Cellular and Molecular Life Sciences

, Volume 74, Issue 13, pp 2451–2466 | Cite as

On glioblastoma and the search for a cure: where do we stand?

  • John BiancoEmail author
  • Chiara Bastiancich
  • Aleksander Jankovski
  • Anne des Rieux
  • Véronique PréatEmail author
  • Fabienne Danhier


Although brain tumours have been documented and recorded since the nineteenth century, 2016 marked 90 years since Percival Bailey and Harvey Cushing coined the term “glioblastoma multiforme”. Since that time, although extensive developments in diagnosis and treatment have been made, relatively little improvement on prognosis has been achieved. The resilience of GBM thus makes treating this tumour one of the biggest challenges currently faced by neuro-oncology. Aggressive and robust development, coupled with difficulties of complete resection, drug delivery and therapeutic resistance to treatment are some of the main issues that this nemesis presents today. Current treatments are far from satisfactory with poor prognosis, and focus on palliative management rather than curative intervention. However, therapeutic research leading to developments in novel treatment stratagems show promise in combating this disease. Here we present a review on GBM, looking at the history and advances which have shaped neurosurgery over the last century that cumulate to the present day management of GBM, while also exploring future perspectives in treatment options that could lead to new treatments on the road to a cure.


Glioblastoma multiforme Therapeutic resistance Drug delivery Cancer stem cells 



Blood brain barrier






Convection enhanced delivery


Central nervous system


Cancer Stem Cells


Deoxyribonucleic acid


Epidermal Growth Factor Receptor


US Food and Drug Administration




O 6-methylguanine-DNA-methyltransferase


Magnetic resonance imaging


Poly ADP ribose polymerase


Poly ADP ribose polymerase inhibitors


Tumour suppressor protein 53




Small interfering Ribonucleic Acid





The authors are recipients of subsidies from the Fonds National de la Recherche Scientifique (FNRS), the Fonds Spéciaux de Recherche Scientifique (FSR, UCL), as well as the BEWARE Academia Programme (COFUND). The authors would also like to thank Professor Samuel H. Greenblatt for personal communication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.


