Cellular and Molecular Life Sciences

, Volume 74, Issue 14, pp 2569–2586 | Cite as

Immunoregulatory properties of the cytokine IL-34

  • Carole GuillonneauEmail author
  • Séverine Bézie
  • Ignacio Anegon


Interleukin-34 is a cytokine with only partially understood functions, described for the first time in 2008. Although IL-34 shares very little homology with CSF-1 (CSF1, M-CSF), they share a common receptor CSF-1R (CSF-1R) and IL-34 has also two distinct receptors (PTP-ζ) and CD138 (syndecan-1). To make the situation more complex, IL-34 has also been shown as pairing with CSF-1 to form a heterodimer. Until now, studies have demonstrated that this cytokine is released by some tissues that differ to those where CSF-1 is expressed and is involved in the differentiation and survival of macrophages, monocytes, and dendritic cells in response to inflammation. The involvement of IL-34 has been shown in areas as diverse as neuronal protection, autoimmune diseases, infection, cancer, and transplantation. Our recent work has demonstrated a new and possible therapeutic role for IL-34 as a Foxp3+ Treg-secreted cytokine mediator of transplant tolerance. In this review, we recapitulate most recent findings on IL-34 and its controversial effects on immune responses and address its immunoregulatory properties and the potential of targeting this cytokine in human.


Immune tolerance Tregs Ischemia reperfusion Macrophages Osteopetrosis CSF-1(M-CSF) 



We thank the Fondation Progreffe and the Labex IGO project (No. ANR-11-LABX-0016-01) for financial support. This work was realized in the context of the IHU-Cesti project (ANR-10-IBHU-005). Both, Labex IGO and IHU-CESTI, are part of the «Investissements d’Avenir» ANR French Government program. The IHU-Cesti project is also supported by Nantes Métropole and Région Pays-de-la-Loire.


  1. 1.
    Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320(5877):807–811. doi: 10.1126/science.1154370 PubMedCrossRefGoogle Scholar
  2. 2.
    Nandi S, Cioce M, Yeung YG, Nieves E, Tesfa L, Lin H, Hsu AW, Halenbeck R, Cheng HY, Gokhan S, Mehler MF, Stanley ER (2013) Receptor-type protein-tyrosine phosphatase zeta is a functional receptor for interleukin-34. J Biol Chem 288(30):21972–21986. doi: 10.1074/jbc.M112.442731 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Baek JH, Zeng R, Weinmann-Menke J, Valerius MT, Wada Y, Ajay AK, Colonna M, Kelley VR (2015) IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease. J Clin Invest 125(8):3198–3214. doi: 10.1172/JCI81166 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Segaliny AI, Brion R, Mortier E, Maillasson M, Cherel M, Jacques Y, Le Goff B, Heymann D (2015) Syndecan-1 regulates the biological activities of interleukin-34. Biochim Biophys Acta 1853(5):1010–1021. doi: 10.1016/j.bbamcr.2015.01.023 PubMedCrossRefGoogle Scholar
  5. 5.
    Wei S, Nandi S, Chitu V, Yeung YG, Yu W, Huang M, Williams LT, Lin H, Stanley ER (2010) Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol 88(3):495–505. doi: 10.1189/jlb.1209822 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Segaliny AI, Brion R, Brulin B, Maillasson M, Charrier C, Teletchea S, Heymann D (2015) IL-34 and M-CSF form a novel heteromeric cytokine and regulate the M-CSF receptor activation and localization. Cytokine. doi: 10.1016/j.cyto.2015.05.029 PubMedGoogle Scholar
  7. 7.
    Baud’huin M, Renault R, Charrier C, Riet A, Moreau A, Brion R, Gouin F, Duplomb L, Heymann D (2010) Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis. J Pathol 221(1):77–86. doi: 10.1002/path.2684 PubMedCrossRefGoogle Scholar
  8. 8.
    Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, Barrow AD, Diamond MS, Colonna M (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13(8):753–760. doi: 10.1038/ni.2360 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Chemel M, Le Goff B, Brion R, Cozic C, Berreur M, Amiaud J, Bougras G, Touchais S, Blanchard F, Heymann MF, Berthelot JM, Verrecchia F, Heymann D (2012) Interleukin 34 expression is associated with synovitis severity in rheumatoid arthritis patients. Ann Rheum Dis 71(1):150–154. doi: 10.1136/annrheumdis-2011-200096 PubMedCrossRefGoogle Scholar
  10. 10.
    Garceau V, Smith J, Paton IR, Davey M, Fares MA, Sester DP, Burt DW, Hume DA (2010) Pivotal Advance: Avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J Leukoc Biol 87(5):753–764. doi: 10.1189/jlb.0909624 PubMedCrossRefGoogle Scholar
  11. 11.
    Sherr CJ, Rettenmier CW, Sacca R, Roussel MF, Look AT, Stanley ER (1985) The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41(3):665–676PubMedCrossRefGoogle Scholar
  12. 12.
    Chen X, Liu H, Focia PJ, Shim AH, He X (2008) Structure of macrophage colony stimulating factor bound to FMS: diverse signaling assemblies of class III receptor tyrosine kinases. Proc Natl Acad Sci USA 105(47):18267–18272. doi: 10.1073/pnas.0807762105 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Li W, Stanley ER (1991) Role of dimerization and modification of the CSF-1 receptor in its activation and internalization during the CSF-1 response. EMBO J 10(2):277–288PubMedPubMedCentralGoogle Scholar
  14. 14.
