune response against viruses. IFN-α is first produced upon viral detection by pathogen recognition receptors. Following its expression, IFN-α embarks upon a complex downstream signalling cascade called the JAK/STAT pathway. This signalling pathway results in the expression of hundreds of effector genes known as interferon stimulated genes (ISGs). These genes are the basis for an elaborate effector mechanism and ultimately, the clearance of viral infection. ISGs mark an elegant mechanism of anti-viral host defence that warrants renewed research focus in our global efforts to treat existing and emerging viruses. By understanding the mechanistic role of individual ISGs we anticipate the discovery of a new “treasure trove” of anti-viral mediators that may pave the way for more effective, targeted and less toxic anti-viral therapies. Therefore, with the aim of highlighting the value of the innate type 1 IFN response in our battle against viral infection, this review outlines both historic and recent advances in understanding the IFN-α JAK/STAT pathway, with a focus on new research discoveries relating to specific ISGs and their potential role in curing existing and future emergent viral infections.

Keywords

Interferon Interferon stimulated genes (ISGs) JAK/STAT Anti-viral 

References

  1. 1.
    Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147:258–267CrossRefPubMedGoogle Scholar
  2. 2.
    van Pesch V, Lanaya H, Renauld J-C, Michiels T (2004) Characterization of the murine alpha interferon gene family. J Virol 78:8219–8228. doi: 10.1128/JVI.78.15.8219-8228.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Uzé G, Schreiber G, Piehler J, Pellegrini S (2007) The receptor of the type I interferon family. In: Pitha PM (ed) Interferon 50th anniv. Springer, Berlin, pp 71–95CrossRefGoogle Scholar
  4. 4.
    Müller U, Steinhoff U, Reis LF et al (1994) Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921CrossRefPubMedGoogle Scholar
  5. 5.
    Jouanguy E, Zhang S-Y, Chapgier A et al (2007) Human primary immunodeficiencies of type I interferons. Biochimie 89:878–883. doi: 10.1016/j.biochi.2007.04.016 CrossRefPubMedGoogle Scholar
  6. 6.
    Simmons DP, Wearsch PA, Canaday DH et al (2012) Type I interferon drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing. J Immunol Baltim Md 188:3116–3126. doi: 10.4049/jimmunol.1101313 Google Scholar
  7. 7.
    Cella M, Salio M, Sakakibara Y et al (1999) Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 189:821–829CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Castelli JC, Hassel BA, Wood KA et al (1997) A study of the interferon antiviral mechanism: apoptosis activation by the 2-5A system. J Exp Med 186:967–972CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Garland Science—Book: Janeway’s Immunobiology + 7. http://www.garlandscience.com/product/isbn/0815341237. Accessed 7 Sept 2016
  10. 10.
    Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA (2011) Pattern recognition receptors and the innate immune response to viral infection. Viruses 3:920–940. doi: 10.3390/v3060920 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Xagorari A, Chlichlia K (2008) Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol J 2:49–59. doi: 10.2174/1874285800802010049 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Grandvaux N, Servant MJ, tenOever B et al (2002) Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J Virol 76:5532–5539CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tamura T, Yanai H, Savitsky D, Taniguchi T (2008) The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26:535–584. doi: 10.1146/annurev.immunol.26.021607.090400 CrossRefPubMedGoogle Scholar
  14. 14.
    Gack MU (2014) Mechanisms of RIG-I-like receptor activation and manipulation by viral pathogens. J Virol 88:5213–5216. doi: 10.1128/JVI.03370-13 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386. doi: 10.1038/nri1604 CrossRefPubMedGoogle Scholar
  16. 16.
    Levy DE, Marié I, Smith E, Prakash A (2002) Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res 22:87–93. doi: 10.1089/107999002753452692 CrossRefGoogle Scholar
  17. 17.
    Hertzog PJ, Williams BRG (2013) Fine tuning type I interferon responses. Cytokine Growth Factor Rev 24:217–225. doi: 10.1016/j.cytogfr.2013.04.002 CrossRefPubMedGoogle Scholar
  18. 18.
    Aaronson DS, Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science 296:1653–1655. doi: 10.1126/science.1071545 CrossRefPubMedGoogle Scholar
  19. 19.
    Levy DE, Darnell JE (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662. doi: 10.1038/nrm909 CrossRefPubMedGoogle Scholar
  20. 20.
    Decker T, Müller M, Stockinger S (2005) The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol 5:675–687. doi: 10.1038/nri1684 CrossRefPubMedGoogle Scholar
  21. 21.
    Brooks AJ, Dai W, O’Mara ML et al (2014) Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 344:1249783. doi: 10.1126/science.1249783 CrossRefPubMedGoogle Scholar
  22. 22.
    Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545. doi: 10.1146/annurev-immunol-032713-120231 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    de Veer MJ, Holko M, Frevel M et al (2001) Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69:912–920PubMedGoogle Scholar
  24. 24.
    Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519–525. doi: 10.1016/j.coviro.2011.10.008 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gao S, von der Malsburg A, Paeschke S et al (2010) Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 465:502–506. doi: 10.1038/nature08972 CrossRefPubMedGoogle Scholar
  26. 26.
    Xiao H, Killip MJ, Staeheli P et al (2013) The human interferon-induced MxA protein inhibits early stages of influenza A virus infection by retaining the incoming viral genome in the cytoplasm. J Virol. doi: 10.1128/JVI.02220-13 Google Scholar
  27. 27.
    Klockow B, Tichelaar W, Madden DR et al (2002) The dynamin A ring complex: molecular organization and nucleotide-dependent conformational changes. EMBO J 21:240–250. doi: 10.1093/emboj/21.3.240 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Haller O, Kochs G (2011) Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res 31:79–87. doi: 10.1089/jir.2010.0076 CrossRefGoogle Scholar
  29. 29.
    Kane M, Yadav SS, Bitzegeio J et al (2013) MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502:563–566. doi: 10.1038/nature12653 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Goujon C, Moncorgé O, Bauby H et al (2013) Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502:559–562. doi: 10.1038/nature12542 CrossRefPubMedGoogle Scholar
  31. 31.
    Brass AL, Huang I-C, Benita Y et al (2009) The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139:1243–1254. doi: 10.1016/j.cell.2009.12.017 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wilkins C, Woodward J, Lau DT-Y et al (2013) IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatol Baltim Md 57:461–469. doi: 10.1002/hep.26066 CrossRefGoogle Scholar
  33. 33.
    Lu J, Pan Q, Rong L et al (2011) The IFITM proteins inhibit HIV-1 infection. J Virol 85:2126–2137. doi: 10.1128/JVI.01531-10 CrossRefPubMedGoogle Scholar
  34. 34.
    Feeley EM, Sims JS, John SP et al (2011) IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog 7:e1002337. doi: 10.1371/journal.ppat.1002337 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Everitt AR, Clare S, Pertel T et al (2012) IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484:519–523. doi: 10.1038/nature10921 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang Y, Pan Q, Ding S et al (2017) The V3-loop of HIV-1 Env determines viral susceptibility to IFITM3 impairment of viral infectivity. J Virol. doi: 10.1128/JVI.02441-16 Google Scholar
  37. 37.
    Ozato K, Shin D-M, Chang T-H, Morse HC (2008) TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8:849–860. doi: 10.1038/nri2413 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Stremlau M, Owens CM, Perron MJ et al (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427:848–853. doi: 10.1038/nature02343 CrossRefPubMedGoogle Scholar
  39. 39.
    Diaz-Griffero F (2011) Caging the beast: TRIM5α binding to the HIV-1 core. Viruses 3:423–428. doi: 10.3390/v3050423 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ganser-Pornillos BK, Chandrasekaran V, Pornillos O et al (2011) Hexagonal assembly of a restricting TRIM5alpha protein. Proc Natl Acad Sci USA 108:534–539. doi: 10.1073/pnas.1013426108 CrossRefPubMedGoogle Scholar
  41. 41.
    Towers GJ (2007) The control of viral infection by tripartite motif proteins and cyclophilin A. Retrovirology 4:40. doi: 10.1186/1742-4690-4-40 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rold CJ, Aiken C (2008) Proteasomal degradation of TRIM5α during retrovirus restriction. PLoS Pathog 4:e1000074. doi: 10.1371/journal.ppat.1000074 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Singh R, Gaiha G, Werner L et al (2011) Association of TRIM22 with the type 1 interferon response and viral control during primary HIV-1 infection. J Virol 85:208–216. doi: 10.1128/JVI.01810-10 CrossRefPubMedGoogle Scholar
  44. 44.
    Hattlmann CJ, Kelly JN, Barr SD (2012) TRIM22: a diverse and dynamic antiviral protein. Mol Biol Int 2012:e153415. doi: 10.1155/2012/153415 CrossRefGoogle Scholar
  45. 45.
    Gao B, Duan Z, Xu W, Xiong S (2009) Tripartite motif-containing 22 inhibits the activity of hepatitis B virus core promoter, which is dependent on nuclear-located RING domain. Hepatol Baltim Md 50:424–433. doi: 10.1002/hep.23011 CrossRefGoogle Scholar
  46. 46.