  1. 1.
    Jones E (1999) Colgi, Cajal and the neuron doctrine. J Hist Neurosci 8(2):170–178PubMedCrossRefGoogle Scholar
  2. 2.
    Bock O (2013) Cajal, Golgi, Nansen, Schäfer and the neuron doctrine. Endeavour 37(4):228–234PubMedCrossRefGoogle Scholar
  3. 3.
    DeAngelis L, Mellinghoff I (2011) Virchow 2011 or how to ID(H) human glioblastoma. J Clin Oncol 29(34):4473–4474PubMedCrossRefGoogle Scholar
  4. 4.
    Scherer H (1940) A critical review: the pathology of cerebral gliomas. J Neurol. Psychiatry 3(2):147–177Google Scholar
  5. 5.
    Baker Fn (1993) The Massachusetts General Hospital. Early history and neurosurgery to 1939. J Neurosurg 79(6):948–959CrossRefGoogle Scholar
  6. 6.
    Lister J (1867) On the antiseptic principle in the practice of surgery. The British Medical Journal 2:246–248PubMedCrossRefGoogle Scholar
  7. 7.
    Kerr P, Caputy A, Horwitz N (2005) A history of cerebral localization. Neurosurg Focus 18 (4):e1PubMedCrossRefGoogle Scholar
  8. 8.
    Greenblatt S (1997) The crucial decade: modern neurosurgery’s definitive development in Harvey Cushing’s early research and practice, 1900 to 1910. J Neurosurg 87(6):964–971PubMedCrossRefGoogle Scholar
  9. 9.
    Macewen W (1881) Intra-cranial lesions: illustrating some points in connexion with the localisation of cerebral affections and the advantages of antiseptic trephining. Lancet 118(3031):581–583CrossRefGoogle Scholar
  10. 10.
    Greenblatt S (2007) A surgeon for the brain. Brain 130(1):303–306CrossRefGoogle Scholar
  11. 11.
    Macewen W (1879) Tumour of the dura mater; convulsions; removal of tumour by trephining; recovery. Glasgow Med J 12:208–213Google Scholar
  12. 12.
    Bennet A, Godlee R (1885) Case of a cerebral tumour. Med Chir Trans 68:243–275CrossRefGoogle Scholar
  13. 13.
    Kirkpatrick D (1984) The first primary brain-tumor operation. J Neurosurg 61(5):809–813PubMedCrossRefGoogle Scholar
  14. 14.
    Greenblatt S (2003) Harvey Cushing’s paradigmatic contribution to neurosurgery and the evolution of his thoughts about specialization. Bull Hist Med 77(4):789–822PubMedCrossRefGoogle Scholar
  15. 15.
    Horsley V (1887) Remarks on ten consecutive cases of operations upon the brain and cranial cavity to illustrate the details and safety of the method employed. Br Med J 1(1373):863–865PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Horsley V (1886) Brain surgery. Br Med J 2(1345):670–675CrossRefGoogle Scholar
  17. 17.
    Tan T, Black P (2002) Sir Victor Horsley (1857–1916): pioneer of neurological surgery. Neurosurgery 50(3):607–611PubMedGoogle Scholar
  18. 18.
    Toledo-Pereyra L (2009) X-rays surgical revolution. J Invest Surg 22(5):327–332PubMedCrossRefGoogle Scholar
  19. 19.
    Voorhees J, Cohen-Gadol A, Spencer D (2005) Early evolution of neurological surgery: conquering increased intracranial pressure, infection, and blood loss. Neurosurg Focus 18(4):e2PubMedCrossRefGoogle Scholar
  20. 20.
    Dandy W (1918) Ventriculography following the injection of air into the cerebral ventricles. Ann Surg 68(1):5–11PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ferguson S, Lesniak M (2005) Percival Bailey and the classification of brain tumors. Neurosurg Focus 18(4):e7PubMedCrossRefGoogle Scholar
  22. 22.
    Bailey O (1985) Genesis of the Percival Bailey-Cushing classification of gliomas. Pediatr Neurosci 12(4–5):261–265PubMedGoogle Scholar
  23. 23.
    Globus J, Strauss I (1925) Spongioblastoma multiforme. A primary malignant from of brain neoplasm: its clinical and anatomic features. Arch Neurol Psychiatr 14 (2):139–191Google Scholar
  24. 24.
    Bailey P, Cushing H (1925) Medulloblastoma Cerebelli. A common type of midcerebellar glioma of childhood. Arch Neurol Psychiatr 14 (2):192–224CrossRefGoogle Scholar
  25. 25.
    Bailey P, Cushing H (1926) A classification of the tumors of the Glioma group on histogenetic basis with correlated study of prognosis. JB Lipponcott, PhiladelphiaGoogle Scholar
  26. 26.
    Scheithauer B (2008) Development of the WHO classification of tumors of the central nervous system: a historical perspective. Brain Pathol 19(4):551–564CrossRefGoogle Scholar
  27. 27.
    Canale D, Longo L (1990) Harvey Cushing and pediatric neurosurgery. Neurosurgery 27(4):602–610PubMedCrossRefGoogle Scholar
