Cellular and Molecular Life Sciences

, Volume 74, Issue 14, pp 2613–2625 | Cite as

Emerging Role of MicroRNAs in mTOR Signaling

  • Yanjie ZhangEmail author
  • Bo Huang
  • Hui-Yun Wang
  • Augustus Chang
  • X. F. Steven ZhengEmail author


Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase that plays a critical role in the control of cellular growth and metabolism. Hyperactivation of mTOR pathway is common in human cancers, driving uncontrolled proliferation. MicroRNA (miRNA) is a class of short noncoding RNAs that regulate the expression of a wide variety of genes. Deregulation of miRNAs is a hallmark of cancer. Recent studies have revealed interplays between miRNAs and the mTOR pathway during cancer development. Such interactions appear to provide a fine-tuning of various cellular functions and contribute qualitatively to the behavior of cancer. Here we provide an overview of current knowledge regarding the reciprocal relationship between miRNAs and mTOR pathway: regulation of mTOR signaling by miRNAs and control of miRNA biogenesis by mTOR. Further research in this area may prove important for the diagnosis and therapy of human cancer.


mTOR MicroRNA Cancer Cell signaling pathway Biomarker 



Adenosine 5′-monophosphate-activated protein kinase


Brain-derived neurotrophic factor


DNA damage-inducible transcript 4


eIF4E-binding protein 1


Insulin-like growth factor 1/insulin-like growth factor 1 receptor


IkB kinaseβ


Insulin receptor substrate


Liver kinase B1




Mechanistic/mammalian target of rapamycin


mTOR complex 1/2


70 kDa ribosomal protein S6 kinase


Programmed cell death 4


Phosphoinositide 3-kinase


Proline-rich AKT substrate 40 kDa


Phosphatase and tensin homolog


Ras homology enriched in brain


Signal transducer and activator of transcription 3


Tuberous sclerosis 1/2


Vascular Endothelial Growth Factor



Related work in authors’ laboratories was supported by NIH R01 Grants CA123391, CA166575, and CA173519, the National Natural Science Foundation of China 81672354, 81372600, 81572440, and Shanghai Pujiang Program 15PJ1404900.


