Skip to main content
Log in

Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Chemotaxis is the directed motility by means of which microbes sense chemical cues and relocate towards more favorable environments. Methyl-accepting chemotaxis proteins (MCPs) are the most common receptors in bacteria and archaea. They are arranged as trimers of dimers that, in turn, form hexagonal arrays in the cytoplasmic membrane or in the cytoplasm. Several different classes of MCPs have been identified according to their ligand binding region and membrane topology. MCPs have been further classified based on the length and sequence conservation of their cytoplasmic domains. Clusters of membrane-embedded MCPs often localize to the poles of the cell, whereas cytoplasmic MCPs can be targeted to the poles or distributed throughout the cell body. MCPs play an important role in cell survival, pathogenesis, and biodegradation. Bacterial adaptation to diverse environmental conditions promotes diversity among the MCPs. This review summarizes structure, classification, and structure–activity relationship of the known MCP receptors, with a brief overview of the signal transduction mechanisms in bacteria and archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berleman JE, Bauer CE (2005) Involvement of a Che-like signal transduction cascade in regulating cyst cell development in Rhodospirillum centenum. Mol Microbiol 56:1457–1466. doi:10.1111/j.1365-2958.2005.04646.x

    Article  CAS  PubMed  Google Scholar 

  2. He K, Bauer CE (2014) Chemosensory signaling systems that control bacterial survival. Trends Microbiol 22:389–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Nat Acad Sci USA 102:14422–14427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luu RA, Kootstra JD, Nesteryuk V, Brunton CN, Parales JV, Ditty JL, Parales RE (2015) Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY. Mol Microbiol 96:134–147

    Article  CAS  PubMed  Google Scholar 

  5. Kirby JR (2009) Chemotaxis-like regulatory systems: unique roles in diverse bacteria. Annu Rev Microbiol 63:45–59

    Article  CAS  PubMed  Google Scholar 

  6. Kirby JR, Zusman DR (2003) Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc Nat Acad Sci USA 100:2008–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moine A, Agrebi R, Espinosa L, Kirby JR, Zusman DR, Mignot T, Mauriello EM (2014) Functional organization of a multimodular bacterial chemosensory apparatus. PLoS Genet 10:e1004164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yang Z, Geng Y, Shi W (1998) A DnaK homolog in Myxococcus xanthus is involved in social motility and fruiting body formation. J Bacteriol 180:218–224

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Black WP, Yang Z (2004) Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J Bacteriol 186:1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harkey CW, Everiss KD, Peterson KM (1994) The Vibrio cholerae toxin-coregulated-pilus gene tcpI encodes a homolog of methyl-accepting chemotaxis proteins. Infect Immun 62:2669–2678

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cotter PA, Stibitz S (2007) c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10:17–23

    Article  CAS  PubMed  Google Scholar 

  12. Sampedro I, Parales RE, Krell T, Hill JE (2014) Pseudomonas chemotaxis. FEMS Microbiol Rev 153:119–128

    Google Scholar 

  13. Li Z, Lou H, Ojcius DM, Sun A, Sun D, Zhao J, Lin Xa, Yan J (2014) Methyl-accepting chemotaxis proteins 3 and 4 are responsible for Campylobacter jejuni chemotaxis and jejuna colonization in mice in response to sodium deoxycholate. J Med Microbiol 63:343–354

    Article  CAS  PubMed  Google Scholar 

  14. Choi Y, Kim S, Hwang H, Kim KP, Kang DH, Ryu S (2015) Plasmid-encoded MCP is involved in virulence, motility, and biofilm formation of Cronobacter sakazakii ATCC 29544. Infect Immun 83:197–204

    Article  PubMed  CAS  Google Scholar 

  15. Nishiyama S-i, Takahashi Y, Yamamoto K, Suzuki D, Itoh Y, Sumita K, Uchida Y, Homma M, Imada K, Kawagishi I (2016) Identification of a Vibrio cholerae chemoreceptor that senses taurine and amino acids as attractants. Sci Rep 6:20866. doi:10.1038/srep20866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schlesner M, Miller A, Streif S, Staudinger WF, Müller J, Scheffer B, Siedler F, Oesterhelt D (2009) Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus. BMC Microbiol 9:1. doi:10.1186/1471-2180-9-56

    Article  CAS  Google Scholar 

  17. Hou S, Freitas T, Larsen RW, Piatibratov M, Sivozhelezov V, Yamamoto A, Meleshkevitch EA, Zimmer M, Ordal GW, Alam M (2001) Globin-coupled sensors: a class of heme-containing sensors in archaea and bacteria. Proc Nat Acad Sci USA 98:9353–9358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhulin IB (2001) The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv Microb Physiol 45:157–198