  28. 28.
    Bailey P (1927) Further remarks concerning tumors of the glioma group. Bull Johns Hopkins Hosp 40:354–389Google Scholar
  29. 29.
    Bradač G, Büll U, Fahlbusch R, Grumme T, Kazner E, Kretzschmar K, Lanksch W, Meese W, Schramm J, Steinhoff H, Stochdorph O, Wende S (1982) Computed tomography in intracranial tumors: differential diagnosis and clinical aspects. Springer, BerlinCrossRefGoogle Scholar
  30. 30.
    Bailey P (1933) Intracranial tumors. C.C. Thomas, SpringfieldGoogle Scholar
  31. 31.
    Penfield W (1931) The classification of gliomas and neuroglia cell types. Arch Neurol Psychiatr 26 (4):745–753CrossRefGoogle Scholar
  32. 32.
    Zülch K (1981) Historical development of the classification of brain tumours and the new proposal of the World Health Organization (WHO). Neurosurg Rev 4(3):123–127PubMedCrossRefGoogle Scholar
  33. 33.
    Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19(4):764–772PubMedCrossRefGoogle Scholar
  34. 34.
    Peiffer J, Kleihues P (1999) Hans-Joachim Scherer (1906–1945), pioneer in glioma research. Brain Pathol 9(2):241–245PubMedCrossRefGoogle Scholar
  35. 35.
    Scherer H (1940) Cerebral astrocytomas and their derivatives. Am J Cancer 40(2):159–198Google Scholar
  36. 36.
    Lee K, Choe G, Nam K, Seo A, Yun S, Kim K, Cho H, Park S (2013) Immunohistochemical classification of primary and secondary glioblastomas. Korean J Pathol 47(6):541–548PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Spiegel E, Wycis H, Marks M, Lee A (1947) Stereotaxic apparatus for operations on the human brain. Science 106(2754):349–350PubMedCrossRefGoogle Scholar
  38. 38.
    Uluç K, Kujoth G, Başkaya M (2009) Operating microscopes: past, present, and future. Neurosurg Focus 27(3):e4PubMedCrossRefGoogle Scholar
  39. 39.
    Sachs S (1950) The problem of glioblastomas. J Neurosurg 7(3):185–189PubMedCrossRefGoogle Scholar
  40. 40.
    Zülch K (1986) Brain tumours. Their biology and pathology. 3rd edn. Springer, BerlinGoogle Scholar
  41. 41.
    Netsky M, August B, Fowler W (1950) The longevity of patients with glioblastoma multiforme. J Neurosurg 7(3):261–269PubMedCrossRefGoogle Scholar
  42. 42.
    Delgado-López P, Corrales-García E (2016) Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol 18(11):1062–1072PubMedCrossRefGoogle Scholar
  43. 43.
    Mut M, Lopes M, Shaffrey M (2005) Lucien J. Rubinstein: enduring contributions to neuro-oncology. Neurosurg Focus 18(4):e8PubMedCrossRefGoogle Scholar
  44. 44.
    Roth J, Elvidge A (1960) Glioblastoma multiforme: a clinical survey. J Neurosurg 17(4):736–750PubMedCrossRefGoogle Scholar
  45. 45.
    Lindquist C (1995) Gamma knife radiosurgery. Semin Radiat Oncol 5(3):197–202PubMedCrossRefGoogle Scholar
  46. 46.
    Yanagihara T, Saadatmand H, Wang T (2016) Reevaluating stereotactic radiosurgery for glioblastoma: new potential for targeted dose-escalation. J Neurooncol 130:397–411. doi: 10.1007/s11060-016-2270-2 PubMedCrossRefGoogle Scholar
  47. 47.
    Hounsfield G (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46(552):1016–1022PubMedCrossRefGoogle Scholar
  48. 48.
    Lauterbur P (1973) Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 242:190–191CrossRefGoogle Scholar
  49. 49.
    Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62(10):2152–2165PubMedCrossRefGoogle Scholar
  50. 50.
    Zülch K (1980) Principles of the new World Health Organization (WHO) classification of brain tumors. Neuroradiology 19(2):59–66PubMedCrossRefGoogle Scholar
  51. 51.
    Buckner J, Brown P, O’Neill B, Meyer F, Wetmore C, Uhm J (2007) Central nervous system tumors. Mayo Clin Proc 82(10):1271–1286PubMedCrossRefGoogle Scholar
  52. 52.
    Agnihotri S, Burrell K, Wolf A, Jalali S, Hawkins C, Rutka J, Zadeh G (2013) Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp (Warsz) 61(1):25–41CrossRefGoogle Scholar
  53. 53.
    Dandy W (1928) Removal of right cerebral hemisphere for certain tumors with hemiplegia: preliminary report. J Am Med Assoc 90(11):823–825CrossRefGoogle Scholar
  54. 54.
    Wright J, Chugh J, Wright C, Alonso F, Hdeib A, Gittleman H, Barnholtz-Sloan J, Sloan A (2016) Laser interstitial thermal therapy followed by minimal-access transsulcal resection for the treatment of large and difficult to access brain tumors. Neurosurg Focus 41(4):e14PubMedCrossRefGoogle Scholar