    Di Pietro A, Kajaste-Rudnitski A, Oteiza A et al (2013) TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. J Virol 87:4523–4533. doi: 10.1128/JVI.02548-12 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhao C, Collins M, Hsiang T-Y, Krug RM (2013) Interferon-induced ISG15 pathway: an ongoing virus–host battle. Trends Microbiol 21:181–186. doi: 10.1016/j.tim.2013.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Shi H-X, Yang K, Liu X et al (2010) Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol Cell Biol 30:2424–2436. doi: 10.1128/MCB.01466-09 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lenschow DJ, Lai C, Frias-Staheli N et al (2007) IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc Natl Acad Sci USA 104:1371–1376. doi: 10.1073/pnas.0607038104 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bogunovic D, Byun M, Durfee LA et al (2012) Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337:1684–1688. doi: 10.1126/science.1224026 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Speer SD, Li Z, Buta S et al (2016) ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun. doi: 10.1038/ncomms11496 PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hovanessian AG, Justesen J (2007) The human 2′-5′oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2′-5′ instead of 3′-5′ phosphodiester bond formation. Biochimie 89:779–788. doi: 10.1016/j.biochi.2007.02.003 CrossRefPubMedGoogle Scholar
  53. 53.
    Clemens MJ, Vaquero CM (1978) Inhibition of protein synthesis by double-stranded RNA in reticulocyte lysates: evidence for activation of an endoribonuclease. Biochem Biophys Res Commun 83:59–68CrossRefPubMedGoogle Scholar
  54. 54.
    Zhou A, Paranjape J, Brown TL et al (1997) Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J 16:6355–6363. doi: 10.1093/emboj/16.21.6355 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bonnevie-Nielsen V, Field LL, Lu S et al (2005) Variation in antiviral 2′,5′-oligoadenylate synthetase (2′5′AS) enzyme activity is controlled by a single-nucleotide polymorphism at a splice-acceptor site in the OAS1 gene. Am J Hum Genet 76:623–633. doi: 10.1086/429391 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kristiansen H, Scherer CA, McVean M et al (2010) Extracellular 2′-5′ oligoadenylate synthetase stimulates RNase L-independent antiviral activity: a novel mechanism of virus-induced innate immunity. J Virol 84:11898–11904. doi: 10.1128/JVI.01003-10 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Choi UY, Kang J-S, Hwang YS, Kim Y-J (2015) Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Exp Mol Med 47:e144. doi: 10.1038/emm.2014.110 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhu J, Zhang Y, Ghosh A et al (2014) Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor. Immunity 40:936–948. doi: 10.1016/j.immuni.2014.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lee MS, Kim B, Oh GT, Kim Y-J (2013) OASL1 inhibits translation of the type I interferon-regulating transcription factor IRF7. Nat Immunol 14:346–355. doi: 10.1038/ni.2535 CrossRefPubMedGoogle Scholar
  60. 60.
    Meurs E, Chong K, Galabru J et al (1990) Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62:379–390CrossRefPubMedGoogle Scholar
  61. 61.
    Roberts WK, Hovanessian A, Brown RE et al (1976) Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature 264:477–480. doi: 10.1038/264477a0 CrossRefPubMedGoogle Scholar
  62. 62.
    Balachandran S, Roberts PC, Brown LE et al (2000) Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 13:129–141CrossRefPubMedGoogle Scholar
  63. 63.
    Zhang L, Alter HJ, Wang H et al (2013) The modulation of hepatitis C virus 1a replication by PKR is dependent on NF-κB mediated interferon beta response in Huh7.5.1 cells. Virology 438:28–36. doi: 10.1016/j.virol.2013.01.015 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Jha BK, Polyakova I, Kessler P et al (2011) Inhibition of RNase L and RNA-dependent protein kinase (PKR) by sunitinib impairs antiviral innate immunity. J Biol Chem 286:26319–26326. doi: 10.1074/jbc.M111.253443 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    de Wilde AH, Wannee KF, Scholte FEM et al (2015) A kinome-wide small interfering RNA screen identifies proviral and antiviral host factors in severe acute respiratory syndrome coronavirus replication, including double-stranded RNA-activated protein kinase and early secretory pathway proteins. J Virol 89:8318–8333. doi: 10.1128/JVI.01029-15 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wang X, Hinson ER, Cresswell P (2007) The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2:96–105. doi: 10.1016/j.chom.2007.06.009 CrossRefPubMedGoogle Scholar
  67. 67.
    Helbig KJ, Eyre NS, Yip E et al (2011) The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A. Hepatol Baltim Md 54:1506–1517. doi: 10.1002/hep.24542 CrossRefGoogle Scholar
  68. 68.