    Article  CAS  PubMed  Google Scholar 

  19. InterPro Database. http://www.ebi.ac.uk/interpro. Accessed on 1 Feb 2017

  20. Ashby MK (2004) Survey of the number of two-component response regulator genes in the complete and annotated genome sequences of prokaryotes. FEMS Microbiol Lett 231:277–281

    Article  CAS  PubMed  Google Scholar 

  21. Lacal J, García-Fontana C, Muñoz-Martínez F, Ramos JL, Krell T (2010) Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environ Microbiol 12:2873–2884

    Article  CAS  PubMed  Google Scholar 

  22. Croxen MA, Sisson G, Melano R, Hoffman PS (2006) The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J Bacteriol 188:2656–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andermann TM, Chen YT, Ottemann KM (2002) Two predicted chemoreceptors of Helicobacter pylori promote stomach infection. Infect Immun 70:5877–5881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marchant J, Wren B, Ketley J (2002) Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis. Trends Microbiol 10:155–159

    Article  CAS  PubMed  Google Scholar 

  25. Blakemore R (1975) Magnetotactic Bacteria. Science 190:377–379

    Article  CAS  PubMed  Google Scholar 

  26. Zhu X, Ge X, Li N, Wu L-F, Luo C, Ouyang Q, Tu Y, Chen G (2014) Angle sensing in magnetotaxis of Magnetospirillum magneticum AMB-1. Integr Biol 6:706–713

    Article  CAS  Google Scholar 

  27. Alexander RP, Zhulin IB (2007) Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. Proc Nat Acad Sci USA 104:2885–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krell T, Lacal J, Muñoz-Martínez F, Reyes-Darias JA, Cadirci BH, García-Fontana C, Ramos JL (2011) Diversity at its best: bacterial taxis. Environ Microbiol 13:1115–1124

    Article  CAS  PubMed  Google Scholar 

  29. Alexandre G (2015) Chemotaxis in Azospirillum. In: Handbook for Azospirillum. Springer, Switzerland, pp 101–114

    Google Scholar 

  30. Yasuda M, Isawa T, Shinozaki S, Minamisawa K, Nakashita H (2009) Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599

    Article  CAS  PubMed  Google Scholar 

  31. Bi S, Lai L (2015) Bacterial chemoreceptors and chemoeffectors. Cell Mol Life Sci 72:691–708

    Article  CAS  PubMed  Google Scholar 

  32. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037

    Article  CAS  PubMed  Google Scholar 

  33. Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19

    Article  CAS  PubMed  Google Scholar 

  34. Liu YC, Machuca MA, Beckham SA, Gunzburg MJ, Roujeinikova A (2015) Structural basis for amino-acid recognition and transmembrane signalling by tandem Per-Arnt-Sim (tandem PAS) chemoreceptor sensory domains. Acta Crystallogr D Biol Crystallogr 71:2127–2136

    Article  CAS  PubMed  Google Scholar 

  35. Milburn MV, Prive GG, Milligan DL, Scott WG, Yeh J, Jancarik J, Koshland DE, Kim S-H (1991) Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science 254:5036

    Article  Google Scholar 

  36. Machuca MA, Liu YC, Beckham SA, Gunzburg MJ, Roujeinikova A (2016) The crystal structure of the tandem-PAS sensing domain of Campylobacter jejuni chemoreceptor Tlp1 suggests indirect mechanism of ligand recognition. J Struct Biol 194:205–213. doi:10.1016/j.jsb.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  37. Kossmann M, Wolff C, Manson M (1988) Maltose chemoreceptor of Escherichia coli: interaction of maltose-binding protein and the tar signal transducer. J Bacteriol 170:4516–4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Briegel A, Ortega DR, Tocheva EI, Wuichet K, Lia Z, Chen S, Muller A, Iancu CV, Murphy GE, Dobro MJ, Zhulin IB, Jensen GJ (2009) Universal architecture of bacterial chemoreceptor arrays. Proc Nat Acad Sci USA 106:17181–17186. doi:10.1073/pnas.09051811068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu J, Hu B, Morado DR, Jani S, Manson MD, Margolin W (2012) Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc Nat Acad Sci USA 109:E1481–E1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Endres RG, Wingreen NS (2006) Precise adaptation in bacterial chemotaxis through “assistance neighborhoods”. Proc Nat Acad Sci USA 103:13040–13044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Briegel A, Ladinsky MS, Oikonomou C, Jones CW, Harris MJ, Fowler DJ, Chang Y-W, Thompson LK, Armitage JP, Jensen GJ (2014) Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. Elife 3:e02151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wuichet K, Alexander RP, Zhulin IB (2007) Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Methods Enzymol 422:3–31