  1. 1.
    Meng L-H, Zheng XS (2015) Toward rapamycin analog (rapalog)-based precision cancer therapy. Acta Pharmacol Sin 36(10):1163–1169PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Zhang Y et al (2015) PP2AC level determines differential programming of p38-TSC-mTOR signaling and therapeutic response to p38-targeted therapy in colorectal cancer. EBioMedicine 2(12):1944–1956PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Tsang CK et al (2007) Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today 12(3):112–124PubMedCrossRefGoogle Scholar
  4. 4.
    Luo J, Cantley LC (2005) Then negative regulation of phosphoinositide 3-kinase signaling by p85 and its implication in cancer. Cell Cycle 4(10):1309–1312PubMedCrossRefGoogle Scholar
  5. 5.
    Yu J et al (1998) Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 18(3):1379–1387PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Xiao L et al (2010) Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation. Cell Death Differ 17(9):1448–1462PubMedCrossRefGoogle Scholar
  7. 7.
    Wang B, Wang H, Yang Z (2012) MiR-122 inhibits cell proliferation and tumorigenesis of breast cancer by targeting IGF1R. PLoS ONE 7(10):e47053PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    SK P et al (2012) Novel therapies for metastatic renal cell carcinoma: efforts to expand beyond the VEGF/mTOR signaling paradigm. Mol Cancer Ther 11(3):526–537CrossRefGoogle Scholar
  9. 9.
    Ma PC et al (2005) A selective small molecule c-MET Inhibitor, PHA665752, cooperates with rapamycin. Clinical cancer research 11(6):2312–2319PubMedCrossRefGoogle Scholar
  10. 10.
    Imam JS et al (2012) Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization. PLoS ONE 7(12):e52397PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Fu X et al (2012) Involvement of microRNA-93, a new regulator of PTEN/Akt signaling pathway, in regulation of chemotherapeutic drug cisplatin chemosensitivity in ovarian cancer cells. FEBS Lett 586(9):1279–1286PubMedCrossRefGoogle Scholar
  12. 12.
    Leite KR et al (2013) MicroRNA 100: a context dependent miRNA in prostate cancer. Clinics 68(6):797–802PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wang D et al (2012) Leptin regulates proliferation and apoptosis of colorectal carcinoma through PI3K/Akt/mTOR signalling pathway. J Biosci 37(1):91–101PubMedCrossRefGoogle Scholar
  14. 14.
    Dienstmann R et al (2014) Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol Cancer Ther 13(5):1021–1031PubMedCrossRefGoogle Scholar
  15. 15.
    Bornachea O et al (2012) EMT and induction of miR-21 mediate metastasis development in Trp53-deficient tumours. Sci Rep 2:434PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Pineau P et al (2010) miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci USA 107(1):264–269PubMedCrossRefGoogle Scholar
  17. 17.
    Bera A et al (2014) microRNA-21-induced dissociation of PDCD4 from rictor contributes to Akt-IKKbeta-mTORC1 axis to regulate renal cancer cell invasion. Exp Cell Res 328(1):99–117PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lee DF et al (2008) IKKβ suppression of TSC1 function links the mTOR pathway with insulin resistance. Int J Mol Med 22(5):633–638PubMedPubMedCentralGoogle Scholar
  19. 19.
    Thomas JD et al (2014) Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell 26(5):754–769PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zhang Y-J, Duan Y, Zheng XS (2011) Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. Drug Discov Today 16(7):325–331PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20Google Scholar
  22. 22.
    Banzhaf-Strathmann J, Edbauer D (2014) Good guy or bad guy: the opposing roles of microRNA 125b in cancer. Cell Commun Signal 12(1):1CrossRefGoogle Scholar
  23. 23.
    Sato T et al (2010) Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene 29(18):2746–2752PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Volinia S et al. (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ye P et al (2015) An mTORC1-Mdm2-Drosha axis for miRNA biogenesis in response to glucose- and amino acid-deprivation. Mol Cell 57(4):708–720PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kefas B et al (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68(10):3566–3572PubMedCrossRefGoogle Scholar
  27. 27.
    Glover AR et al (2015) microRNA-7 as a tumor suppressor and novel therapeutic for adrenocortical carcinoma. Oncotarget 6(34):36675–36688PubMedPubMedCentralGoogle Scholar
  28. 28.
    Fang Y et al (2012) MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology 55(6):1852–1862PubMedCrossRefGoogle Scholar
  29. 29.