    Perez-Caballero D, Zang T, Ebrahimi A et al (2009) Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139:499–511. doi: 10.1016/j.cell.2009.08.039 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Barrett BS, Smith DS, Li SX et al (2012) A single nucleotide polymorphism in tetherin promotes retrovirus restriction in vivo. PLoS Pathog 8:e1002596. doi: 10.1371/journal.ppat.1002596 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Jouvenet N, Neil SJD, Zhadina M et al (2009) Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin. J Virol 83:1837–1844. doi: 10.1128/JVI.02211-08 CrossRefPubMedGoogle Scholar
  71. 71.
    Sakuma T, Noda T, Urata S et al (2009) Inhibition of Lassa and Marburg virus production by tetherin. J Virol 83:2382–2385. doi: 10.1128/JVI.01607-08 CrossRefPubMedGoogle Scholar
  72. 72.
    Mansouri M, Viswanathan K, Douglas JL et al (2009) Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi’s sarcoma-associated herpesvirus. J Virol 83:9672–9681. doi: 10.1128/JVI.00597-09 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Arias JF, Heyer LN, von Bredow B et al (2014) Tetherin antagonism by Vpu protects HIV-infected cells from antibody-dependent cell-mediated cytotoxicity. Proc Natl Acad Sci USA 111:6425–6430. doi: 10.1073/pnas.1321507111 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Manns MP, Wedemeyer H, Cornberg M (2006) Treating viral hepatitis C: efficacy, side effects, and complications. Gut 55:1350–1359. doi: 10.1136/gut.2005.076646 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Piganis RAR, De Weerd NA, Gould JA et al (2011) Suppressor of cytokine signaling (SOCS) 1 inhibits type I interferon (IFN) signaling via the interferon alpha receptor (IFNAR1)-associated tyrosine kinase Tyk2. J Biol Chem 286:33811–33818. doi: 10.1074/jbc.M111.270207 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Tamiya T, Kashiwagi I, Takahashi R et al (2011) Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways. Arterioscler Thromb Vasc Biol 31:980–985. doi: 10.1161/ATVBAHA.110.207464 CrossRefPubMedGoogle Scholar
  77. 77.
    Vlotides G, Sörensen AS, Kopp F et al (2004) SOCS-1 and SOCS-3 inhibit IFN-alpha-induced expression of the antiviral proteins 2,5-OAS and MxA. Biochem Biophys Res Commun 320:1007–1014. doi: 10.1016/j.bbrc.2004.06.051 CrossRefPubMedGoogle Scholar
  78. 78.
    Akhtar LN, Benveniste EN (2011) Viral exploitation of host SOCS protein functions. J Virol 85:1912–1921. doi: 10.1128/JVI.01857-10 CrossRefPubMedGoogle Scholar
  79. 79.
    Malakhov MP, Malakhova OA, Kim KI et al (2002) UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J Biol Chem 277:9976–9981. doi: 10.1074/jbc.M109078200 CrossRefPubMedGoogle Scholar
  80. 80.
    Ritchie KJ, Hahn CS, Kim KI et al (2004) Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med 10:1374–1378. doi: 10.1038/nm1133 CrossRefPubMedGoogle Scholar
  81. 81.
    François-Newton V, Magno de Freitas Almeida G, Payelle-Brogard B et al (2011) USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon α response. PLOS One 6:22200. doi: 10.1371/journal.pone.0022200 CrossRefGoogle Scholar
  82. 82.
    Chen L, Borozan I, Feld J et al (2005) Hepatic gene expression discriminates responders and nonresponders in treatment of chronic hepatitis C viral infection. Gastroenterology 128:1437–1444CrossRefPubMedGoogle Scholar
  83. 83.
    Borden EC, Sen GC, Uze G et al (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6:975–990. doi: 10.1038/nrd2422 CrossRefPubMedGoogle Scholar
  84. 84.
    Haas DW, Lavelle J, Nadler JP et al (2000) A randomized trial of interferon alpha therapy for HIV type 1 infection. AIDS Res Hum Retroviruses 16:183–190. doi: 10.1089/088922200309278 CrossRefPubMedGoogle Scholar
  85. 85.
    Zeuzem S, Berg T, Moeller B et al (2009) Expert opinion on the treatment of patients with chronic hepatitis C. J Viral Hepat 16:75–90. doi: 10.1111/j.1365-2893.2008.01012.x CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Stevenson NJ, Bourke NM, Ryan EJ et al (2013) Hepatitis C virus targets the interferon-α JAK/STAT pathway by promoting proteasomal degradation in immune cells and hepatocytes. FEBS Lett 587:1571–1578. doi: 10.1016/j.febslet.2013.03.041 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.School of MedicineTrinity College DublinDublin 2Ireland
  2. 2.School of Biochemistry and ImmunologyTrinity College DublinDublin 2Ireland

Personalised recommendations