  55. 55.
    Hervey-Jumper S, Berger M (2016) Maximizing safe resection of low- and high-grade glioma. J Neurooncol 130:269–282PubMedCrossRefGoogle Scholar
  56. 56.
    Yong R, Lonser R (2011) Surgery for glioblastoma multiforme: striking a balance. World Neurosurg 76 (6):528–530PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Young R, Jamshidi A, Davis G, Sherman J (2015) Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med 3(9):121PubMedPubMedCentralGoogle Scholar
  58. 58.
    Smets T, Lawson T, Grandin C, Jankovski A, Raftopoulos C (2013) Immediate post-operative MRI suggestive of the site and timing of glioblastoma recurrence after gross total resection: a retrospective longitudinal preliminary study. Eur Radiol 23(6):1467–1477PubMedCrossRefGoogle Scholar
  59. 59.
    Mirimanoff R, Gorlia T, Mason W, van den Bent M, Kortmann R, Fisher B, Reni M, Brandes A, Curschmann J, Villa S, Cairncross G, Allgeier A, Lacombe D, Stupp R (2006) Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 24(16):2563–2569PubMedCrossRefGoogle Scholar
  60. 60.
    Patel D, Agarwal N, Tomei K, Hansberry D, Goldstein I (2015) Optimal timing of whole-brain radiation therapy following craniotomy for cerebral malignancies. World Neurosurg 84 (2):412–419PubMedCrossRefGoogle Scholar
  61. 61.
    Stupp R, Brada M, van den Bent M, Tonn J, Pentheroudakis G (2014) High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(3):93–101CrossRefGoogle Scholar
  62. 62.
    Corso C, Bindra R (2016) Success and failures of combined modalities in glioblastoma multiforme: old problems and new directions. Semin Radiat Oncol 26(4):281–298PubMedCrossRefGoogle Scholar
  63. 63.
    Ehrlich P (1913) Address in pathology on chemotherapeutics: scientific principles, methods, and results. Lancet 2(5694):445–451Google Scholar
  64. 64.
    Krumbhaar E, Krunbhaar H (1919) The blood and bone barrow in yellow cross gas (mustard gas) poisoning. J Med Res 40(3):497–508PubMedPubMedCentralGoogle Scholar
  65. 65.
    Krumbhaar E (1919) Rôle of the blood and bone marrow in certain forms of gas poisoning: I. Peripheral blood changes and their significance. J Am Med Assoc 72(1):39–41CrossRefGoogle Scholar
  66. 66.
    Fenn J, Udelsman R (2011) First use of intravenous chemotherapy cancer treatment: rectifying the record. J Am Coll Surg 212(3):413–417PubMedCrossRefGoogle Scholar
  67. 67.
    Thomas R, Recht L, Nagpal S (2013) Advances in the management of glioblastoma: the role of temozolomide and MGMT testing. Clin Pharmacol 5:1–9PubMedGoogle Scholar
  68. 68.
    Connors T (1996) Anticancer drug development: the way forward. Oncologist 1(3):180–181PubMedGoogle Scholar
  69. 69.
    Deeken J, Löscher W (2007) The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13(6):1663–1674PubMedCrossRefGoogle Scholar
  70. 70.
    Rubin P, Gash D, Hansen J, Nelson D, Williams J (1994) Disruption of the blood–brain barrier as the primary effect of CNS irradiation. Radiother Oncol 31(1):51–60PubMedCrossRefGoogle Scholar
  71. 71.
    Muldoon L, Soussain C, Jahnke K, Johanson C, Siegal T, Smith Q, Hall W, Hynynen K, Senter P, Peereboom D, Neuwelt E (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25(16):2295–2305PubMedCrossRefGoogle Scholar
  72. 72.
    Cohen M, Shen Y, Keegan P, Pazdur R (2009) FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14(11):1131–1138PubMedCrossRefGoogle Scholar
  73. 73.
    Ashby L, Smith K, Stea B (2016) Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review. World J Surg Oncol 14(1):225PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Westphal M, Hilt D, Bortey E, Delavault P, Olivares R, Warnke P, Whittle I, Jääskeläinen J, Ram Z (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncology 5 (2):79–88PubMedPubMedCentralGoogle Scholar
  75. 75.
    Bock H, Puchner M, Lohmann F, Schütze M, Koll S, Ketter R, Buchalla R, Rainov N, Kantelhardt S, Rohde V, Giese A (2010) First-line treatment of malignant glioma with carmustine implants followed by concomitant radiochemotherapy: a multicenter experience. Neurosurg Rev 33(4):441–449PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Brem H, Piantadosi S, Burger P, Walker M, Selker R, Vick N, Black K, Sisti M, Brem S, Mohr G, Muller P, Morawetz R, Clifford Schold S, Group P-BTT (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet 345(8956):1008–1012PubMedCrossRefGoogle Scholar