    Jin Y et al (2013) MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing. PLoS ONE 8(5):e64434PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Wang FZ et al (2008) Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J Virol 82(18):9065–9074PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Li W et al (2015) miRNA-99b-5p suppresses liver metastasis of colorectal cancer by down-regulating mTOR. Oncotarget 6(27):24448PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Sun J et al (2013) MicroRNA-99a/100 promotes apoptosis by targeting mTOR in human esophageal squamous cell carcinoma. Med Oncol 30(1):1–9Google Scholar
  33. 33.
    Zhang N et al (2014) MicroRNA-100 promotes migration and invasion through mammalian target of rapamycin in esophageal squamous cell carcinoma. Oncol Rep 32(4):1409–1418PubMedGoogle Scholar
  34. 34.
    Nagaraja AK et al (2010) A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 24(2):447–463PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wang L et al (2014) miR-99a and – 99b inhibit cervical cancer cell proliferation and invasion by targeting mTOR signaling pathway. Med Oncol 31(5):1–8Google Scholar
  36. 36.
    Hu Y, Zhu Q, Tang L (2014) MiR-99a antitumor activity in human breast cancer cells through targeting of mTOR expression. PLoS ONE 9(3):e92099PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sun D et al (2011) miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res 71(4):1313–1324PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Xu C et al (2013) miRNA-100 inhibits human bladder urothelial carcinogenesis by directly targeting mTOR. Mol Cancer Ther 12(2):207–219PubMedCrossRefGoogle Scholar
  39. 39.
    Doghman M et al (2010) Regulation of insulin-like growth factor–mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors. Cancer Res 70(11):4666–4675PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zhao J. et al. (2016) Aberrant expression of microrna-99a and its target gene mTOr associated with malignant progression and poor prognosis in patients with osteosarcoma. Onco Target Therapy 9:1589CrossRefGoogle Scholar
  41. 41.
    Oneyama C et al (2011) MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways. Oncogene 30(32):3489–3501PubMedCrossRefGoogle Scholar
  42. 42.
    Chen Z et al (2012) Down-regulation of the microRNA-99 family members in head and neck squamous cell carcinoma. Oral Oncol 48(8):686–691PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Li D et al (2011) MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. J Biol Chem 286(42):36677–36685PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Li Y et al (2016) A dual PI3K/AKT/mTOR signaling inhibitor miR-99a suppresses endometrial carcinoma. Am J Transl Res 8(2):719PubMedPubMedCentralGoogle Scholar
  45. 45.
    Yu S et al (2015) miR-99a suppresses the metastasis of human non-small cell lung cancer cells by targeting AKT1 signaling pathway †. J Cell Biochem 116(2):268–276PubMedCrossRefGoogle Scholar
  46. 46.
    Gui T, Shen K (2012) miRNA-101: a potential target for tumor therapy. Cancer Epidemiol 36(6):537–540PubMedCrossRefGoogle Scholar
  47. 47.
    Lin S. et al. (2014) Effect of microRNA-101 on proliferation and apoptosis of human osteosarcoma cells by targeting mTOR. J Huazhong Univ Sci Technol [Med Sci] 34:889–895.CrossRefGoogle Scholar
  48. 48.
    Merkel O et al (2010) Identification of differential and functionally active miRNAs in both anaplastic lymphoma kinase (ALK) + and ALK–anaplastic large-cell lymphoma. Proc Natl Acad Sci 107(37):16228–16233PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bai S et al (2009) MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem 284(46):32015–32027PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Yang YM et al (2015) Gα12 overexpressed in hepatocellular carcinoma reduces microRNA-122 expression via HNF4α inactivation, which causes c-Met induction. Oncotarget 6(22):19055PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Meister J, Schmidt MH (2010) miR-126 and miR-126*: new players in cancer. Sci World J 10:2090–2100CrossRefGoogle Scholar
  52. 52.
    Banerjee N et al (2013) Pomegranate polyphenolics suppressed azoxymethane-induced colorectal aberrant crypt foci and inflammation: possible role of miR-126/VCAM-1 and miR-126/PI3K/AKT/mTOR. Carcinogenesis 34(12):2814–2822PubMedCrossRefGoogle Scholar
  53. 53.
    Guo C et al (2008) The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosom Cancer 47(11):939–946PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lei Y et al. (2015) Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. RNA Dis 2(1):31Google Scholar