    Article  CAS  Google Scholar 

  43. Mise T (2016) Structural analysis of the ligand-binding domain of the aspartate receptor Tar from Escherichia coli. BioChemistry 55:3708–3713

    Article  CAS  PubMed  Google Scholar 

  44. Kim KK, Yokota H, Kim S-H (1999) Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400:787–792

    Article  CAS  PubMed  Google Scholar 

  45. Krikos A, Mutoh N, Boyd A, Simon MI (1983) Sensory transducers of E. coli are composed of discrete structural and functional domains. Cell 33:615–622

    Article  CAS  PubMed  Google Scholar 

  46. Sweeney EG, Henderson JN, Goers J, Wreden C, Hicks KG, Foster JK, Parthasarathy R, Remington SJ, Guillemin K (2012) Structure and proposed mechanism for the pH-sensing Helicobacter pylori chemoreceptor TlpB. Structure 20:1177–1188

    Article  PubMed Central  CAS  Google Scholar 

  47. Pokkuluri P, Pessanha M, Londer Y, Wood S, Duke N, Wilton R, Catarino T, Salgueiro C, Schiffer M (2008) Structures and solution properties of two novel periplasmic sensor domains with c-type heme from chemotaxis proteins of Geobacter sulfurreducens: implications for signal transduction. J Mol Biol 377:1498–1517

    Article  CAS  PubMed  Google Scholar 

  48. Yoshioka S, Kobayashi K, Yoshimura H, Uchida T, Kitagawa T, Aono S (2005) Biophysical properties of a c-type heme in chemotaxis signal transducer protein DcrA. BioChemistry 44:15406–15413

    Article  CAS  PubMed  Google Scholar 

  49. Upadhyay AA, Fleetwood AD, Adebali O, Finn RD, Zhulin IB (2016) Cache domains that are homologous to, but different from pas domains comprise the largest superfamily of extracellular sensors in prokaryotes. PLoS Comput Biol 12:e1004862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhang Z, Hendrickson WA (2010) Structural characterization of the predominant family of histidine kinase sensor domains. J Mol Biol 400:335–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pineda-Molina E, Reyes-Darias J-A, Lacal JA, Ramos JL, García-Ruiz JM, Gavira JA, Krell T (2012) Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites. Proc Nat Acad Sci USA 109:18926–18931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ortega Á, Krell T (2014) The HBM domain: introducing bimodularity to bacterial sensing. Protein Sci 23:332–336

    Article  PubMed  CAS  Google Scholar 

  53. Reinelt S, Hofmann E, Gerharz T, Bott M, Madden DR (2003) The structure of the periplasmic ligand-binding domain of the sensor kinase CitA reveals the first extracellular PAS domain. J Biol Chem 278:39189–39196

    Article  CAS  PubMed  Google Scholar 

  54. Brewster JL, McKellar JL, Finn TJ, Newman J, Peat TS, Gerth ML (2016) Structural basis for ligand recognition by a Cache chemosensory domain that mediates carboxylate sensing in Pseudomonas syringae. Sci Rep 6:35198. doi:10.1038/srep35198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu H, Kato J, Kuroda A, Ikeda T, Takiguchi N, Ohtake H (2000) Identification and characterization of two chemotactic transducers for inorganic phosphate in Pseudomonas aeruginosa. J Bacteriol 182:3400–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Watts KJ, Ma Q, Johnson MS, Taylor BL (2004) Interactions between the PAS and HAMP domains of the Escherichia coli aerotaxis receptor Aer. J Bacteriol 186:7440–7449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Key J, Hefti M, Purcell EB, Moffat K (2007) Structure of the redox sensor domain of Azotobacter vinelandii NifL at atomic resolution: signaling, dimerization, and mechanism. BioChemistry 46:3614–3623

    Article  CAS  PubMed  Google Scholar 

  58. Amin DN, Taylor BL, Johnson MS (2006) Topology and boundaries of the aerotaxis receptor Aer in the membrane of Escherichia coli. J Bacteriol 188:894–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brooun A, Bell J, Freitas T, Larsen RW, Alam M (1998) An archaeal aerotaxis transducer combines subunit I core structures of eukaryotic cytochrome c oxidase and eubacterial methyl-accepting chemotaxis proteins. J Bacteriol 180:1642–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hoff WD, Jung KH, Spudich JL (1997) Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct 26:223–258

    Article  CAS  PubMed  Google Scholar 

  61. Wu R, Gu M, Wilton R, Babnigg G, Kim Y, Pokkuluri P, Szurmant H, Joachimiak A, Schiffer M (2013) Insight into the sporulation phosphorelay: crystal structure of the sensor domain of Bacillus subtilis histidine kinase, KinD. Protein Sci 22:564–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fabret C, Feher VA, Hoch JA (1999) Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol 181:1975–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang W, Phillips GN (2003) Structure of the oxygen sensor in Bacillus subtilis: signal transduction of chemotaxis by control of symmetry. Structure 11:1097–1110

    Article  CAS  PubMed  Google Scholar 

  64. Pollard AM, Bilwes AM, Crane BR (2009) The structure of a soluble chemoreceptor suggests a mechanism for propagating conformational signals. BioChemistry 48:1936–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li X, Fleetwood AD, Bayas C, Bilwes AM, Ortega DR, Falke JJ, Zhulin IB, Crane BR (2013) The 3.2 Å resolution structure of a receptor: CheA:CheW signaling complex defines overlapping binding sites and key residue interactions within bacterial chemosensory arrays. BioChemistry 52:3852–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wadhams G, Martin AC, Porter S, Maddock J, Mantotta J, King H, Armitage J (2002) TlpC, a novel chemotaxis protein in Rhodobacter sphaeroides, localizes to a discrete region in the cytoplasm. Mol Microbiol 46:1211–1221

    Article  CAS  PubMed  Google Scholar 

  67. Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ, Crane BR (2012) Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc Nat Acad Sci USA 109:3766–3771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Briegel A, Ortega DR, Huang AN, Oikonomou CM, Gunsalus RP, Jensen GJ (2015) Structural conservation of chemotaxis machinery across Archaea and Bacteria. Environ Microbiol Rep 7:414–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sourjik V (2004) Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol 12:569–576

    Article  CAS  PubMed  Google Scholar 

  70. O’Connor JR, Kuwada NJ, Huangyutitham V, Wiggins PA, Harwood CS (2012) Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory-like system leading to c-di-GMP production. Mol Microbiol 86:720–729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Metlina A (2004) Bacterial and archaeal flagella as prokaryotic motility organelles. BioChemistry 69:1203–1212

    CAS  PubMed  Google Scholar 

  72. Maddock JR, Shapiro L (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717–1717

    Article  CAS  PubMed  Google Scholar 

  73. Ringgaard S, Schirner K, Davis BM, Waldor MK (2011) A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins. Genes Dev 25:1544–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chiu SW, Roberts MA, Leake MC, Armitage JP (2013) Positioning of chemosensory proteins and FtsZ through the Rhodobacter sphaeroides cell cycle. Mol Microbiol 90:322–337

    CAS  PubMed  Google Scholar 

  75. Jones CW, Armitage JP (2015) Positioning of bacterial chemoreceptors. Trends Microbiol 23:247–256

    Article  CAS  PubMed  Google Scholar 

  76. Ames P, Zhou Q, Parkinson JS (2014) HAMP domain structural determinants for signalling and sensory adaptation in Tsr, the Escherichia coli serine chemoreceptor. Mol Microbiol 91:875–886. doi:10.1111/mmi.12443

    Article  CAS  PubMed  Google Scholar 

  77. Stewart V (2014) The HAMP signal-conversion domain: static two-state or dynamic three-state? Mol Microbiol 91:853–857

    Article  CAS  PubMed  Google Scholar 

  78. Parkinson JS, Hazelbauer GL, Falke JJ (2015) Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol 23:257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Butler SL, Falke JJ (1998) Cysteine and disulfide scanning reveals two amphiphilic helices in the linker region of the aspartate chemoreceptor. BioChemistry 37:10746–10756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hulko M, Berndt F, Gruber M, Linder JU, Truffault V, Schultz A, Martin J, Schultz JE, Lupas AN, Coles M (2006) The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 126:929–940

    Article  CAS  PubMed  Google Scholar 

  81. Airola MV, Sukomon N, Samanta D, Borbat PP, Freed JH, Watts KJ, Crane BR (2013) HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 11:e1001479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Appleman JA, Stewart V (2003) Mutational analysis of a conserved signal-transducing element: the HAMP linker of the Escherichia coli nitrate sensor NarX. J Bacteriol 185:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dunin-Horkawicz S, Lupas AN (2010) Comprehensive analysis of HAMP domains: implications for transmembrane signal transduction. J Mol Biol 397:1156–1174

    Article  CAS  PubMed  Google Scholar 

  84. Ma Q, Johnson MS, Taylor BL (2005) Genetic analysis of the HAMP domain of the Aer aerotaxis sensor localizes flavin adenine dinucleotide-binding determinants to the AS-2 helix. J Bacteriol 187:193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou Q, Ames P, Parkinson JS (2011) Biphasic control logic of HAMP domain signalling in the Escherichia coli serine chemoreceptor. Mol Microbiol 80:596–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Terwilliger T, Wang JY, Koshland D (1986) Kinetics of receptor modification. The multiply methylated aspartate receptors involved in bacterial chemotaxis. J Biol Chem 261:10814–10820

    CAS  PubMed  Google Scholar 

  87. Sherris D, Parkinson JS (1981) Posttranslational processing of methyl-accepting chemotaxis proteins in Escherichia coli. Proc Nat Acad Sci USA 78:6051–6055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kristich CJ, Ordal GW (2002) Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis. J Biol Chem 277:25356–25362

    Article  CAS  PubMed  Google Scholar 

  89. Callahan A, Parkinson JS (1985) Genetics of methyl-accepting chemotaxis proteins in Escherichia coli: cheD mutations affect the structure and function of the Tsr transducer. J Bacteriol 161:96–104

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Pérez-Rueda E, Collado-Vides J, Segovia L (2004) Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea. Comput Biol Chem 28:341–350

    Article  PubMed  CAS  Google Scholar 

  91. Perez E, Zheng H, Stock AM (2006) Identification of methylation sites in Thermotoga maritima chemotaxis receptors. J Bacteriol 188:4093–4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ortega DR, Yang C, Ames P, Baudry J, Parkinson JS, Zhulin IB (2013) A phenylalanine rotameric switch for signal-state control in bacterial chemoreceptors. Nat Commun 4:2881. doi:10.1038/ncomms3881

  93. Mowery P, Ostler JB, Parkinson JS (2008) Different signaling roles of two conserved residues in the cytoplasmic hairpin tip of Tsr, the Escherichia coli serine chemoreceptor. J Bacteriol 190:8065–8074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pedetta A, Parkinson JS, Studdert CA (2014) Signalling-dependent interactions between the kinase-coupling protein CheW and chemoreceptors in living cells. Mol Microbiol 93:1144–1155

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Piasta KN, Ulliman CJ, Slivka PF, Crane BR, Falke JJ (2013) Defining a key receptor–CheA kinase contact and elucidating its function in the membrane-bound bacterial chemosensory array: a disulfide mapping and TAM-IDS Study. BioChemistry 52:3866–3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Falke JJ, Hazelbauer GL (2001) Transmembrane signaling in bacterial chemoreceptors. Trends Biochem Sci 26:257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ames P, Hunter S, Parkinson JS (2016) Evidence for a helix-clutch mechanism of transmembrane signaling in a bacterial chemoreceptor. J Mol Biol 428:3776–3788. doi:10.1016/j.jmb.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  98. Zhou Qea (2009) Mutational analyses of HAMP helices suggest a dynamic bundle model of input–output signalling in chemoreceptors. Mol Microbiol 73:801–814

    Article  CAS  Google Scholar 

  99. Park H, Im W, Seok C (2011) Transmembrane signaling of chemotaxis receptor Tar: insights from molecular dynamics simulation studies. Biophys J 100:2955–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Coleman MD, Bass R, Mehan RS, Falke JJ (2005) Conserved glycine residues in the cytoplasmic domain of the aspartate receptor play essential roles in kinase coupling and on–off switching. BioChemistry 44:7687–7695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Szurmant H, Ordal GW (2004) Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev 68:301–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA (1997) The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 13:457–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ottemann KM, Lowenthal AC (2002) Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect Immun 70:1984–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  CAS  PubMed  Google Scholar 

  105. Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA (2007) Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc Nat Acad Sci USA 104:10282–10287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stocker R, Seymour JR (2012) Ecology and physics of bacterial chemotaxis in the ocean. Microbiol Mol Biol Rev 76:792–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brennan CA, DeLoney-Marino CR, Mandel MJ (2013) Chemoreceptor VfcA mediates amino acid chemotaxis in Vibrio fischeri. Appl Environ Microbiol 79:1889–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shao Z, Wang W (2013) Enzymes and genes involved in aerobic alkane degradation. Front Microbiol 4:116. doi:10.3389/fmicb.2013.00116

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Roujeinikova.

Ethics declarations

Conflict of interest

The authors have no conflict interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah Ud-Din, A.I.M., Roujeinikova, A. Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Cell. Mol. Life Sci. 74, 3293–3303 (2017). https://doi.org/10.1007/s00018-017-2514-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2514-0

Keywords

Navigation