  77. 77.
    Borner M, Scheithauer W, Twelves C, Maroun J, Wilke H (2001) Answering patients’ needs: oral alternatives to intravenous therapy. Oncologist 6(Suppl 4):12–16PubMedCrossRefGoogle Scholar
  78. 78.
    Liu G, Franssen E, Fitch M, Warner E (1997) Patient preferences for oral versus intravenous palliative chemotherapy. J Clin Oncol 15(1):110–115PubMedCrossRefGoogle Scholar
  79. 79.
    Brada M, Stenning S, Gabe R, Thompson L, Levy D, Rampling R, Erridge S, Saran F, Gattamaneni R, Hopkins K, Beall S, Collins V, Lee S (2010) Temozolomide versus procarbazine, lomustine, and vincristine in recurrent high-grade glioma. J Clin Oncol 28(30):4601–4608PubMedCrossRefGoogle Scholar
  80. 80.
    Silber J, Bobola M, Blank A, Chamberlain M (2012) O(6)-methylguanine-DNA methyltransferase in glioma therapy: promise and problems. Biochim Biophys Acta 1826(1):71–82PubMedPubMedCentralGoogle Scholar
  81. 81.
    Prados M, Byron S, Tran N, Phillips J, Molinaro A, Ligon K, Wen P, Kuhn J, Mellinghoff I, de Groot J, Colman H, Cloughesy T, Chang S, Ryken T, Tembe W, Kiefer J, Berens M, Craig D, Carpten J, Trent J (2015) Toward precision medicine in glioblastoma: the promise and the challenges. Neuro-Oncology 17(8):1051–1063PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Davies A, Weinberg U, Palti Y (2013) Tumor treating fields: a new frontier in cancer therapy. Ann N Y Acad Sci 1291:86–95PubMedCrossRefGoogle Scholar
  83. 83.
    Taillibert S, Le Rhun E, Chamberlain M (2015) Tumor treating fields: a new standard treatment for glioblastoma? Curr Opin Neurol 28(6):659–664PubMedCrossRefGoogle Scholar
  84. 84.
    Domingo-Musibay E, Galanis E (2015) What next for newly diagnosed glioblastoma? Future Oncol 11(24):3273–3283PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Stupp R, Wong E, Kanner A, Steinberg D, Engelhard H, Heidecke V, Kirson E, Taillibert S, Liebermann F, Dbalý V, Ram Z, Villano J, Rainov N, Weinberg U, Schiff D, Kunschner L, Raizer J, Honnorat J, Sloan A, Malkin M, Landolfi J, Payer F, Mehdorn M, Weil R, Pannullo S, Westphal M, Smrcka M, Chin L, Kostron H, Hofer S, Bruce J, Cosgrove R, Paleologous N, Palti Y, Gutin P (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48(14):2192–2202PubMedCrossRefGoogle Scholar
  86. 86.
    Wick W, Weller M, van den Bent M, Stupp R (2010) Bevacizumab and recurrent malignant gliomas: a European perspective. J Clin Oncol 28(12):188–189CrossRefGoogle Scholar
  87. 87.
    Desjardins A (2015) Neuro-oncology: what is the optimal use of bevacizumab in glioblastoma? Nat Rev Neurol 11(8):429–430PubMedCrossRefGoogle Scholar
  88. 88.
    Gilbert M, Dignam J, Armstrong T, Wefel J, Blumenthal D, Vogelbaum M, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown P, Jaeckle K, Schiff D, Stieber V, Brachman D, Werner-Wasik M, Tremont-Lukats I, Sulman E, Aldape K, Curran WJ, Mehta M (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(8):699–708PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Chinot O, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier A, Hoang-Xuan K, Kavan F, Cernea D, Brandes A, Hilton M, Abrey L, Cloughesy T (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722PubMedCrossRefGoogle Scholar
  90. 90.
    Wick W, Chinot O, Bendszus M, Mason W, Henriksson R, Saran F, Nishikawa R, Revil C, Kerloeguen Y, Cloughesy T (2016) Evaluation of pseudoprogression rates and tumor progression patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly diagnosed glioblastoma. Neuro-Oncology 18 (10):1434–1441PubMedCrossRefGoogle Scholar
  91. 91.
    Chinot O, Nishikawa R, Mason W, Henriksson R, Saran F, Cloughesy T, Garcia J, Revil C, Abrey L, Wick W (2016) Upfront bevacizumab may extend survival for glioblastoma patients who do not receive second-line therapy: an exploratory analysis of AVAglio. Neuro-Oncology 18(9):1313–1318PubMedCrossRefGoogle Scholar
  92. 92.
    Rose S (2011) FDA pulls approval for Avastin in breast cancer. Cancer Discov 1(7):1–2Google Scholar
  93. 93.