  55. 55.
    Wang Y et al (2012) MicroRNA-149 inhibits proliferation and cell cycle progression through the targeting of ZBTB2 in human gastric cancer. PLoS ONE 7(10):e41693PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lin RJ, Lin YC, Yu AL (2010) miR-149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Mol Carcinog 49(8):719–727PubMedGoogle Scholar
  57. 57.
    Pan S et al (2012) MicroRNA-149 inhibits proliferation and invasion of glioma cells via blockade of AKT1 signaling. Int J Immunopathol Pharmacol 25(4):871–881PubMedCrossRefGoogle Scholar
  58. 58.
    Xue L et al (2015) Low MiR-149 expression is associated with unfavorable prognosis and enhanced Akt/mTOR signaling in glioma. Int J Clin Exp Pathol 8(9):11178PubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhang Y et al (2014) Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway. Mol Cancer 13(1):1CrossRefGoogle Scholar
  60. 60.
    Faraoni I et al. (2009) miR-155 gene: a typical multifunctional microRNA. Biochimica et Biophysica Acta 1792(6): p. 497–505.PubMedCrossRefGoogle Scholar
  61. 61.
    Wang J et al (2013) MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog 9(10):e1003697PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Martin EC et al (2014) microRNA regulation of mammalian target of rapamycin expression and activity controls estrogen receptor function and RAD001 sensitivity. Mol Cancer 13(1):1CrossRefGoogle Scholar
  63. 63.
    Wan G et al (2014) Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway. Autophagy 10(1):70–79PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Yu T et al (2015) MicroRNA-193a-3p and-5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene 34(4):413–423PubMedCrossRefGoogle Scholar
  65. 65.
    Wu D et al (2013) MicroRNA-199a-3p regulates endometrial cancer cell proliferation by targeting mammalian target of rapamycin (mTOR). Int J Gynecol Cancer 23(7):1191–1197PubMedCrossRefGoogle Scholar
  66. 66.
    Shen L et al (2015) MicroRNA-199a-3p suppresses glioma cell proliferation by regulating the AKT/mTOR signaling pathway. Tumor Biol 36(9):6929–6938CrossRefGoogle Scholar
  67. 67.
    Duan Z et al (2011) MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol Cancer Ther 10(8):1337–1345PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Fornari F et al (2010) MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 70(12):5184–5193PubMedCrossRefGoogle Scholar
  69. 69.
    Li G et al. (2011) Role of miR-204 in the regulation of apoptosis, endoplasmic reticulum stress response, and inflammation in human trabecular meshwork cells. Investig Ophthalmol Vis Sci 52(6):2999–3007CrossRefGoogle Scholar
  70. 70.
    Cui R-R et al. (2012) MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo. Cardiovasc Res 2012:cvs258Google Scholar
  71. 71.
    Xia Z et al (2015) Decreased expression of MiRNA-204-5p contributes to glioma progression and promotes glioma cell growth, migration and invasion. PLoS ONE 10(7):e0132399PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Yu X et al (2015) MiR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy. Mol Cancer 14(1):1CrossRefGoogle Scholar
  73. 73.
    Das F et al. (2016) microRNA-214 reduces IGF-1 receptor expression and downstream mTORC1 signaling in renal carcinoma cells. J Biol Chem 2016:jbc. M115. 694331Google Scholar
  74. 74.
    Lu, Y.-f. et al (2015) MiR-218 mediates tumorigenesis and metastasis: perspectives and implications. Exp Cell Res 334(1):173–182PubMedCrossRefGoogle Scholar
  75. 75.
    Zhang X et al (2015) miR-218 inhibits the invasion and migration of colon cancer cells by targeting the PI3K/Akt/mTOR signaling pathway. Int J Mol Med 35(5):1301–1308PubMedGoogle Scholar
  76. 76.
    Tian H et al (2015) miR-218 suppresses tumor growth and enhances the chemosensitivity of esophageal squamous cell carcinoma to cisplatin. Oncol Rep 33(2):981–989PubMedGoogle Scholar
  77. 77.
    Li J, Ping Z, Ning H (2012) MiR-218 impairs tumor growth and increases chemo-sensitivity to cisplatin in cervical cancer. Int J Mol Sci 13(12):16053–16064PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Uesugi A et al. (2011) The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res, 2011:canres. 0368.2011Google Scholar
  79. 79.
    Shi J (2016) Considering exosomal miR-21 as a biomarker for cancer. J Clin Med 5(4):42PubMedCentralCrossRefGoogle Scholar
  80. 80.
    Fragni M et al. (2016) The miR-21/PTEN/Akt signaling pathway is involved in the anti-tumoral effects of zoledronic acid in human breast cancer cell lines. Naunyn-Schmiedeberg’s Arch Pharmacol 389(5):529–538CrossRefGoogle Scholar
  81. 81.
    Li X et al (2016) Triptolide reduces proliferation and enhances apoptosis of human non-small cell lung cancer cells through PTEN by targeting miR-21. Mol Med Rep 13(3):2763–2768PubMedGoogle Scholar
  82. 82.
    Kalogirou C et al (2015) Metformin-derived growth inhibition in renal cell carcinoma depends on miR-21-mediated PTEN expression. Urol Int 96(1):106–115PubMedCrossRefGoogle Scholar
  83. 83.
    Li L-Q et al (2012) Matrine inhibits breast cancer growth via miR-21/PTEN/Akt pathway in MCF-7 cells. Cell Physiol Biochem 30(3):631–641PubMedCrossRefGoogle Scholar
  84. 84.
    Chen J, Xu T, Chen C (2015) The critical roles of miR-21 in anti-cancer effects of curcumin. Ann Transl Med 3(21):330PubMedPubMedCentralGoogle Scholar
  85. 85.
    Zhou L et al. (2014) MicroRNA-21 is involved in X-ray irradiation resistance in K562 leukaemia cells. Hematology 20(6):343–348PubMedCrossRefGoogle Scholar
  86. 86.
    Ma Y et al (2014) Silencing miR-21 sensitizes non-small cell lung cancer A549 cells to ionizing radiation through inhibition of PI3K/Akt. Biomed Res Int 2014(2):617868–617868PubMedPubMedCentralGoogle Scholar
  87. 87.
    Yu X et al (2016) Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells. Biomed Pharmacother 77:37–44PubMedCrossRefGoogle Scholar
  88. 88.
    He C et al (2015) MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget 6(30):28867PubMedPubMedCentralGoogle Scholar
  89. 89.
    Yang Z et al (2015) Modulation of NF-κB/miR-21/PTEN pathway sensitizes non-small cell lung cancer to cisplatin. PLoS ONE 10(3):e0121547PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Yang, S.-m. et al (2013) miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology 306:162–168PubMedCrossRefGoogle Scholar
  91. 91.
    Wang W-Z et al (2014) Targeting miR-21 sensitizes Ph + ALL Sup-b15 cells to imatinib-induced apoptosis through upregulation of PTEN. Biochem Biophys Res Commun 454(3):423–428PubMedCrossRefGoogle Scholar
  92. 92.
    Shen H et al (2014) Alteration in Mir-21/PTEN expression modulates gefitinib resistance in non-small cell lung cancer. PLoS ONE 9(7):e103305PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Go H et al (2015) MicroRNA-21 plays an oncogenic role by targeting FOXO1 and activating the PI3K/AKT pathway in diffuse large B-cell lymphoma. Oncotarget 6(17):15035PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Bai H et al. (2011) Involvement of miR-21 in resistance to daunorubicin by regulating PTEN expression in the leukaemia K562 cell line. FEBS Lett 585(2):402–408PubMedCrossRefGoogle Scholar
  95. 95.
    Li B et al (2014) MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer 83(2):146–153PubMedCrossRefGoogle Scholar
  96. 96.
    Bai H et al (2013) MicroRNA-21 regulates the sensitivity of diffuse large B-cell lymphoma cells to the CHOP chemotherapy regimen. Int J Hematol 97(2):223–231PubMedCrossRefGoogle Scholar
  97. 97.
    Toste PA et al (2015) p85α is a microRNA target and affects chemosensitivity in pancreatic cancer. J Surg Res 196(2):285–293PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yan L-X et al (2016) PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol 48(2):471–484PubMedGoogle Scholar
  99. 99.
    Zhen, Y., et al. (2016) Reduced PDCD4 expression promotes cell growth through PI3K/Akt signaling in non-small cell lung cancer. Oncol Res Featur Preclin Clin Cancer Ther 23(1–2):61–68Google Scholar
  100. 100.
    Kawano M et al (2015) microRNA-93 promotes cell proliferation via targeting of PTEN in Osteosarcoma cells. J Exp Clin Cancer Res 34(1):1CrossRefGoogle Scholar
  101. 101.
    Jiang L et al (2015) miR-93 promotes cell proliferation in gliomas through activation of PI3K/Akt signaling pathway. Oncotarget 6(10):8286PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Ohta K et al (2015) MicroRNA-93 activates c-Met/PI3K/Akt pathway activity in hepatocellular carcinoma by directly inhibiting PTEN and CDKN1A. Oncotarget 6(5):3211PubMedCrossRefGoogle Scholar
  103. 103.
    Chen Q et al (2015) Berberine sensitizes human ovarian cancer cells to cisplatin through mir-93/pten/akt signaling pathway. Cell Physiol Biochem 36(3):956–965PubMedCrossRefGoogle Scholar
  104. 104.
    Zhang W et al (2015) Autocrine/paracrine human growth hormone-stimulated MicroRNA 96-182-183 cluster promotes epithelial-mesenchymal transition and invasion in breast cancer. J Biol Chem 290(22):13812–13829PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Feng J et al (2014) HERG1 functions as an oncogene in pancreatic cancer and is downregulated by miR-96. Oncotarget 5(14):5832–5844PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Leung WK et al (2015) Wnt/β-Catenin activates MiR-183/96/182 expression in hepatocellular carcinoma that promotes cell invasion. Cancer Lett 362(1):97–105PubMedCrossRefGoogle Scholar
  107. 107.
    Chong ZZ (2016) Targeting PRAS40 for multiple diseases. Drug Discov Today 21(8):1222–1231PubMedCrossRefGoogle Scholar
  108. 108.
    Siu M et al. (2014) Transforming growth factor-β promotes prostate bone metastasis through induction of microRNA-96 and activation of the mTOR pathway. Oncogene 34(36):4767–4776PubMedCrossRefGoogle Scholar
  109. 109.
    Sun Y-M, Lin K-Y, Chen Y-Q (2013) Diverse functions of miR-125 family in different cell contexts. J Hematol Oncol 6(1):1CrossRefGoogle Scholar
  110. 110.
    Astanehe A et al (2008) Mechanisms underlying p53 regulation of PIK3CA transcription in ovarian surface epithelium and in ovarian cancer. J Cell Sci 121(5):664–674PubMedCrossRefGoogle Scholar
  111. 111.
    Singh B et al. (2002) p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev 16(8):984–993PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Vilquin P et al (2015) MicroRNA-125b upregulation confers aromatase inhibitor resistance and is a novel marker of poor prognosis in breast cancer. Breast Cancer Res 17(1):1CrossRefGoogle Scholar
  113. 113.
    Jian B et al. (2016) Downregulation of microRNA-193-3p inhibits tumor proliferation migration and chemoresistance in human gastric cancer by regulating PTEN gene. Tumor Biol 37:1–9CrossRefGoogle Scholar
  114. 114.
    Garofalo M et al (2012) miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med 12(1):27–33PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    DeYoung MP et al.(2008) Hypoxia regulates TSC1/2–mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22(2):239–251.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Mahlamäki EH et al (2002) Frequent amplification of 8q24, 11q, 17q, and 20q-specific genes in pancreatic cancer. Genes Chromosom Cancer 35(4):353–358PubMedCrossRefGoogle Scholar
  117. 117.
    Varis A et al (2002) Targets of gene amplification and overexpression at 17q in gastric cancer. Cancer Res 62(9):2625–2629PubMedGoogle Scholar
  118. 118.
    Du J et al (2015) MicroRNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma. Oncotarget 6(17):14993PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Chen M-B et al (2014) MicroRNA-451 regulates AMPK/mTORC1 signaling and fascin1 expression in HT-29 colorectal cancer. Cell Signal 26(1):102–109PubMedCrossRefGoogle Scholar
  120. 120.
    Godlewski J et al (2010) MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37(5):620–632PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Totary-Jain H et al (2013) Reprogramming of the microRNA transcriptome mediates resistance to rapamycin. J Biol Chem 288(9):6034–6044PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Fang R et al (2012) MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem 287(27):23227–23235PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Sun Y et al (2010) Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J Cell Biol 189(7):1157–1169PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Ge Y, Sun Y, Chen J (2011) IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol 192(1):69–81PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Zhu H et al (2011) The Lin28/let-7 axis regulates glucose metabolism. Cell 147(1):81–94PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Kumar L, Haque R, Nazir A (2016) Role of microRNA Let-7 in modulating multifactorial aspect of neurodegenerative diseases: an overview. Mol Neurobiol 53(5):2787–2793PubMedCrossRefGoogle Scholar
  127. 127.
    Wu L et al (2015) Precise let-7 expression levels balance organ regeneration against tumor suppression. Elife 4:e09431PubMedPubMedCentralGoogle Scholar
  128. 128.
    Dubinsky AN et al (2014) Let-7 coordinately suppresses components of the amino acid sensing pathway to repress mTORC1 and induce autophagy. Cell Metab 20(4):626–638PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Orellana EA, Kasinski AL (2015) MicroRNAs in cancer: a historical perspective on the path from discovery to therapy. Cancers 7(3):1388–1405PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Oncology Department, Shanghai Ninth People’s HospitalShanghai Jiaotong University School of MedicineShanghaiChina
  2. 2.State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat-Sen University Cancer CenterGuangzhouChina
  3. 3.Rutgers Robert Wood Johnson Medical SchoolPiscatawayUSA
  4. 4.Rutgers Cancer Institute of New Jersey, RutgersThe State University of New JerseyNew BrunswickUSA

Personalised recommendations