    MacDonald KP, Rowe V, Bofinger HM, Thomas R, Sasmono T, Hume DA, Hill GR (2005) The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion. J Immunol 175(3):1399–1405PubMedCrossRefGoogle Scholar
  15. 15.
    Sasmono RT, Williams E (2012) Generation and characterization of MacGreen mice, the Cfs1r-EGFP transgenic mice. Methods Mol Biol 844:157–176. doi: 10.1007/978-1-61779-527-5_11 PubMedCrossRefGoogle Scholar
  16. 16.
    Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, Stanley ER, Randolph GJ, Merad M (2006) Langerhans cells arise from monocytes in vivo. Nat Immunol 7(3):265–273. doi: 10.1038/ni1307 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Takashima A, Edelbaum D, Kitajima T, Shadduck RK, Gilmore GL, Xu S, Taylor RS, Bergstresser PR, Ariizumi K (1995) Colony-stimulating factor-1 secreted by fibroblasts promotes the growth of dendritic cell lines (XS series) derived from murine epidermis. J Immunol 154(10):5128–5135PubMedGoogle Scholar
  18. 18.
    Baker AH, Ridge SA, Hoy T, Cachia PG, Culligan D, Baines P, Whittaker JA, Jacobs A, Padua RA (1993) Expression of the colony-stimulating factor 1 receptor in B lymphocytes. Oncogene 8(2):371–378PubMedGoogle Scholar
  19. 19.
    Inaba T, Gotoda T, Shimano H, Shimada M, Harada K, Kozaki K, Watanabe Y, Hoh E, Motoyoshi K, Yazaki Y et al (1992) Platelet-derived growth factor induces c-fms and scavenger receptor genes in vascular smooth muscle cells. J Biol Chem 267(18):13107–13112PubMedGoogle Scholar
  20. 20.
    Hofstetter W, Wetterwald A, Cecchini MC, Felix R, Fleisch H, Mueller C (1992) Detection of transcripts for the receptor for macrophage colony-stimulating factor, c-fms, in murine osteoclasts. Proc Natl Acad Sci USA 89(20):9637–9641PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Leonard EP, Cotton WR, Keene HJ (1974) Morphological and histochemical observations on the lack of osteoclasis in the “tl” strain of rat. Proc Soc Exp Biol Med 147(3):596–598PubMedCrossRefGoogle Scholar
  22. 22.
    Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99(1):111–120PubMedCrossRefGoogle Scholar
  23. 23.
    Shin EK, Lee SH, Cho SH, Jung S, Yoon SH, Park SW, Park JS, Uh ST, Kim YK, Kim YH, Choi JS, Park BL, Shin HD, Park CS (2010) Association between colony-stimulating factor 1 receptor gene polymorphisms and asthma risk. Hum Genet 128(3):293–302. doi: 10.1007/s00439-010-0850-3 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Alexander RJ, Panja A, Kaplan-Liss E, Mayer L, Raicht RF (1995) Expression of growth factor receptor-encoded mRNA by colonic epithelial cells is altered in inflammatory bowel disease. Dig Dis Sci 40(3):485–494PubMedCrossRefGoogle Scholar
  25. 25.
    Jose MD, Le Meur Y, Atkins RC, Chadban SJ (2003) Blockade of macrophage colony-stimulating factor reduces macrophage proliferation and accumulation in renal allograft rejection. Am J Transplant 3(3):294–300PubMedCrossRefGoogle Scholar
  26. 26.
    Ohno H, Uemura Y, Murooka H, Takanashi H, Tokieda T, Ohzeki Y, Kubo K, Serizawa I (2008) The orally-active and selective c-Fms tyrosine kinase inhibitor Ki20227 inhibits disease progression in a collagen-induced arthritis mouse model. Eur J Immunol 38(1):283–291. doi: 10.1002/eji.200737199 PubMedCrossRefGoogle Scholar
  27. 27.
    Uemura Y, Ohno H, Ohzeki Y, Takanashi H, Murooka H, Kubo K, Serizawa I (2008) The selective M-CSF receptor tyrosine kinase inhibitor Ki20227 suppresses experimental autoimmune encephalomyelitis. J Neuroimmunol 195(1–2):73–80. doi: 10.1016/j.jneuroim.2008.01.015 PubMedCrossRefGoogle Scholar
  28. 28.
    MacDonald KP, Palmer JS, Cronau S, Seppanen E, Olver S, Raffelt NC, Kuns R, Pettit AR, Clouston A, Wainwright B, Branstetter D, Smith J, Paxton RJ, Cerretti DP, Bonham L, Hill GR, Hume DA (2010) An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 116(19):3955–3963. doi: 10.1182/blood-2010-02-266296 PubMedCrossRefGoogle Scholar
  29. 29.
    Hashimoto D, Chow A, Greter M, Saenger Y, Kwan WH, Leboeuf M, Ginhoux F, Ochando JC, Kunisaki Y, van Rooijen N, Liu C, Teshima T, Heeger PS, Stanley ER, Frenette PS, Merad M (2011) Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation. J Exp Med 208(5):1069–1082. doi: 10.1084/jem.20101709 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Liu H, Leo C, Chen X, Wong BR, Williams LT, Lin H, He X (2012) The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochim Biophys Acta 1824(7):938–945. doi: 10.1016/j.bbapap.2012.04.012 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Chihara T, Suzu S, Hassan R, Chutiwitoonchai N, Hiyoshi M, Motoyoshi K, Kimura F, Okada S (2010) IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death Differ 17(12):1917–1927. doi: 10.1038/cdd.2010.60 PubMedCrossRefGoogle Scholar
  32. 32.
    Cohen S, Shoshana OY, Zelman-Toister E, Maharshak N, Binsky-Ehrenreich I, Gordin M, Hazan-Halevy I, Herishanu Y, Shvidel L, Haran M, Leng L, Bucala R, Harroch S, Shachar I (2012) The cytokine midkine and its receptor RPTPzeta regulate B cell survival in a pathway induced by CD74. Journal of immunology 188(1):259–269. doi: 10.4049/jimmunol.1101468 CrossRefGoogle Scholar
  33. 33.
    Diamantopoulou Z, Kitsou P, Menashi S, Courty J, Katsoris P (2012) Loss of receptor protein tyrosine phosphatase beta/zeta (RPTPbeta/zeta) promotes prostate cancer metastasis. J Biol Chem 287(48):40339–40349. doi: 10.1074/jbc.M112.405852 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Feng ZJ, Gao SB, Wu Y, Xu XF, Hua X, Jin GH (2010) Lung cancer cell migration is regulated via repressing growth factor PTN/RPTP beta/zeta signaling by menin. Oncogene 29(39):5416–5426. doi: 10.1038/onc.2010.282 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Muller S, Kunkel P, Lamszus K, Ulbricht U, Lorente GA, Nelson AM, von Schack D, Chin DJ, Lohr SC, Westphal M, Melcher T (2003) A role for receptor tyrosine phosphatase zeta in glioma cell migration. Oncogene 22(43):6661–6668. doi: 10.1038/sj.onc.1206763 PubMedCrossRefGoogle Scholar
  36. 36.
    Ulbricht U, Brockmann MA, Aigner A, Eckerich C, Muller S, Fillbrandt R, Westphal M, Lamszus K (2003) Expression and function of the receptor protein tyrosine phosphatase zeta and its ligand pleiotrophin in human astrocytomas. J Neuropathol Exp Neurol 62(12):1265–1275PubMedCrossRefGoogle Scholar
  37. 37.
    Sanchez-Nino MD, Sanz AB, Ortiz A (2016) Chronicity following ischaemia-reperfusion injury depends on tubular-macrophage crosstalk involving two tubular cell-derived CSF-1R activators: CSF-1 and IL-34. Nephrol Dial Transplant 31(9):1409–1416. doi: 10.1093/ndt/gfw026 PubMedCrossRefGoogle Scholar
  38. 38.
    Maeda N, Nishiwaki T, Shintani T, Hamanaka H, Noda M (1996) 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase zeta/RPTPbeta, binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM). J Biol Chem 271(35):21446–21452PubMedCrossRefGoogle Scholar
  39. 39.
    Peles E, Nativ M, Campbell PL, Sakurai T, Martinez R, Lev S, Clary DO, Schilling J, Barnea G, Plowman GD, Grumet M, Schlessinger J (1995) The carbonic anhydrase domain of receptor tyrosine phosphatase beta is a functional ligand for the axonal cell recognition molecule contactin. Cell 82(2):251–260PubMedCrossRefGoogle Scholar
  40. 40.
    Milev P, Chiba A, Haring M, Rauvala H, Schachner M, Ranscht B, Margolis RK, Margolis RU (1998) High affinity binding and overlapping localization of neurocan and phosphacan/protein-tyrosine phosphatase-zeta/beta with tenascin-R, amphoterin, and the heparin-binding growth-associated molecule. J Biol Chem 273(12):6998–7005PubMedCrossRefGoogle Scholar
  41. 41.
    Palaiologou M, Delladetsima I, Tiniakos D (2014) CD138 (syndecan-1) expression in health and disease. Histol Histopathol 29(2):177–189PubMedGoogle Scholar
  42. 42.
    Yang Y, Yaccoby S, Liu W, Langford JK, Pumphrey CY, Theus A, Epstein J, Sanderson RD (2002) Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 100(2):610–617PubMedCrossRefGoogle Scholar
  43. 43.
    Orecchia P, Conte R, Balza E, Petretto A, Mauri P, Mingari MC, Carnemolla B (2013) A novel human anti-syndecan-1 antibody inhibits vascular maturation and tumour growth in melanoma. Eur J Cancer 49(8):2022–2033. doi: 10.1016/j.ejca.2012.12.019 PubMedCrossRefGoogle Scholar
  44. 44.
    Goldmann T, Otto F, Vollmer E (2000) A receptor-type protein tyrosine phosphatase PTP zeta is expressed in human cutaneous melanomas. Folia Histochem Cytobiol 38(1):19–20PubMedGoogle Scholar
  45. 45.
    Conejo JR, Kleeff J, Koliopanos A, Matsuda K, Zhu ZW, Goecke H, Bicheng N, Zimmermann A, Korc M, Friess H, Buchler MW (2000) Syndecan-1 expression is up-regulated in pancreatic but not in other gastrointestinal cancers. Int J Cancer 88(1):12–20. doi: 10.1002/1097-0215(20001001)88:1<12::AID-IJC3>3.0.CO;2-T PubMedCrossRefGoogle Scholar
  46. 46.
    Takazaki R, Shishido Y, Iwamoto R, Mekada E (2004) Suppression of the biological activities of the epidermal growth factor (EGF)-like domain by the heparin-binding domain of heparin-binding EGF-like Growth Factor. J Biol Chem 279(45):47335–47343. doi: 10.1074/jbc.M408556200 PubMedCrossRefGoogle Scholar
  47. 47.
    Kemp LE, Mulloy B, Gherardi E (2006) Signalling by HGF/SF and Met: the role of heparan sulphate co-receptors. Biochem Soc Trans 34 (Pt 3):414–417. doi: 10.1042/BST0340414 PubMedGoogle Scholar
  48. 48.
    Dai J, Rabie AB (2007) VEGF: an essential mediator of both angiogenesis and endochondral ossification. J Dent Res 86(10):937–950PubMedCrossRefGoogle Scholar
  49. 49.
    Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13(12):767–779. doi: 10.1038/nrm3470 PubMedCrossRefGoogle Scholar
  50. 50.
    Rider CC (2006) Heparin/heparan sulphate binding in the TGF-beta cytokine superfamily. Biochem Soc Trans 34 (Pt 3):458–460. doi: 10.1042/BST0340458 Google Scholar
  51. 51.
    Bezie S, Picarda E, Ossart J, Tesson L, Usal C, Renaudin K, Anegon I, Guillonneau C (2015) IL-34 is a Treg-specific cytokine and mediates transplant tolerance. J Clin Invest 125(10):3952–3964. doi: 10.1172/JCI81227 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Guillonneau C, Hill M, Hubert FX, Chiffoleau E, Herve C, Li XL, Heslan M, Usal C, Tesson L, Menoret S, Saoudi A, Le Mauff B, Josien R, Cuturi MC, Anegon I (2007) CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J Clin Invest 117(4):1096–1106PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bostrom EA, Lundberg P (2013) The newly discovered cytokine IL-34 is expressed in gingival fibroblasts, shows enhanced expression by pro-inflammatory cytokines, and stimulates osteoclast differentiation. PLoS One 8(12):e81665. doi: 10.1371/journal.pone.0081665 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Yu Y, Yang D, Qiu L, Okamura H, Guo J, Haneji T (2014) Tumor necrosis factor-alpha induces interleukin-34 expression through nuclear factorkappaB activation in MC3T3-E1 osteoblastic cells. Mol Med Rep 10(3):1371–1376. doi: 10.3892/mmr.2014.2353 PubMedPubMedCentralGoogle Scholar
  55. 55.
    Chen Z, Buki K, Vaaraniemi J, Gu G, Vaananen HK (2011) The critical role of IL-34 in osteoclastogenesis. PLoS One 6(4):e18689. doi: 10.1371/journal.pone.0018689 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Moon SJ, Hong YS, Ju JH, Kwok SK, Park SH, Min JK (2013) Increased levels of interleukin 34 in serum and synovial fluid are associated with rheumatoid factor and anticyclic citrullinated peptide antibody titers in patients with rheumatoid arthritis. J Rheumatol 40(11):1842–1849. doi: 10.3899/jrheum.130356 PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang F, Ding R, Li P, Ma C, Song D, Wang X, Ma T, Bi L (2015) Interleukin-34 in rheumatoid arthritis: potential role in clinical therapy. Int J Clin Exp Med 8(5):7809–7815PubMedPubMedCentralGoogle Scholar
  58. 58.
    Yang S, Jiang S, Wang Y, Tu S, Wang Z, Chen Z (2016) Interleukin 34 upregulation contributes to the increment of microRNA 21 expression through STAT3 activation associated with disease activity in rheumatoid arthritis. J Rheumatol 43(7):1312–1319. doi: 10.3899/jrheum.151253 PubMedCrossRefGoogle Scholar
  59. 59.
    Hwang SJ, Choi B, Kang SS, Chang JH, Kim YG, Chung YH, Sohn DH, So MW, Lee CK, Robinson WH, Chang EJ (2012) Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Res Ther 14(1):R14. doi: 10.1186/ar3693 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Tian Y, Shen H, Xia L, Lu J (2013) Elevated serum and synovial fluid levels of interleukin-34 in rheumatoid arthritis: possible association with disease progression via interleukin-17 production. J Interferon Cytokine Res 33(7):398–401. doi: 10.1089/jir.2012.0122 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Chang SH, Choi BY, Choi J, Yoo JJ, Ha YJ, Cho HJ, Kang EH, Song YW, Lee YJ (2015) Baseline serum interleukin-34 levels independently predict radiographic progression in patients with rheumatoid arthritis. Rheumatol Int 35(1):71–79. doi: 10.1007/s00296-014-3056-5 PubMedCrossRefGoogle Scholar
  62. 62.
    Ding R, Li P, Song D, Zhang X, Bi L (2015) Predictors of response to TNF-alpha antagonist therapy in Chinese rheumatoid arthritis. Clin Rheumatol 34(7):1203–1210. doi: 10.1007/s10067-015-2973-3 PubMedCrossRefGoogle Scholar
  63. 63.
    Nakamichi Y, Udagawa N, Takahashi N (2013) IL-34 and CSF-1: similarities and differences. J Bone Miner Metab 31(5):486–495. doi: 10.1007/s00774-013-0476-3 PubMedCrossRefGoogle Scholar
  64. 64.
    Masteller EL, Wong BR (2014) Targeting IL-34 in chronic inflammation. Drug Discov Today 19(8):1212–1216. doi: 10.1016/j.drudis.2014.05.016 PubMedCrossRefGoogle Scholar
  65. 65.
    Garcia S, Hartkamp LM, Malvar-Fernandez B, van Es IE, Lin H, Wong J, Long L, Zanghi JA, Rankin AL, Masteller EL, Wong BR, Radstake TR, Tak PP, Reedquist KA (2016) Colony-stimulating factor (CSF) 1 receptor blockade reduces inflammation in human and murine models of rheumatoid arthritis. Arthritis Res Therapy 18:75. doi: 10.1186/s13075-016-0973-6 CrossRefGoogle Scholar
  66. 66.
    Ciccia F, Alessandro R, Rodolico V, Guggino G, Raimondo S, Guarnotta C, Giardina A, Sireci G, Campisi G, De Leo G, Triolo G (2013) IL-34 is overexpressed in the inflamed salivary glands of patients with Sjogren’s syndrome and is associated with the local expansion of pro-inflammatory CD14(bright)CD16+ monocytes. Rheumatology 52(6):1009–1017. doi: 10.1093/rheumatology/kes435 PubMedCrossRefGoogle Scholar
  67. 67.
    Zhou L, Braat H, Faber KN, Dijkstra G, Peppelenbosch MP (2009) Monocytes and their pathophysiological role in Crohn’s disease. Cell Mol Life Sci 66(2):192–202. doi: 10.1007/s00018-008-8308-7 PubMedCrossRefGoogle Scholar
  68. 68.
    Franze E, Monteleone I, Cupi ML, Mancia P, Caprioli F, Marafini I, Colantoni A, Ortenzi A, Laudisi F, Sica G, Sileri P, Pallone F, Monteleone G (2015) Interleukin-34 sustains inflammatory pathways in the gut. Clin Sci 129(3):271–280. doi: 10.1042/CS20150132 PubMedCrossRefGoogle Scholar
  69. 69.
    Zwicker S, Martinez GL, Bosma M, Gerling M, Clark R, Majster M, Soderman J, Almer S, Bostrom EA (2015) Interleukin 34: a new modulator of human and experimental inflammatory bowel disease. Clin Sci 129(3):281–290. doi: 10.1042/CS20150176 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Tanida S, Ozeki K, Mizoshita T, Tsukamoto H, Katano T, Kataoka H, Kamiya T, Joh T (2015) Managing refractory Crohn’s disease: challenges and solutions. Clin Exp Gastroenterol 8:131–140. doi: 10.2147/CEG.S61868 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Below JE, Gamazon ER, Morrison JV, Konkashbaev A, Pluzhnikov A, McKeigue PM, Parra EJ, Elbein SC, Hallman DM, Nicolae DL, Bell GI, Cruz M, Cox NJ, Hanis CL (2011) Genome-wide association and meta-analysis in populations from Starr County, Texas, and Mexico City identify type 2 diabetes susceptibility loci and enrichment for expression quantitative trait loci in top signals. Diabetologia 54(8):2047–2055. doi: 10.1007/s00125-011-2188-3 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Chang EJ, Lee SK, Song YS, Jang YJ, Park HS, Hong JP, Ko AR, Kim DY, Kim JH, Lee YJ, Heo YS (2014) IL-34 is associated with obesity, chronic inflammation, and insulin resistance. J Clin Endocrinol Metab 99(7):E1263–E1271. doi: 10.1210/jc.2013-4409 PubMedCrossRefGoogle Scholar
  73. 73.
    Zorena K, Jachimowicz-Duda O, Waz P (2016) The cut-off value for interleukin 34 as an additional potential inflammatory biomarker for the prediction of the risk of diabetic complications. Biomarkers 21(3):276–282. doi: 10.3109/1354750X.2016.1138321 PubMedCrossRefGoogle Scholar
  74. 74.
    Marchetti P (2016) Islet inflammation in type 2 diabetes. Diabetologia 59(4):668–672. doi: 10.1007/s00125-016-3875-x PubMedCrossRefGoogle Scholar
  75. 75.
    Moraes-Vieira PM, Castoldi A, Aryal P, Wellenstein K, Peroni OD, Kahn BB (2016) Antigen presentation and T-cell activation are critical for RBP4-induced insulin resistance. Diabetes 65(5):1317–1327. doi: 10.2337/db15-1696 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Huynh D, Akcora D, Malaterre J, Chan CK, Dai XM, Bertoncello I, Stanley ER, Ramsay RG (2013) CSF-1 receptor-dependent colon development, homeostasis and inflammatory stress response. PLoS One 8(2):e56951. doi: 10.1371/journal.pone.0056951 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Wang Y, Colonna M (2014) Interkeukin-34, a cytokine crucial for the differentiation and maintenance of tissue resident macrophages and Langerhans cells. Eur J Immunol 44(6):1575–1581. doi: 10.1002/eji.201344365 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325(5940):612–616. doi: 10.1126/science.1175202 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Segaliny AI, Mohamadi A, Dizier B, Lokajczyk A, Brion R, Lanel R, Amiaud J, Charrier C, Boisson-Vidal C, Heymann D (2015) Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment. Int J Cancer 137(1):73–85. doi: 10.1002/ijc.29376 PubMedCrossRefGoogle Scholar
  80. 80.
    Chen T, Wang X, Guo L, Wu M, Duan Z, Lv J, Tai W, Renganathan H, Didier R, Li J, Sun D, Chen X, He X, Fan J, Young W, Ren Y (2014) Embryonic stem cells promoting macrophage survival and function are crucial for teratoma development. Front Immunol 5:275. doi: 10.3389/fimmu.2014.00275 PubMedPubMedCentralGoogle Scholar
  81. 81.
    DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Hwang ES, Jirstrom K, West BL, Coussens LM (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1 (1):54–67. doi: 10.1158/2159-8274.CD-10-0028 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zhou SL, Hu ZQ, Zhou ZJ, Dai Z, Wang Z, Cao Y, Fan J, Huang XW, Zhou J (2016) miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis. Hepatology 63(5):1560–1575. doi: 10.1002/hep.28445 PubMedCrossRefGoogle Scholar
  83. 83.
    Preisser L, Miot C, Le Guillou-Guillemette H, Beaumont E, Foucher ED, Garo E, Blanchard S, Fremaux I, Croue A, Fouchard I, Lunel-Fabiani F, Boursier J, Roingeard P, Cales P, Delneste Y, Jeannin P (2014) IL-34 and macrophage colony-stimulating factor are overexpressed in hepatitis C virus fibrosis and induce profibrotic macrophages that promote collagen synthesis by hepatic stellate cells. Hepatology 60(6):1879–1890. doi: 10.1002/hep.27328 PubMedCrossRefGoogle Scholar
  84. 84.
    Yu G, Bing Y, Zhu S, Li W, Xia L, Li Y, Liu Z (2015) Activation of the interleukin-34 inflammatory pathway in response to influenza A virus infection. Am J Med Sci 349(2):145–150. doi: 10.1097/MAJ.0000000000000373 PubMedCrossRefGoogle Scholar
  85. 85.
    Gerngross L, Fischer T (2015) Evidence for cFMS signaling in HIV production by brain macrophages and microglia. J Neurovirol 21(3):249–256. doi: 10.1007/s13365-014-0270-6 PubMedCrossRefGoogle Scholar
  86. 86.
    Xu R, Sun HF, Williams DW, Jones AV, Al-Hussaini A, Song B, Wei XQ (2015) IL-34 suppresses Candida albicans induced TNFalpha production in M1 macrophages by downregulating expression of Dectin-1 and TLR2. J Immunol Res 2015:328146. doi: 10.1155/2015/328146 PubMedPubMedCentralGoogle Scholar
  87. 87.
    Esaki H, Ewald DA, Ungar B, Rozenblit M, Zheng X, Xu H, Estrada YD, Peng X, Mitsui H, Litman T, Suarez-Farinas M, Krueger JG, Guttman-Yassky E (2015) Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection. J Allergy Clin Immunol 135(1):153–163. doi: 10.1016/j.jaci.2014.10.037 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ohgidani M, Kato TA, Setoyama D, Sagata N, Hashimoto R, Shigenobu K, Yoshida T, Hayakawa K, Shimokawa N, Miura D, Utsumi H, Kanba S (2014) Direct induction of ramified microglia-like cells from human monocytes: dynamic microglial dysfunction in Nasu-Hakola disease. Sci Rep 4:4957. doi: 10.1038/srep04957 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ma D, Doi Y, Jin S, Li E, Sonobe Y, Takeuchi H, Mizuno T, Suzumura A (2012) TGF-beta induced by interleukin-34-stimulated microglia regulates microglial proliferation and attenuates oligomeric amyloid beta neurotoxicity. Neurosci Lett 529(1):86–91. doi: 10.1016/j.neulet.2012.08.071 PubMedCrossRefGoogle Scholar
  90. 90.
    Mizuno T, Doi Y, Mizoguchi H, Jin S, Noda M, Sonobe Y, Takeuchi H, Suzumura A (2011) Interleukin-34 selectively enhances the neuroprotective effects of microglia to attenuate oligomeric amyloid-beta neurotoxicity. Am J Pathol 179(4):2016–2027. doi: 10.1016/j.ajpath.2011.06.011 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Jin S, Sonobe Y, Kawanokuchi J, Horiuchi H, Cheng Y, Wang Y, Mizuno T, Takeuchi H, Suzumura A (2014) Interleukin-34 restores blood-brain barrier integrity by upregulating tight junction proteins in endothelial cells. PLoS One 9(12):e115981. doi: 10.1371/journal.pone.0115981 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, Zhu L, Alabsi H, Getachew R, Narasimhan R, Wabl R, Fainberg N, James ML, Wong G, Relton J, Gambhir SS, Pollard JW, Wyss-Coray T (2013) Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med 210(1):157–172. doi: 10.1084/jem.20120412 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, Kundig TM, Frei K, Ginhoux F, Merad M, Becher B (2012) Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 37(6):1050–1060. doi: 10.1016/j.immuni.2012.11.001 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kim JI, Turka LA (2015) Transplant tolerance: a new role for IL-34. J Clin Invest 125(10):3751–3753. doi: 10.1172/JCI84010 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, Brahmachary M, Chen HM, Boros P, Rausell-Palamos F, Yun TJ, Riquelme P, Rastrojo A, Aguado B, Stein-Streilein J, Tanaka M, Zhou L, Zhang J, Lowary TL, Ginhoux F, Park CG, Cheong C, Brody J, Turley SJ, Lira SA, Bronte V, Gordon S, Heeger PS, Merad M, Hutchinson J, Chen SH, Ochando J (2015) DC-SIGN(+) macrophages control the induction of transplantation tolerance. Immunity 42(6):1143–1158. doi: 10.1016/j.immuni.2015.05.009 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Edwards JK (2015) Acute kidney injury: IL-34 promotes persistent ischaemia-induced AKI. Nat Rev Nephrol 11(9):504. doi: 10.1038/nrneph.2015.116 PubMedCrossRefGoogle Scholar
  97. 97.
    Wang Y, Chang J, Yao B, Niu A, Kelly E, Breeggemann MC, Abboud Werner SL, Harris RC, Zhang MZ (2015) Proximal tubule-derived colony stimulating factor-1 mediates polarization of renal macrophages and dendritic cells, and recovery in acute kidney injury. Kidney Int 88(6):1274–1282. doi: 10.1038/ki.2015.295 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Zhang MZ, Yao B, Yang S, Jiang L, Wang S, Fan X, Yin H, Wong K, Miyazawa T, Chen J, Chang I, Singh A, Harris RC (2012) CSF-1 signaling mediates recovery from acute kidney injury. J Clin Invest 122(12):4519–4532. doi: 10.1172/JCI60363 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Masaoka T, Shibata H, Ohno R, Katoh S, Harada M, Motoyoshi K, Takaku F, Sakuma A (1990) Double-blind test of human urinary macrophage colony-stimulating factor for allogeneic and syngeneic bone marrow transplantation: effectiveness of treatment and 2-year follow-up for relapse of leukaemia. Br J Haematol 76(4):501–505PubMedCrossRefGoogle Scholar
  100. 100.
    Grayfer L, Robert J (2014) Divergent antiviral roles of amphibian (Xenopus laevis) macrophages elicited by colony-stimulating factor-1 and interleukin-34. J Leukoc Biol 96(6):1143–1153. doi: 10.1189/jlb.4A0614-295R PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Grayfer L, Robert J (2015) Distinct functional roles of amphibian (Xenopus laevis) colony-stimulating factor-1- and interleukin-34-derived macrophages. J Leukoc Biol 98(4):641–649. doi: 10.1189/jlb.4AB0315-117RR PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Foucher ED, Blanchard S, Preisser L, Descamps P, Ifrah N, Delneste Y, Jeannin P (2015) IL-34- and M-CSF-induced macrophages switch memory T cells into Th17 cells via membrane IL-1alpha. Eur J Immunol 45(4):1092–1102. doi: 10.1002/eji.201444606 PubMedCrossRefGoogle Scholar
  103. 103.
    Hutchinson JA, Riquelme P, Sawitzki B, Tomiuk S, Miqueu P, Zuhayra M, Oberg HH, Pascher A, Lutzen U, Janssen U, Broichhausen C, Renders L, Thaiss F, Scheuermann E, Henze E, Volk HD, Chatenoud L, Lechler RI, Wood KJ, Kabelitz D, Schlitt HJ, Geissler EK, Fandrich F (2011) Cutting Edge: Immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J Immunol 187(5):2072–2078. doi: 10.4049/jimmunol.1100762 PubMedCrossRefGoogle Scholar
  104. 104.
    Liu G, Duan K, Ma H, Niu Z, Peng J, Zhao Y (2011) An instructive role of donor macrophages in mixed chimeras in the induction of recipient CD4(+)Foxp3(+) Treg cells. Immunol Cell Biol 89(8):827–835. doi: 10.1038/icb.2011.65 PubMedCrossRefGoogle Scholar
  105. 105.
    Foucher ED, Blanchard S, Preisser L, Garo E, Ifrah N, Guardiola P, Delneste Y, Jeannin P (2013) IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages. antagonistic effects of GM-CSF and IFNgamma. PLoS One 8(2):e56045. doi: 10.1371/journal.pone.0056045 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Li XL, Menoret S, Bezie S, Caron L, Chabannes D, Hill M, Halary F, Angin M, Heslan M, Usal C, Liang L, Guillonneau C, Le Mauff B, Cuturi MC, Josien R, Anegon I (2010) Mechanism and localization of CD8 regulatory T cells in a heart transplant model of tolerance. J Immunol 185(2):823–833. doi: 10.4049/jimmunol.1000120 PubMedCrossRefGoogle Scholar
  107. 107.
    Picarda E, Bezie S, Venturi V, Echasserieau K, Merieau E, Delhumeau A, Renaudin K, Brouard S, Bernardeau K, Anegon I, Guillonneau C (2014) MHC-derived allopeptide activates TCR-biased CD8+ Tregs and suppresses organ rejection. J Clin Invest 124(6):2497–2512. doi: 10.1172/JCI71533 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Riquelme P, Tomiuk S, Kammler A, Fandrich F, Schlitt HJ, Geissler EK, Hutchinson JA (2013) IFN-gamma-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients. Mol Ther 21(2):409–422. doi: 10.1038/mt.2012.168 PubMedCrossRefGoogle Scholar
  109. 109.
    Rietkotter E, Bleckmann A, Bayerlova M, Menck K, Chuang HN, Wenske B, Schwartz H, Erez N, Binder C, Hanisch UK, Pukrop T (2015) Anti-CSF-1 treatment is effective to prevent carcinoma invasion induced by monocyte-derived cells but scarcely by microglia. Oncotarget 6(17):15482–15493. doi: 10.18632/oncotarget.3855 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Wang Y, Bugatti M, Ulland TK, Vermi W, Gilfillan S, Colonna M (2016) Nonredundant roles of keratinocyte-derived IL-34 and neutrophil-derived CSF1 in langerhans cell renewal in the steady state and during inflammation. Eur J Immunol 46(3):552–559. doi: 10.1002/eji.201545917 PubMedCrossRefGoogle Scholar
  111. 111.
    Eda H, Zhang J, Keith RH, Michener M, Beidler DR, Monahan JB (2010) Macrophage-colony stimulating factor and interleukin-34 induce chemokines in human whole blood. Cytokine 52(3):215–220. doi: 10.1016/j.cyto.2010.08.005 PubMedCrossRefGoogle Scholar
  112. 112.
    Felix J, Elegheert J, Gutsche I, Shkumatov AV, Wen Y, Bracke N, Pannecoucke E, Vandenberghe I, Devreese B, Svergun DI, Pauwels E, Vergauwen B, Savvides SN (2013) Human IL-34 and CSF-1 establish structurally similar extracellular assemblies with their common hematopoietic receptor. Structure 21(4):528–539. doi: 10.1016/j.str.2013.01.018 PubMedCrossRefGoogle Scholar
  113. 113.
    Barve RA, Zack MD, Weiss D, Song RH, Beidler D, Head RD (2013) Transcriptional profiling and pathway analysis of CSF-1 and IL-34 effects on human monocyte differentiation. Cytokine 63(1):10–17. doi: 10.1016/j.cyto.2013.04.019 PubMedCrossRefGoogle Scholar
  114. 114.
    Yamane F, Nishikawa Y, Matsui K, Asakura M, Iwasaki E, Watanabe K, Tanimoto H, Sano H, Fujiwara Y, Stanley ER, Kanayama N, Mabbott NA, Magari M, Ohmori H (2014) CSF-1 receptor-mediated differentiation of a new type of monocytic cell with B cell-stimulating activity: its selective dependence on IL-34. J Leukoc Biol 95(1):19–31. doi: 10.1189/jlb.0613311 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Nandi S, Gokhan S, Dai XM, Wei S, Enikolopov G, Lin H, Mehler MF, Stanley ER (2012) The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev biol 367(2):100–113. doi: 10.1016/j.ydbio.2012.03.026 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Okubo M, Yamanaka H, Kobayashi K, Dai Y, Kanda H, Yagi H, Noguchi K (2016) Macrophage-colony stimulating factor derived from injured primary afferent induces proliferation of spinal microglia and neuropathic pain in rats. PLoS One 11(4):e0153375. doi: 10.1371/journal.pone.0153375 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Garcia S, Hartkamp LM, Malvar-Fernandez B, van Es IE, Lin H, Wong J, Long L, Zanghi JA, Rankin AL, Masteller EL, Wong BR, Radstake TR, Tak PP, Reedquist KA (2015) Colony-stimulating factor (CSF) 1 receptor blockade reduces inflammation in human and murine models of rheumatoid arthritis. Arthr Res Ther 18:75. doi: 10.1186/s13075-016-0973-6 CrossRefGoogle Scholar
  118. 118.
    Franze E, Marafini I, De Simone V, Monteleone I, Caprioli F, Colantoni A, Ortenzi A, Crescenzi F, Izzo R, Sica G, Sileri P, Rossi P, Pallone F, Monteleone G (2016) Interleukin-34 induces cc-chemokine ligand 20 in gut epithelial cells. J Crohn’s Colitis 10(1):87–94. doi: 10.1093/ecco-jcc/jjv181 CrossRefGoogle Scholar
  119. 119.
    Shoji H, Yoshio S, Mano Y, Kumagai E, Sugiyama M, Korenaga M, Arai T, Itokawa N, Atsukawa M, Aikata H, Hyogo H, Chayama K, Ohashi T, Ito K, Yoneda M, Nozaki Y, Kawaguchi T, Torimura T, Abe M, Hiasa Y, Fukai M, Kamiyama T, Taketomi A, Mizokami M, Kanto T (2016) Interleukin-34 as a fibroblast-derived marker of liver fibrosis in patients with non-alcoholic fatty liver disease. Sci rep 6:28814. doi: 10.1038/srep28814 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wang T, Kono T, Monte MM, Kuse H, Costa MM, Korenaga H, Maehr T, Husain M, Sakai M, Secombes CJ (2013) Identification of IL-34 in teleost fish: differential expression of rainbow trout IL-34, MCSF1 and MCSF2, ligands of the MCSF receptor. Mol Immunol 53(4):398–409. doi: 10.1016/j.molimm.2012.09.008 PubMedCrossRefGoogle Scholar
  121. 121.
    Gerngross L, Lehmicke G, Belkadi A, Fischer T (2015) Role for cFMS in maintaining alternative macrophage polarization in SIV infection: implications for HIV neuropathogenesis. J Neuroinflammation 12:58. doi: 10.1186/s12974-015-0272-1 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Wang B, Xu W, Tan M, Xiao Y, Yang H, Xia TS (2015) Integrative genomic analyses of a novel cytokine, interleukin-34 and its potential role in cancer prediction. Intern J Mol Med 35(1):92–102. doi: 10.3892/ijmm.2014.2001 Google Scholar
  123. 123.
    Booker BE, Clark RS, Pellom ST, Adunyah SE (2015) Interleukin-34 induces monocytic-like differentiation in leukemia cell lines. Int J Biochem Mol Biol 6(1):1–16PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.INSERM UMR1064, Center for Research in Transplantation and Immunology-ITUNUniversité de NantesNantes Cedex 01France
  2. 2.Institut de Transplantation Urologie Néphrologie (ITUN), CHU NantesNantesFrance

Personalised recommendations