    Kovic B, Xie F (2015) Economic evaluation of bevacizumab for the first-line treatment of newly diagnosed glioblastoma multiforme. J Clin Oncol 33(20):2296–2302PubMedCrossRefGoogle Scholar
  94. 94.
    Campos B, Olsen L, Urup T, Poulsen H (2016) A comprehensive profile of recurrent glioblastoma. Oncogene 35:5819–5825PubMedCrossRefGoogle Scholar
  95. 95.
    Sun H, Du S, Liao G, Xie X, Ren C, Yuan Y (2015) Do glioma patients derive any therapeutic benefit from taking a higher cumulative dose of temozolomide regimens? A meta-analysis. Medicine (Baltimore) 94(20):e827CrossRefGoogle Scholar
  96. 96.
    Tosoni A, Franceschi E, Poggi R, Brandes A (2016) Relapsed glioblastoma: treatment strategies for initial and subsequent recurrences. Curr Treat Options Oncol 17(9):49PubMedCrossRefGoogle Scholar
  97. 97.
    Yin A, Cheng J, Zhang X, Liu B (2013) The treatment of glioblastomas: a systematic update on clinical Phase III trials. Crit Rev Oncol Hematol 87(3):265–282PubMedCrossRefGoogle Scholar
  98. 98. National Library of Medicine (US) Accessed 31 Oct 2016Google Scholar
  99. 99.
    Tavano L, Muzzalupo R (2016) Multi-functional vesicles for cancer therapy: the ultimate magic bullet. Colloids Surfaces B 147:161–171CrossRefGoogle Scholar
  100. 100.
    Stupp R, Hegi M, Mason W, van den Bent M, Taphoorn M, Janzer R, Ludwin S, Allgeier A, Fisher B, Belanger K, Hau P, Brandes A, Gijtenbeek J, Marosi C, Vecht C, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross J, Mirimanoff R, Groups EOfRaToCBTaRO, Group NCIoCCT (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466PubMedCrossRefGoogle Scholar
  101. 101.
    Scott J, Bauchet L, Fraum T, Nayak L, Cooper A, Chao S, Suh J, Vogelbaum M, Peereboom D, Zouaoui S, Mathieu-Daudé H, Fabbro-Peray P, Rigau V, Taillandier L, Abrey L, DeAngelis L, Shih J, Iwamoto F (2012) Recursive partitioning analysis of prognostic factors for glioblastoma patients aged 70 years or older. Cancer 118(22):5595–5600PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Neagu M, Reardon D (2015) An update on the role of immunotherapy and vaccine strategies for primary brain tumors. Curr Treat Options Oncol 16(11):54PubMedCrossRefGoogle Scholar
  103. 103.
    Sampson J, Mitchell D (2015) Vaccination strategies for neuro-oncology. Neuro-Oncology 17 (7):15–25CrossRefGoogle Scholar
  104. 104.
    Ardon H, Van Gool S, Lopes I, Maes W, Sciot R, Wilms G, Demaerel P, Bijttebier P, Claes L, Goffin J, Van Calenbergh F, De Vleeschouwer S (2010) Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol 99(2):261–272PubMedCrossRefGoogle Scholar
  105. 105.
    Schijns V, Pretto C, Devillers L, Pierre D, Hofman F, Chen T, Mespouille P, Hantos P, Glorieux P, Bota D, Stathopoulos A (2015) First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine 33(23):269–2696CrossRefGoogle Scholar
  106. 106.
    Reijneveld J, Voest E, Taphoorn M (2000) Angiogenesis in malignant primary and metastatic brain tumors. J Neurol 247(8):597–608PubMedCrossRefGoogle Scholar
  107. 107.
    Scaringi C, Enrici R, Minniti G (2013) Combining molecular targeted agents with radiation therapy for malignant gliomas. Onco Targets Ther 6:1079–1095PubMedPubMedCentralGoogle Scholar
  108. 108.
    McGee M, Hamner J, Williams R, Rosati S, Sims T, Ng C, Gaber M, Calabrese C, Wu J, Nathwani A, Duntsch C, Merchant T, Davidoff A (2010) Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys 76(5):1537–1545PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Gupta V, Jaskowiak N, Beckett M, Mauceri H, Grunstein J, Johnson R, Calvin D, Nodzenski E, Pejovic M, Kufe D, Posner M, Weichselbaum R (2002) Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J 8(1):47–54PubMedCrossRefGoogle Scholar
  110. 110.
    Bolderson E, Richard D, Zhou B, Khanna K (2009) Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 15(20):6314–6320PubMedCrossRefGoogle Scholar
  111. 111.
    Rouleau M, Patel A, Hendzel M, Kaufmann S, Poirier G (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Bryant H, Schultz N, Thomas H, Parker K, Flower D, Lopez E, Kyle S, Meuth M, Curtin N, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 343(7035):913–917CrossRefGoogle Scholar
  113. 113.
    Farmer H, McCabe N, Lord C, Tutt A, Johnson D, Richardson T, Santarosa M, Dillon K, Hickson I, Knights C, Martin N, Jackson S, Smith G, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921PubMedCrossRefGoogle Scholar
  114. 114.
    Powell C, Mikropoulos C, Kaye S, Nutting C, Bhide S, Newbold K, Harrington K (2010) Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treat Rev 36(7):566–575PubMedCrossRefGoogle Scholar
  115. 115.
    Senra J, Telfer B, Cherry K, McCrudden C, Hirst D, O’Connor M, Wedge S, Stratford I (2011) Inhibition of PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft. Mol Cancer Ther 10(10):1949–1958PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Bonnet D, Dick J (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med 3(7):730–737PubMedCrossRefGoogle Scholar
  117. 117.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021PubMedCrossRefGoogle Scholar
  118. 118.
    Beier D, Röhrl S, Pillai D, Schwarz S, Kunz-Schughart L, Leukel P, Proescholdt M, Brawanski A, Bogdahn U, Trampe-Kieslich A, Giebel B, Wischhusen J, Reifenberger G, Hau P, Beier C (2008) Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res 68(14):5706–5715PubMedCrossRefGoogle Scholar
  119. 119.
    Hegi M, Diserens A, Gorlia T, Hamou M, de Tribolet N, Weller M, Kros J, Hainfellner J, Mason W, Mariani L, Bromberg J, Hau P, Mirimanoff R, Cairncross J, Janzer R, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003PubMedCrossRefGoogle Scholar
  120. 120.
    Lathia J, Mack S, Mulkearns-Hubert E, Valentim C, Rich J (2015) Cancer stem cells in glioblastoma. Genes Dev 29(12):1203–1217PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Gupta P, Onder T, Jiang G, Tao K, Kuperwasser C, Weinberg R, Lander E (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Qin L, Jia P, Zhang Z, Zhang S (2015) ROS-p53-cyclophilin-D signaling mediates salinomycin-induced glioma cell necrosis. J Exp Clin Canc Res 34:57CrossRefGoogle Scholar
  123. 123.
    Calzolari A, Saulle E, De Angelis M, Pasquini L, Boe A, Pelacchi F, Ricci-Vitiani L, Baiocchi M, Testa U (2014) Salinomycin potentiates the cytotoxic effects of TRAIL on glioblastoma cell lines. PLoS One 9(4):e94438PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Pardridge W (2007) Blood–brain barrier delivery. Drug Discov Today 12(1–2):54–61PubMedCrossRefGoogle Scholar
  125. 125.
    Vogelbaum M, Aghi M (2015) Convection-enhanced delivery for the treatment of glioblastoma. Neuro-Oncology 17 (Suppl 2):3–8CrossRefGoogle Scholar
  126. 126.
    Hynynen K, McDannold N, Vykhodtseva N, Jolesz F (2003) Non-invasive opening of BBB by focused ultrasound. Acta Neurochir Suppl 86:555–558PubMedGoogle Scholar
  127. 127.
    Choi J, Feshitan J, Baseri B, Wang S, Tung Y, Borden M, Konofagou E (2010) Microbubble-size dependence of focused ultrasound-induced blood–brain barrier opening in mice in vivo. IEEE Trans Bio-Med Eng 57(1):145–154CrossRefGoogle Scholar
  128. 128.
    Liu H, Hsu P, Lin C, Huang C, Chai W, Chu P, Huang C, Chen P, Yang L, Kuo J, Wei K (2016) Focused ultrasound enhances central nervous system delivery of bevacizumab for malignant glioma treatment. Radiology 281(1):99–108PubMedCrossRefGoogle Scholar
  129. 129.
    Carpentier A, Canney M, Vignot A, Reina V, Beccaria K, Horodyckid C, Karachi C, Leclercq D, Lafon C, Chapelon J, Capelle L, Cornu P, Sanson M, Hoang-Xuan K, Delattre J, Idbaih A (2016) Clinical trial of blood–brain barrier disruption by pulsed ultrasound. Sci Transl Med 8 (343):343re342Google Scholar
  130. 130.
    Sarkar G, Curran G, Sarkaria J, Lowe V, Jenkins R (2014) Peptide carrier-mediated non-covalent delivery of unmodified cisplatin, methotrexate and other agents via intravenous route to the brain. PLoS One 9(5):e97655PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Allen T, Cullis P (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822PubMedCrossRefGoogle Scholar
  132. 132.
    Peer D, Karp J, Hong S, Farokhzad O, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760PubMedCrossRefGoogle Scholar
  133. 133.
    Gutkin A, Cohen Z, Peer D (2016) Harnessing nanomedicine for therapeutic intervention in glioblastoma. Expert Opin Drug Deliv 13(11):1573–1582PubMedCrossRefGoogle Scholar
  134. 134.
    Kim S, Harford J, Pirollo K, Chang E (2015) Effective treatment of glioblastoma requires crossing the blood–brain barrier and targeting tumors including cancer stem cells: the promise of nanomedicine. Biochem Biophys Res Commun 468(3):485–489PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Danhier F, Messaoudi K, Lemaire L, Benoit J, Lagarce F (2015) Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: in vivo evaluation. Int J Pharm 481(1–2):154–161PubMedCrossRefGoogle Scholar
  136. 136.
    Bastiancich C, Vanvarenberg K, Ucakar B, Pitorre M, Bastiat G, Lagarce F, Préat V, Danhier F (2016) Lauroyl-gemcitabine-loaded lipid nanocapsule hydrogel for the treatment of glioblastoma. J Control Release 225:283–293PubMedCrossRefGoogle Scholar
  137. 137.
    Hoare T, DS K (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007CrossRefGoogle Scholar
  138. 138.
    Bastiancich C, Danhier P, Préat V, Danhier F (2016) Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J Control Release 243:29–42PubMedCrossRefGoogle Scholar
  139. 139.
    Vellimana A, Recinos V, Hwang L, Fowers K, Li K, Zhang Y, Okonma S, Eberhart C, Brem H, Tyler B (2013) Combination of paclitaxel thermal gel depot with temozolomide and radiotherapy significantly prolongs survival in an experimental rodent glioma model. J Neurooncol 111(3):229–236PubMedCrossRefGoogle Scholar
  140. 140.
    Fourniols T, Randolph L, Staub A, Vanvarenberg K, Leprince J, Préat V, des Rieux A, Danhier F (2015) Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma. J Control Release 210:95–104PubMedCrossRefGoogle Scholar
  141. 141.
    Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De Vecchis L (2007) Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol Res 56(4):275–287PubMedCrossRefGoogle Scholar
  142. 142.
    Perazzoli G, Prados J, Ortiz R, Caba O, Cabeza L, Berdasco M, Gónzalez B, Melguizo C (2015) Temozolomide resistance in glioblastoma cell lines: implication of MGMT, MMR, P-glycoprotein and CD133 expression. PLoS One 10(10):e0140131PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Weller M, Stupp R, Reifenberger G, Brandes A, van den Bent M, Wick W, Hegi M (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6(1):39–51PubMedCrossRefGoogle Scholar
  144. 144.
    Parker N, Khong P, Parkinson J, Howell V, Wheeler H (2015) Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol 5:55PubMedPubMedCentralGoogle Scholar
  145. 145.
    Messaoudi K, Clavreul C, Danhier F, Saulnier P, Benoît J-P, Lagarce F (2015) Combined silencing expression of MGMT with EGFR or galectin-1 enhances the sensitivity of glioblastoma to temozolomide. Eur J Nanomed 7(2):97–107CrossRefGoogle Scholar
  146. 146.
    Kaina B, Margison G, Christmann M (2010) Targeting O 6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci 67(21):3663–3681PubMedCrossRefGoogle Scholar
  147. 147.
    Ramirez Y, Mladek A, Phillips R, Gynther M, Rautio J, Ross A, Wheelhouse R, Sakaria J (2015) Evaluation of novel imidazotetrazine analogues designed to overcome temozolomide resistance and glioblastoma regrowth. Mol Cancer Ther 14(1):111–119PubMedCrossRefGoogle Scholar
  148. 148.
    Rich J, Bigner D (2004) Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 3(5):430–446PubMedCrossRefGoogle Scholar
  149. 149.
    Verschuere T, Toelen J, Maes W, Poirier F, Boon L, Tousseyn T, Mathivet T, Gerhardt H, Mathieu V, Kiss R, Lefranc F, Van Gool S, De Vleeschouwer S (2014) Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. Int J Cancer 134(4):873–884PubMedCrossRefGoogle Scholar
  150. 150.
    Le Mercier M, Fortin S, Mathieu V, Kiss R, Lefranc F (2010) Galectins and gliomas. Brain Pathol 20(1):17–27PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Camby I, Decaestecker C, Lefranc F, Kaltner H, Gabius H, Kiss R (2005) Galectin-1 knocking down in human U87 glioblastoma cells alters their gene expression pattern. Biochem Biophys Res Commun 335(1):27–35PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Louvain Drug Research Institute, Advanced Drug Delivery and BiomaterialsUniversité catholique de LouvainBrusselsBelgium
  2. 2.Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
  3. 3.Department of NeurosurgeryCHU UCL NamurYvoirBelgium
  4. 4.Institute of Condensed Matter and NanosciencesUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations