Skip to main content

Advertisement

Log in

The role of neuropeptides in adverse myocardial remodeling and heart failure

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In addition to traditional neurotransmitters of the sympathetic and parasympathetic nervous systems, the heart also contains numerous neuropeptides. These neuropeptides not only modulate the effects of neurotransmitters, but also have independent effects on cardiac function. While in most cases the physiological actions of these neuropeptides are well defined, their contributions to cardiac pathology are less appreciated. Some neuropeptides are cardioprotective, some promote adverse cardiac remodeling and heart failure, and in the case of others their functions are unclear. Some have both cardioprotective and adverse effects depending on the specific cardiac pathology and progression of that pathology. In this review, we briefly describe the actions of several neuropeptides on normal cardiac physiology, before describing in more detail their role in adverse cardiac remodeling and heart failure. It is our goal to bring more focus toward understanding the contribution of neuropeptides to the pathogenesis of heart failure, and to consider them as potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Habecker BA, Anderson ME, Birren SJ, Fukuda K, Herring N, Hoover DB, Kanazawa H, Paterson DJ, Ripplinger CM (2016) Molecular and cellular neurocardiology: Development, and cellular and molecular adaptations to heart disease. J Physiol 594:3853–3875

    Article  CAS  PubMed  Google Scholar 

  2. Gibbins IL, Furness JB, Costa M, Macintyre I, Hillyard CJ, Girgis S (1985) Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neurosci Lett 57:125–130

    Article  CAS  PubMed  Google Scholar 

  3. Alevizaki M, Shiraishi A, Rassool FV, Ferrier GJ, Macintyre I, Legon S (1986) The calcitonin-like sequence of the beta CGRP gene. FEBS Lett 206:47–52

    Article  CAS  PubMed  Google Scholar 

  4. Steenbergh PH, Hoppener JW, Zandberg J, Visser A, Lips CJ, Jansz HS (1986) Structure and expression of the human calcitonin/CGRP genes. FEBS Lett 209:97–103

    Article  CAS  PubMed  Google Scholar 

  5. Amara SG, Arriza JL, Leff SE, Swanson LW, Evans RM, Rosenfeld MG (1985) Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science 229:1094–1097

    Article  CAS  PubMed  Google Scholar 

  6. Morris HR, Panico M, Etienne T, Tippins J, Girgis SI, Macintyre I (1984) Isolation and characterization of human calcitonin gene-related peptide. Nature 308:746–748

    Article  CAS  PubMed  Google Scholar 

  7. Brain SD, Grant AD (2004) Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev 84:903–934

    Article  CAS  PubMed  Google Scholar 

  8. Mulderry PK, Ghatei MA, Bishop AE, Allen YS, Polak JM, Bloom SR (1985) Distribution and chromatographic characterisation of CGRP-like immunoreactivity in the brain and gut of the rat. Regul Pept 12:133–143

    Article  CAS  PubMed  Google Scholar 

  9. Fluhmann B, Muff R, Hunziker W, Fischer JA, Born W (1995) A human orphan calcitonin receptor-like structure. Biochem Biophys Res Commun 206:341–347

    Article  CAS  PubMed  Google Scholar 

  10. Mclatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPS regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339

    Article  CAS  PubMed  Google Scholar 

  11. Muff R, Leuthauser K, Buhlmann N, Foord SM, Fischer JA, Born W (1998) Receptor activity modifying proteins regulate the activity of a calcitonin gene-related peptide receptor in rabbit aortic endothelial cells. FEBS Lett 441:366–368

    Article  CAS  PubMed  Google Scholar 

  12. Choksi T, Hay DL, Legon S, Poyner DR, Hagner S, Bloom SR, Smith DM (2002) Comparison of the expression of calcitonin receptor-like receptor (crlr) and receptor activity modifying proteins (RAMPS) with cgrp and adrenomedullin binding in cell lines. Br J Pharmacol 136:784–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Evans BN, Rosenblatt MI, Mnayer LO, Oliver KR, Dickerson IM (2000) CGRP-RCP, a novel protein required for signal transduction at calcitonin gene-related peptide and adrenomedullin receptors. J Biol Chem 275:31438–31443

    Article  CAS  PubMed  Google Scholar 

  14. Russell FA, King R, Smillei SJ, Kodji X, Brain SD (2014) Calcitonin gene-related peptide: Physiology and pathophysiology. Physiol Rev 94:1099–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ando K, Pegram BL, Frohlich ED (1990) Hemodynamic effects of calcitonin gene-related peptide in spontaneously hypertensive rats. Am J Physiol 258:R425–R429

    CAS  PubMed  Google Scholar 

  16. Gennari C, Nami R, Agnusdei D, Fischer JA (1990) Improved cardiac performance with human calcitonin gene related peptide in patients with congestive heart failure. Cardiovasc Res 24:239–241

    Article  CAS  PubMed  Google Scholar 

  17. Stevenson RN, Roberts RH, Timmis AD (1992) Calcitonin gene-related peptide: a haemodynamic study of a novel vasodilator in patients with severe chronic heart failure. Int J Cardiol 37:407–414

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Levick SP, Dipette DJ, Janicki JS, Supowit SC (2013) Alpha-calcitonin gene-related peptide is protective against pressure overload-induced heart failure. Regul Pept 185C:20–28

    Article  CAS  Google Scholar 

  19. Dubois-Rande JL, Merlet P, Benvenuti C, Sediame S, Macquin-Mavier I, Chabrier E, Braquet P, Castaigne A, Adnot S (1992) Effects of calcitonin gene-related peptide on cardiac contractility, coronary hemodynamics and myocardial energetics in idiopathic dilated cardiomyopathy. Am J Cardiol 70:906–912

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Peng J, Wang C, Deng H, Li Y (2011) Calcitonin gene-related peptide suppresses isoprenaline-induced cardiomyocyte apoptosis through regulation of microrna-1 and microrna-133a expression. Zhong Nan Da Xue Xue Bao Yi Xue Ban 36:964–971

    CAS  PubMed  Google Scholar 

  21. Mair J, Lechleitner P, Langle T, Wiedermann C, Dienstl F, Saria A (1990) Plasma CGRP in acute myocardial infarction. Lancet 335:168

    Article  CAS  PubMed  Google Scholar 

  22. Roudenok V, Gutjar L, Antipova V, Rogov Y (2001) Expression of vasoactive intestinal polypeptide and calcitonin gene-related peptide in human stellate ganglia after acute myocardial infarction. Ann Anat 183:341–344

    Article  CAS  PubMed  Google Scholar 

  23. Huang R, Karve A, Shah I, Bowers MC, Dipette DJ, Supowit SC, Abela GS (2008) Deletion of the mouse alpha-calcitonin gene-related peptide gene increases the vulnerability of the heart to ischemia–reperfusion injury. Am J Physiol Heart Circ Physiol 294:H1291–H1297

    Article  CAS  PubMed  Google Scholar 

  24. Li JZ, Peng J, Xiao L, Zhang YS, Liao MC, Li XH, Hu CP, Deng HW, Li YJ (2010) Reversal of isoprenaline-induced cardiac remodeling by rutaecarpine via stimulation of calcitonin gene-related peptide production. Can. J Physiol Pharmacol 88:949–959

    Article  CAS  Google Scholar 

  25. Von Euler US, Gaddum JH (1931) An unidentified depressor substance in certain tissue extracts. J Physiol 72:74–87

    Article  Google Scholar 

  26. Steinhoff MS, Von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW (2014) Tachykinins and their receptors: Contributions to physiological control and the mechanisms of disease. Physiol Rev 94:265–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pennefather JN, Lecci A, Candenas ML, Patak E, Pinto FM, Maggi CA (2004) Tachykinins and tachykinin receptors: a growing family. Life Sci 74:1445–1463

    Article  CAS  PubMed  Google Scholar 

  28. Page NM (2004) Hemokinins and endokinins. Cell Mol Life Sci 61:1652–1663

    Article  CAS  PubMed  Google Scholar 

  29. Dalsgaard CJ, Franco-Cereceda A, Saria A, Lundberg JM, Theodorsson-Norheim E, Hokfelt T (1986) Distribution and origin of substance P- and neuropeptide Y-immunoreactive nerves in the guinea-pig heart. Cell Tissue Res 243:477–485

    Article  CAS  PubMed  Google Scholar 

  30. Hougland MW, Hoover DB (1983) Detection of substance P-like immunoreactivity in nerve fibers in the heart of guinea-pigs but not rats. J Auton Nerv Syst 8:295–301

    Article  CAS  PubMed  Google Scholar 

  31. Papka RE, Urban L (1987) Distribution, origin and sensitivity to capsaicin of primary afferent substance P-immunoreactive nerves in the heart. Acta Physiol Hung 69:459–468

    CAS  PubMed  Google Scholar 

  32. Reinecke M, Weihe E, Forssmann WG (1980) Substance P-immunoreactive nerve fibers in the heart. Neurosci Lett 20:265–269

    Article  CAS  PubMed  Google Scholar 

  33. Wharton J, Polak JM, Mcgregor GP, Bishop AE, Bloom SR (1981) The distribution of substrate P-like immunoreactive nerves in the guinea-pig heart. Neuroscience 6:2193–2204

    Article  CAS  PubMed  Google Scholar 

  34. Rysevaite K, Saburkina I, Pauziene N, Vaitkevicius R, Noujaim SF, Jalife J, Pauza DH (2011) Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm 8:731–738

    Article  PubMed  PubMed Central  Google Scholar 

  35. Milner P, Ralevic V, Hopwood AM, Feher E, Lincoln J, Kirkpatrick KA, Burnstock G (1989) Ultrastructural localisation of substance P and choline acetyltransferase in endothelial cells of rat coronary artery and release of substance P and acetylcholine during hypoxia. Experientia 45:121–125

    Article  CAS  PubMed  Google Scholar 

  36. Gerard NP, Bao L, Xiao-Ping H, Gerard C (1993) Molecular aspects of the tachykinin receptors. Regul Pept 43:21–35

    Article  CAS  PubMed  Google Scholar 

  37. Gerard NP, Garraway LA, Eddy RL Jr, Shows TB, Iijima H, Paquet JL, Gerard C (1991) Human substance P receptor (NK-1): Organization of the gene, chromosome localization, and functional expression of cDNA clones. BioChemistry 30:10640–10646

    Article  CAS  PubMed  Google Scholar 

  38. Tuluc F, Lai JP, Kilpatrick LE, Evans DL, Douglas SD (2009) Neurokinin 1 receptor isoforms and the control of innate immunity. Trends Immunol 30:271–276

    Article  CAS  PubMed  Google Scholar 

  39. Li H, Leeman SE, Slack BE, Hauser G, Saltsman WS, Krause JE, Blusztajn JK, Boyd ND (1997) A substance P (neurokinin-1) receptor mutant carboxyl-terminally truncated to resemble a naturally occurring receptor isoform displays enhanced responsiveness and resistance to desensitization. Proc Natl Acad Sci USA 94:9475–9480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Caberlotto L, Hurd YL, Murdock P, Wahlin JP, Melotto S, Corsi M, Carletti R (2003) Neurokinin 1 receptor and relative abundance of the short and long isoforms in the human brain. Eur J Neurosci 17:1736–1746

    Article  PubMed  Google Scholar 

  41. Mistrova E, Kruzliak P, Chottova DM (2016) Role of substance P in the cardiovascular system. Neuropeptides 58:41–51

    Article  CAS  PubMed  Google Scholar 

  42. Ustinova EE, Bergren D, Schultz HD (1995) Neuropeptide depletion impairs postischemic recovery of the isolated rat heart: Role of substance P. Cardiovasc Res 30:55–63

    Article  CAS  PubMed  Google Scholar 

  43. Wang L, Wang DH (2005) TRPV1 gene knockout impairs postischemic recovery in isolated perfused heart in mice. Circulation 112:3617–3623

    Article  CAS  PubMed  Google Scholar 

  44. Zhong B, Wang DH (2007) TRPV1 gene knockout impairs preconditioning protection against myocardial injury in isolated perfused hearts in mice. Am J Physiol Heart Circ Physiol 293:H1791–H1798

    Article  CAS  PubMed  Google Scholar 

  45. Ren JY, Song JX, Lu MY, Chen H (2011) Cardioprotection by ischemic postconditioning is lost in isolated perfused heart from diabetic rats: Involvement of transient receptor potential vanilloid 1, calcitonin gene-related peptide and substance P. Regul Pept 169:49–57

    Article  CAS  PubMed  Google Scholar 

  46. Jubair S, Li J, Dehlin HM, Manteufel EJ, Goldspink PH, Levick SP, Janicki JS (2015) Substance P induces cardioprotection in ischemia–reperfusion via activation of AKT. Am J Physiol Heart Circ Physiol 309:H676–H684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ng LL, Sandhu JK, Narayan H et al (2014) Pro-substance P for evaluation of risk in acute myocardial infarction. J Am Coll Cardiol 64:1698–1707

    Article  CAS  PubMed  Google Scholar 

  48. Ejaz A, Logerfo FW, Khabbaz K, Pradhan L (2011) Expression of neuropeptide Y, substance P, and their receptors in the right atrium of diabetic patients. Clin Transl Sci 4:346–350

    Article  CAS  PubMed  Google Scholar 

  49. Yu Y, Liu L, Jiang JY, Qu XF, Yu G (2012) Parasympathetic and substance P-immunoreactive nerve denervation in atrial fibrillation models. Cardiovasc Pathol 21:39–45

    Article  CAS  PubMed  Google Scholar 

  50. Guler N, Ozkara C, Dulger H, Kutay V, Sahin M, Erbilen E, Gumrukcuoglu HA (2007) Do cardiac neuropeptides play a role in the occurrence of atrial fibrillation after coronary bypass surgery? Ann Thorac Surg 83:532–537

    Article  PubMed  Google Scholar 

  51. Mak IT, Chmielinska JJ, Kramer JH, Spurney CF, Weglicki WB (2011) Loss of neutral endopeptidase activity contributes to neutrophil activation and cardiac dysfunction during chronic hypomagnesemia: protection by substance P receptor blockade. Exp. Clin Cardiol 16:121–124

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Weglicki WB, Phillips TM (1992) Pathobiology of magnesium deficiency: a cytokine/neurogenic inflammation hypothesis. Am. J Physiol 263:R734–R737

    CAS  Google Scholar 

  53. Weglicki WB, Mak IT, Phillips TM (1994) Blockade of cardiac inflammation in Mg2 + deficiency by substance P receptor inhibition. Circ Res 74:1009–1013

    Article  CAS  PubMed  Google Scholar 

  54. D’souza M, Garza MA, Xie M, Weinstock J, Xiang Q, Robinson P (2007) Substance P is associated with heart enlargement and apoptosis in murine dilated cardiomyopathy induced by taenia crassiceps infection. J Parasitol 93:1121–1127

    Article  PubMed  Google Scholar 

  55. Robinson P, Garza A, Moore J, Eckols TK, Parti S, Balaji V, Vallejo J, Tweardy DJ (2009) Substance P is required for the pathogenesis of EMCV infection in mice. Int J Clin Exp Med 2:76–86

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Melendez GC, Li J, Law BA, Janicki JS, Supowit SC, Levick SP (2011) Substance P induces adverse myocardial remodeling via a mechanism involving cardiac mast cells. Cardiovasc Res 92:420–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dehlin HM, Manteufel EJ, Monroe AL, Reimer MH Jr, Levick SP (2013) Substance P acting via the neurokinin-1 receptor regulates adverse myocardial remodeling in a rat model of hypertension. Int J Cardiol 168:4643–4651

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kumaran C, Shivakumar K (2002) Calcium- and superoxide anion-mediated mitogenic action of substance P on cardiac fibroblasts. AJP—heart and circulatory. Physiology 282:H1855–H1862

    CAS  Google Scholar 

  59. Melendez GC, Manteufel EJ, Dehlin HM, Register TC, Levick SP (2015) Non-human primate and rat cardiac fibroblasts show similar extracellular matrix-related and cellular adhesion gene responses to substance P. Heart Lung Circ 24:395–403

    Article  PubMed  Google Scholar 

  60. Dehlin HM, Levick SP (2014) Substance P in heart failure: The good and the bad. Int J Cardiol 170:270–277

    Article  PubMed  Google Scholar 

  61. Church DJ, Arkinstall SJ, Vallotton MB, Chollet A, Kawashima E, Lang U (1996) Stimulation of atrial natriuretic peptide release by neurokinins in neonatal rat ventricular cardiomyocytes. Am J Physiol 270:H935–H944

    CAS  PubMed  Google Scholar 

  62. Weglicki WB, Kramer JH, Spurney CF, Chmielinska JJ, Mak IT (2012) The EGFR tyrosine kinase inhibitor tyrphostin AG-1478 causes hypomagnesemia and cardiac dysfunction. Can J Physiol Pharmacol 90:1145–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mak IT, Kramer JH, Chmielinska JJ, Spurney CF, Weglicki WB (2015) EGFR-TKI, erlotinib, causes hypomagnesemia, oxidative stress, and cardiac dysfunction: Attenuation by NK-1 receptor blockade. J Cardiovasc Pharmacol 65:54–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Angsutararux P, Luanpitpong S, Issaragrisil S (2015) Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress. Oxid Med Cell Longev 2015:795602

    Article  PubMed  PubMed Central  Google Scholar 

  65. Robinson P, Kasembeli M, Bharadwaj U, Engineer N, Eckols KT, Tweardy DJ (2016) Substance P receptor signaling mediates doxorubicin-induced cardiomyocyte apoptosis and triple-negative breast cancer chemoresistance. Biomed. Res Int 2016:1959270

    Google Scholar 

  66. Munoz M, Covenas R (2013) Safety of neurokinin-1 receptor antagonists. Expert Opin Drug Saf 12:673–685

    Article  CAS  PubMed  Google Scholar 

  67. Campbell G, Gibbins IL, Morris JL, Furness JB, Costa M, Oliver JR, Beardsley AM, Murphy R (1982) Somatostatin is contained in and released from cholinergic nerves in the heart of the toad bufo marinus. Neuroscience 7:2013–2023

    Article  CAS  PubMed  Google Scholar 

  68. Day SM, Gu J, Polak JM, Bloom SR (1985) Somatostatin in the human heart and comparison with guinea pig and rat heart. Br Heart J 53:153–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith WH, Nair RU, Adamson D, Kearney MT, Ball SG, Balmforth AJ (2005) Somatostatin receptor subtype expression in the human heart: differential expression by myocytes and fibroblasts. J Endocrinol 187:379–386

    Article  CAS  PubMed  Google Scholar 

  70. Ohmura T, Nishio M, Kigoshi S, Muramatsu I (1990) Somatostatin decreases the calcium inward current in guinea-pig atria. Br J Pharmacol 99:587–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lewis DL, Clapham DE (1989) Somatostatin activates an inwardly rectifying K+ channel in neonatal rat atrial cells. Pflugers Arch 414:492–494

    Article  CAS  PubMed  Google Scholar 

  72. Franco-Cereceda A, Lundberg JM, Hokfelt T (1986) Somatostatin: an inhibitory parasympathetic transmitter in the human heart? Eur J Pharmacol 132:101–102

    Article  CAS  PubMed  Google Scholar 

  73. Rettig R, Geist R, Sauer U, Rohmeiss P, Unger T (1989) Central effects of somatostatin: Pressor response, avp release, and sympathoinhibition. Am J Physiol 257:R588–R594

    CAS  PubMed  Google Scholar 

  74. Brown MR (1988) Somatostatin-28 effects on central nervous system regulation of vasopressin secretion and blood pressure. Neuroendocrinology 47:556–562

    Article  CAS  PubMed  Google Scholar 

  75. Hirai S, Hasegawa J, Mashiba H (1989) Positive inotropic effect of somatostatin in guinea-pig ventricular muscles. J Mol Cell Cardiol 21:607–616

    Article  CAS  PubMed  Google Scholar 

  76. Erbas T, Usman A, Erbas B, Varoglu E, Aras T, Bekdik C (1993) Short-term effects of somatostatin analogue (SMS 201–995) on left ventricular function in healthy persons: a scintigraphic study. J Endocrinol Invest 16:857–861

    Article  CAS  PubMed  Google Scholar 

  77. Grant MB, Wargovich TJ, Ellis EA, Caballero S, Mansour M, Pepine CJ (1994) Localization of insulin-like growth factor I and inhibition of coronary smooth muscle cell growth by somatostatin analogues in human coronary smooth muscle cells. A potential treatment for restenosis? Circulation 89:1511–1517

    Article  CAS  PubMed  Google Scholar 

  78. Gunal AI, Isik A, Celiker H, Eren O, Celebi H, Gunal SY, Luleci C (1996) Short term reduction of left ventricular mass in primary hypertrophic cardiomyopathy by octreotide injections. Heart 76:418–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Demirtas E, Sag C, Kursaklioglu H, Uzun M, Uzbay T, Tore HF, Kose S, Genc C, Demirkan D (1998) Effects of octreotide in patients with hypertrophic obstructive cardiomyopathy. Jpn Heart J 39:173–181

    Article  CAS  PubMed  Google Scholar 

  80. Leszczynski D, Josephs MD, Fournier RS, Foegh ML (1993) Angiopeptin, the octapeptide analogue of somatostatin, decreases rat heart endothelial cell adhesiveness for mononuclear cells. Regul Pept 43:131–140

    Article  CAS  PubMed  Google Scholar 

  81. Webb SC, Krikler DM, Hendry WG, Adrian TE, Bloom SR (1986) Electrophysiological actions of somatostatin on the atrioventricular junction in sinus rhythm and reentry tachycardia. Br Heart J 56:236–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Merola B, Cittadini A, Colao A, Ferone D, Fazio S, Sabatini D, Biondi B, Sacca L, Lombardi G (1993) Chronic treatment with the somatostatin analog octreotide improves cardiac abnormalities in acromegaly. J Clin Endocrinol Metab 77:790–793

    CAS  PubMed  Google Scholar 

  83. Bogazzi F, Lombardi M, Strata E et al (2010) Effects of somatostatin analogues on acromegalic cardiomyopathy: results from a prospective study using cardiac magnetic resonance. J Endocrinol Invest 33:103–108

    Article  CAS  PubMed  Google Scholar 

  84. Bogazzi F, Di Bello V, Palagi C et al (2005) Improvement of intrinsic myocardial contractility and cardiac fibrosis degree in acromegalic patients treated with somatostatin analogues: a prospective study. Clin Endocrinol 62:590–596

    Article  CAS  Google Scholar 

  85. Comunello A, Dassie F, Martini C et al (2015) Heart rate variability is reduced in acromegaly patients and improved by treatment with somatostatin analogues. Pituitary 18:525–534

    Article  CAS  PubMed  Google Scholar 

  86. Russell FD, Meyers D, Galbraith AJ, Bett N, Toth I, Kearns P, Molenaar P (2003) Elevated plasma levels of human urotensin-II immunoreactivity in congestive heart failure. Am J Physiol Heart Circ Physiol 285:H1576–H1581

    Article  CAS  PubMed  Google Scholar 

  87. Bohm F, Pernow J (2002) Urotensin II evokes potent vasoconstriction in humans in vivo. Br J Pharmacol 135:25–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Malagon MM, Molina M, Gahete MD et al (2008) Urotensin II and urotensin II-related peptide activate somatostatin receptor subtypes 2 and 5. Peptides 29:711–720

    Article  CAS  PubMed  Google Scholar 

  89. Ames RS, Sarau HM, Chambers JK et al (1999) Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 401:282–286

    Article  CAS  PubMed  Google Scholar 

  90. Lapp H, Boerrigter G, Costello-Boerrigter LC, Jaekel K, Scheffold T, Krakau I, Schramm M, Guelker H, Stasch JP (2004) Elevated plasma human urotensin-II-like immunoreactivity in ischemic cardiomyopathy. Int J Cardiol 94:93–97

    Article  PubMed  Google Scholar 

  91. Tzanidis A, Hannan RD, Thomas WG, Onan D, Autelitano DJ, See F, Kelly DJ, Gilbert RE, Krum H (2003) Direct actions of urotensin II on the heart: Implications for cardiac fibrosis and hypertrophy. Circ Res 93:246–253

    Article  CAS  PubMed  Google Scholar 

  92. Zhang Y, Li J, Cao J, Chen J, Yang J, Zhang Z, Du J, Tang C (2002) Effect of chronic hypoxia on contents of urotensin II and its functional receptors in rat myocardium. Heart Vessels 16:64–68

    Article  PubMed  Google Scholar 

  93. Dai HY, Guo XG, Ge ZM, Li ZH, Yu XJ, Tang MX, Zhang Y (2008) Elevated expression of urotensin II and its receptor in diabetic cardiomyopathy. J Diabetes Complications 22:137–143

    Article  PubMed  Google Scholar 

  94. Ross B, Mckendy K, Giaid A (2010) Role of urotensin II in health and disease. Am J Physiol Regul Integr Comp Physiol 298:R1156–R1172

    Article  CAS  PubMed  Google Scholar 

  95. Henning RJ, Sawmiller DR (2001) Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc Res 49:27–37

    Article  CAS  PubMed  Google Scholar 

  96. Forssmann WG, Triepel J, Daffner C, Heym C, Cuevas P, Noble MI, Yanaihara N (1988) Vasoactive intestinal peptide in the heart. Ann N Y Acad Sci 527:405–420

    Article  CAS  PubMed  Google Scholar 

  97. Dvorakova MC, Pfeil U, Kuncova J et al (2006) Down-regulation of vasoactive intestinal peptide and altered expression of its receptors in rat diabetic cardiomyopathy. Cell Tissue Res 323:383–393

    Article  CAS  PubMed  Google Scholar 

  98. Rigel DF (1988) Effects of neuropeptides on heart rate in dogs: comparison of VIP, PHI, NPY, CGRP, and NT. Am J Physiol 255:H311–H317

    CAS  PubMed  Google Scholar 

  99. Rigel DF, Grupp IL, Balasubramaniam A, Grupp G (1989) Contractile effects of cardiac neuropeptides in isolated canine atrial and ventricular muscles. Am J Physiol 257:H1082–H1087

    CAS  PubMed  Google Scholar 

  100. Sawmiller DR, Ashtari M, Urueta H, Leschinsky M, Henning RJ (2006) Mechanisms of vasoactive intestinal peptide-elicited coronary vasodilation in the isolated perfused rat heart. Neuropeptides 40:349–355

    Article  CAS  PubMed  Google Scholar 

  101. Nicholls DP, Riley M, Elborn JS, Stanford CF, Shaw C, Mckillop JM, Buchanan KD (1992) Regulatory peptides in the plasma of patients with chronic cardiac failure at rest and during exercise. Eur Heart J 13:1399–1404

    Article  CAS  PubMed  Google Scholar 

  102. Kupari M, Mikkola TS, Turto H, Lommi J, Ylikorkala O (2006) Vasoactive intestinal peptide—release from the heart and response in heart failure due to left ventricular pressure overload. Eur J Heart Fail 8:361–365

    Article  CAS  PubMed  Google Scholar 

  103. Lucia P, Caiola S, Coppola A, Manetti LL, Maroccia E, Buongiorno AM, De Martinis C (2003) Vasoactive intestinal peptide (VIP): a new neuroendocrine marker of clinical progression in chronic heart failure? Clin Endocrinol (Oxf) 59:723–727

    Article  CAS  Google Scholar 

  104. Alston EN, Parrish DC, Hasan W, Tharp K, Pahlmeyer L, Habecker BA (2011) Cardiac ischemia–reperfusion regulates sympathetic neuropeptide expression through gp130-dependent and independent mechanisms. Neuropeptides 45:33–42

    Article  CAS  PubMed  Google Scholar 

  105. Kalfin R, Maulik N, Engelman RM, Cordis GA, Milenov K, Kasakov L, Das DK (1994) Protective role of intracoronary vasoactive intestinal peptide in ischemic and reperfused myocardium. J Pharmacol Exp Ther 268:952–958

    CAS  PubMed  Google Scholar 

  106. Szema AM, Hamidi SA, Smith SD, Benveniste H (2013) VIP gene deletion in mice causes cardiomyopathy associated with upregulation of heart failure genes. PLoS One 8:e61449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Szema AM, Hamidi SA (2014) Gene deletion of VIP leads to increased mortality associated with progressive right ventricular hypertrophy. J Cardiovasc Dis 2:131–136

    PubMed  PubMed Central  Google Scholar 

  108. Szema AM, Dang S, Li JC (2015) Emerging novel therapies for heart failure. Clin Med Insights Cardiol 9:57–64

    Article  PubMed  PubMed Central  Google Scholar 

  109. Brack KE, Coote JH, Ng GA (2011) Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation. Cardiovasc Res 91:437–446

    Article  CAS  PubMed  Google Scholar 

  110. Osadchii OE (2015) Emerging role of neurotensin in regulation of the cardiovascular system. Eur J Pharmacol 762:184–192

    Article  CAS  PubMed  Google Scholar 

  111. Ceconi C, Condorelli E, Quinzanini M, Rodella A, Ferrari R, Harris P (1989) Noradrenaline, atrial natriuretic peptide, bombesin and neurotensin in myocardium and blood of rats in congestive cardiac failure. Cardiovasc Res 23:674–682

    Article  CAS  PubMed  Google Scholar 

  112. Osadchii O, Norton G, Deftereos D, Badenhorst D, Woodiwiss A (2005) Impact and mechanisms of action of neurotensin on cardiac contractility in the rat left ventricle. Eur J Pharmacol 520:108–117

    Article  CAS  PubMed  Google Scholar 

  113. Reinecke M, Weihe E, Carraway RE, Leeman SE, Forssmann WG (1982) Localization of neurotensin immunoreactive nerve fibers in the guinea-pig heart: evidence derived by immunohistochemistry, radioimmunoassay and chromatography. Neuroscience 7:1785–1795

    Article  CAS  PubMed  Google Scholar 

  114. Florholmen G, Andersson KB, Yndestad A, Austbo B, Henriksen UL, Christensen G (2004) Leukaemia inhibitory factor alters expression of genes involved in rat cardiomyocyte energy metabolism. Acta Physiol Scand 180:133–142

    Article  CAS  PubMed  Google Scholar 

  115. Quirion R, Rioux F, Regoli D, St Pierre S (1980) Selective blockade of neurotensin-induced coronary vessel constriction in perfused rat hearts by a neurotensin analogue. Eur J Pharmacol 61:309–312

    Article  CAS  PubMed  Google Scholar 

  116. Quirion R, Rioux F, Regoli D, St Pierre S (1980) Pharmacological studies of neurotensin, several fragments and analogous in the isolated perfused rat heart. Eur J Pharmacol 66:257–266

    Article  CAS  PubMed  Google Scholar 

  117. Bachelard H, St Pierre S, Rioux F (1986) The coronary vasodilator effect of neurotensin in the guinea pig isolated heart. Peptides 7:431–435

    Article  CAS  PubMed  Google Scholar 

  118. Ertl G, Bauer B, Becker HH, Rose G (1993) Effects of neurotensin and neuropeptide Y on coronary circulation and myocardial function in dogs. Am J Physiol 264:H1062–H1068

    CAS  PubMed  Google Scholar 

  119. Quirion R, Rioux F, Regoli D (1978) Chronotropic and inotropic effects of neurotensin on spontaneously beating auricles. Can. J Physiol Pharmacol 56:671–673

    Article  CAS  Google Scholar 

  120. Bachelard H, St Pierre S, Rioux F (1985) The chronotropic action of neurotensin in the guinea pig isolated heart. Peptides 6:841–845

    Article  CAS  PubMed  Google Scholar 

  121. Osadchii O, Norton G, Deftereos D, Muller D, Woodiwiss A (2006) Impact of chronic beta-adrenoceptor activation on neurotensin-induced myocardial effects in rats. Eur J Pharmacol 553:246–253

    Article  CAS  PubMed  Google Scholar 

  122. Osadchii O, Woodiwiss A, Deftereos D, Norton G (2006) Neurotensin-induced myocardial noradrenergic effects in spontaneously hypertensive rats. J Cardiovasc Pharmacol 47:221–227

    Article  CAS  PubMed  Google Scholar 

  123. Rioux F, Kerouac R, St-Pierre S (1985) Characterization of the histamine releasing effect of neurotensin in the rat heart. Peptides 6:121–125

    Article  CAS  PubMed  Google Scholar 

  124. Levick SP, Mclarty JL, Murray DB, Freeman RM, Carver WE, Brower GL (2009) Cardiac mast cells mediate left ventricular fibrosis in the hypertensive rat heart. Hypertension 53:1041–1047

    Article  CAS  PubMed  Google Scholar 

  125. Levick SP, Melendez GC, Plante E, Mclarty JL, Brower GL, Janicki JS (2011) Cardiac mast cells: The centrepiece in adverse myocardial remodelling. Cardiovasc Res 89:12–19

    Article  CAS  PubMed  Google Scholar 

  126. Mclarty JL, Melendez GC, Brower GL, Janicki JS, Levick SP (2011) Tryptase/protease-activated receptor 2 interactions induce selective mitogen-activated protein kinase signaling and collagen synthesis by cardiac fibroblasts. Hypertension 58:264–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Brower GL, Chancey AL, Thanigaraj S, Matsubara BB, Janicki JS (2002) Cause and effect relationship between myocardial mast cell number and matrix metalloproteinase activity. Am J Physiol 283:H518–H525

    CAS  Google Scholar 

  128. Brower GL, Janicki JS (2005) Pharmacologic inhibition of mast cell degranulation prevents left ventricular remodeling induced by chronic volume overload in rats. J Cardiac Fail 11:548–556

    Article  CAS  Google Scholar 

  129. Stewart JA, Wei CC, Brower GL, Rynders PE, Hankes GH, Dillon AR, Lucchesi PA, Janicki JS, Dell’italia LJ (2003) Cardiac mast cell- and chymase-mediated matrix metalloproteinase activity and left ventricular remodeling in mitral regurgitation in the dog. J Mol Cell Cardiol 35:311–319

    Article  CAS  PubMed  Google Scholar 

  130. Patella V, De Crescenzo G, Lamparter-Schummert B, De Rosa G, Adt M, Marone G (1997) Increased cardiac mast cell density and mediator release in patients with dilated cardiomyopathy. Inflamm Res 46:S31–S32

    Article  CAS  PubMed  Google Scholar 

  131. Balakumar P, Singh AP, Ganti SS, Krishan P, Ramasamy S, Singh M (2008) Resident cardiac mast cells: are they the major culprit in the pathogenesis of cardiac hypertrophy? Basic Clin. Pharmacol Toxicol 102:5–9

    CAS  Google Scholar 

  132. Batlle M, Roig E, Perez-Villa F et al (2006) Increased expression of the renin-angiotensin system and mast cell density but not of angiotensin-converting enzyme II in late stages of human heart failure. J Heart Lung Transplant 25:1117–1125

    Article  PubMed  Google Scholar 

  133. Scarpa RC, Carraway RE, Cochrane DE (2004) The effect of neurotensin on insulin-induced proliferation of human fibroblasts. Peptides 25:1159–1169

    Article  CAS  PubMed  Google Scholar 

  134. Melander O, Maisel AS, Almgren P et al (2012) Plasma proneurotensin and incidence of diabetes, cardiovascular disease, breast cancer, and mortality. JAMA 308:1469–1475

    Article  CAS  PubMed  Google Scholar 

  135. McDermott BJ, Bell D (2007) NPY and cardiac diseases. Curr Top Med Chem 7:1692–1703

    Article  CAS  PubMed  Google Scholar 

  136. McDermott BJ, Millar BC, Dolan FM, Bell D, Balasubramaniam A (1997) Evidence for Y1 and Y2 subtypes of neuropeptide Y receptors linked to opposing postjunctional effects observed in rat cardiac myocytes. Eur J Pharmacol 336:257–265

    Article  CAS  PubMed  Google Scholar 

  137. Callanan EY, Lee EW, Tilan JU, Winaver J, Haramati A, Mulroney SE, Zukowska Z (2007) Renal and cardiac neuropeptide Y and NPY receptors in a rat model of congestive heart failure. Am J Physiol Renal Physiol 293:F1811–F1817

    Article  CAS  PubMed  Google Scholar 

  138. Matyal R, Mahmood F, Robich M et al (2011) Chronic type II diabetes mellitus leads to changes in neuropeptide Y receptor expression and distribution in human myocardial tissue. Eur J Pharmacol 665:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Raimondi L, Banchelli G, Matucci R, Stillitano F, Pirisino R (2002) The direct stimulation of Gi proteins by neuropeptide Y (NPY) in the rat left ventricle. Biochem Pharmacol 63:2063–2068

    Article  CAS  PubMed  Google Scholar 

  140. Onuoha GN, Nicholls DP, Alpar EK, Ritchie A, Shaw C, Buchanan K (1999) Regulatory peptides in the heart and major vessels of man and mammals. Neuropeptides 33:165–172

    Article  CAS  PubMed  Google Scholar 

  141. Haass M, Cheng B, Richardt G, Lang RE, Schomig A (1989) Characterization and presynaptic modulation of stimulation-evoked exocytotic co-release of noradrenaline and neuropeptide Y in guinea pig heart. Naunyn Schmiedebergs Arch Pharmacol 339:71–78

    CAS  PubMed  Google Scholar 

  142. Heredia MP, Delgado C, Pereira L, Perrier R, Richard S, Vassort G, Benitah JP, Gomez AM (2005) Neuropeptide Y rapidly enhances [Ca2+]i transients and Ca2 + sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation. J Mol Cell Cardiol 38:205–212

    Article  CAS  Google Scholar 

  143. Piper HM, Millar BC, McDermott BJ (1989) The negative inotropic effect of neuropeptide Y on the ventricular cardiomyocyte. Naunyn Schmiedebergs Arch Pharmacol 340:333–337

    CAS  PubMed  Google Scholar 

  144. Herring N, Lokale MN, Danson EJ, Heaton DA, Paterson DJ (2008) Neuropeptide Y reduces acetylcholine release and vagal bradycardia via a Y2 receptor-mediated, protein kinase C-dependent pathway. J Mol Cell Cardiol 44:477–485

    Article  CAS  PubMed  Google Scholar 

  145. Ajijola OA, Yagishita D, Reddy NK, Yamakawa K, Vaseghi M, Downs AM, Hoover DB, Ardell JL, Shivkumar K (2015) Remodeling of stellate ganglion neurons after spatially targeted myocardial infarction: neuropeptide and morphologic changes. Heart Rhythm 12:1027–1035

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ullman B, Franco-Cereceda A, Hulting J, Lundberg JM, Sollevi A (1990) Elevation of plasma neuropeptide Y-like immunoreactivity and noradrenaline during myocardial ischaemia in man. J Intern Med 228:583–589

    Article  CAS  PubMed  Google Scholar 

  147. Liu JJ, Shi SG, Han QD (1994) Evaluation of plasma neuropeptide Y levels in patients with congestive heart failure. Zhonghua Nei Ke Za Zhi 33:687–689

    CAS  PubMed  Google Scholar 

  148. Ullman B, Hulting J, Lundberg JM (1994) Prognostic value of plasma neuropeptide-Y in coronary care unit patients with and without acute myocardial infarction. Eur Heart J 15:454–461

    Article  CAS  PubMed  Google Scholar 

  149. Cuculi F, Herring N, De Caterina AR, Banning AP, Prendergast BD, Forfar JC, Choudhury RP, Channon KM, Kharbanda RK (2013) Relationship of plasma neuropeptide Y with angiographic, electrocardiographic and coronary physiology indices of reperfusion during ST elevation myocardial infarction. Heart 99:1198–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Clarke JG, Davies GJ, Kerwin R et al (1987) Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet 1:1057–1059

    Article  CAS  PubMed  Google Scholar 

  151. Maisel AS, Scott NA, Motulsky HJ, Michel MC, Boublik JH, Rivier JE, Ziegler M, Allen RS, Brown MR (1989) Elevation of plasma neuropeptide Y levels in congestive heart failure. Am J Med 86:43–48

    Article  CAS  PubMed  Google Scholar 

  152. Szardien S, Mollmann H, Voss S et al (2011) Elevated serum levels of neuropeptide Y in stress cardiomyopathy. Int J Cardiol 147:155–157

    Article  PubMed  Google Scholar 

  153. Yalta K, Sivri N, Yalta T (2011) Neuropeptide Y-induced coronary microvascular dysfunction: a significant contributor to the adverse outcomes in stress cardiomyopathy? Int J Cardiol 147:284

    Article  PubMed  Google Scholar 

  154. Ilhan A, Rasul S, Dimitrov A, Handisurya A, Gartner W, Baumgartner-Parzer S, Wagner L, Kautzky-Willer A, Base W (2010) Plasma neuropeptide Y levels differ in distinct diabetic conditions. Neuropeptides 44:485–489

    Article  CAS  PubMed  Google Scholar 

  155. Costoli T, Sgoifo A, Stilli D, Flugge G, Adriani W, Laviola G, Fuchs E, Pedrazzini T, Musso E (2005) Behavioural, neural and cardiovascular adaptations in mice lacking the NPY Y1 receptor. Neurosci Biobehav Rev 29:113–123

    Article  CAS  PubMed  Google Scholar 

  156. Millar BC, Schluter KD, Zhou XJ, McDermott BJ, Piper HM (1994) Neuropeptide Y stimulates hypertrophy of adult ventricular cardiomyocytes. Am J Physiol 266:C1271–C1277

    CAS  PubMed  Google Scholar 

  157. Bell D, Allen AR, Kelso EJ, Balasubramaniam A, McDermott BJ (2002) Induction of hypertrophic responsiveness of cardiomyocytes to neuropeptide Y in response to pressure overload. J Pharmacol Exp Ther 303:581–591

    Article  CAS  PubMed  Google Scholar 

  158. Omerovic E, Ramunddal T, Lorentzon M, Nordlander M (2007) Effects of neuropeptide Y2 receptor blockade on ventricular arrhythmias in rats with acute myocardial infarction. Eur J Pharmacol 565:138–143

    Article  CAS  PubMed  Google Scholar 

  159. Luo G, Xu X, Guo W, Luo C, Wang H, Meng X, Zhu S, Wei Y (2015) Neuropeptide Y damages the integrity of mitochondrial structure and disrupts energy metabolism in cultured neonatal rat cardiomyocytes. Peptides 71:162–169

    Article  CAS  PubMed  Google Scholar 

  160. Matyal R, Sakamuri S, Wang A, Mahmood E, Robich MP, Khabbaz K, Hess PE, Sellke FW, Mahmood F (2013) Local infiltration of neuropeptide Y as a potential therapeutic agent against apoptosis and fibrosis in a swine model of hypercholesterolemia and chronic myocardial ischemia. Eur J Pharmacol 718:261–270

    Article  CAS  PubMed  Google Scholar 

  161. Matyal R, Chu L, Mahmood F et al (2012) Neuropeptide Y improves myocardial perfusion and function in a swine model of hypercholesterolemia and chronic myocardial ischemia. J Mol Cell Cardiol 53:891–898

    Article  CAS  PubMed  Google Scholar 

  162. Chen X, Lu G, Tang K, Li Q, Gao X (2015) The secretion patterns and roles of cardiac and circulating arginine vasopressin during the development of heart failure. Neuropeptides 51:63–73

    Article  PubMed  CAS  Google Scholar 

  163. Hupf H, Grimm D, Riegger GA, Schunkert H (1999) Evidence for a vasopressin system in the rat heart. Circ Res 84:365–370

    Article  CAS  PubMed  Google Scholar 

  164. Kelly D, Squire IB, Khan SQ, Quinn P, Struck J, Morgenthaler NG, Davies JE, Ng LL (2008) C-terminal provasopressin (copeptin) is associated with left ventricular dysfunction, remodeling, and clinical heart failure in survivors of myocardial infarction. J Card Fail 14:739–745

    Article  CAS  PubMed  Google Scholar 

  165. Carmichael MC, Kumar R (1994) Molecular biology of vasopressin receptors. Semin Nephrol 14:341–348

    CAS  PubMed  Google Scholar 

  166. Xu YJ, Gopalakrishnan V (1991) Vasopressin increases cytosolic free [Ca2+] in the neonatal rat cardiomyocyte. Evidence for V1 subtype receptors. Circ Res 69:239–245

    Article  CAS  PubMed  Google Scholar 

  167. Schweiger TA, Zdanowicz MM (2008) Vasopressin-receptor antagonists in heart failure. Am J Health Syst Pharm 65:807–817

    Article  CAS  PubMed  Google Scholar 

  168. Rehsia NS, Dhalla NS (2010) Potential of endothelin-1 and vasopressin antagonists for the treatment of congestive heart failure. Heart Fail Rev 15:85–101

    Article  CAS  PubMed  Google Scholar 

  169. Zhu W, Tilley DG, Myers VD, Tsai EJ, Feldman AM (2014) Increased vasopressin 1a receptor expression in failing human hearts. J Am Coll Cardiol 63:375–376

    Article  CAS  PubMed  Google Scholar 

  170. Tahara A, Tomura Y, Wada K, Kusayama T, Tsukada J, Ishii N, Yatsu T, Uchida W, Tanaka A (1998) Effect of YM087, a potent nonpeptide vasopressin antagonist, on vasopressin-induced protein synthesis in neonatal rat cardiomyocyte. Cardiovasc Res 38:198–205

    Article  CAS  PubMed  Google Scholar 

  171. Xie Z, Gao M, Batra S, Koyama T (1997) Remodeling of capillary network in left ventricular subendocardial tissues induced by intravenous vasopressin administration. Microcirculation 4:261–266

    Article  CAS  PubMed  Google Scholar 

  172. Rapoport B, Mclachlan SM (2016) TSH receptor cleavage into subunits and shedding of the A-subunit; a molecular and clinical perspective. Endocr Rev 37:114–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ga D (2016) Thyroid hormones and the heart. Heart Fail Rev 21:357–359

    Article  Google Scholar 

  174. Wang XH, Wang WF, Cao YX, Ma AQ (2013) Ang II receptor expression and effect of ang II receptor blockade in thyrotoxic rat myocardium. Eur Rev Med Pharmacol Sci 17:2619–2627

    PubMed  Google Scholar 

  175. Cokkinos DV, Chryssanthopoulos S (2016) Thyroid hormones and cardiac remodeling. Heart Fail Rev 21:365–372

    Article  CAS  PubMed  Google Scholar 

  176. Sugiura T, Yamanaka S, Takeuchi H, Morimoto N, Kamioka M, Matsumura Y (2015) Autoimmunity and pulmonary hypertension in patients with graves’ disease. Heart Vessels 30:642–646

    Article  PubMed  Google Scholar 

  177. Levick S, Fenning A, L B (2005) Increases calcium influx mediates increased cardiac stiffness in hyperthyroid rats. Cell Biochem Biophys 43:53–60

    Article  CAS  PubMed  Google Scholar 

  178. Klein I (1990) Thyroid hormone and the cardiovascular system. Am J Med 88:631–637

    Article  CAS  PubMed  Google Scholar 

  179. Liu L, Yun F, Zhao H et al (2015) Atrial sympathetic remodeling in experimental hyperthyroidism and hypothyroidism rats. Int J Cardiol 187:148–150

    Article  PubMed  Google Scholar 

  180. Klein I, Danzi S (2007) Thyroid disease and the heart. Circulation 116:1725–1735

    Article  PubMed  Google Scholar 

  181. Pol CJ, Muller A, Simonides WS (2010) Cardiomyocyte-specific inactivation of thyroid hormone in pathologic ventricular hypertrophy: an adaptative response or part of the problem? Heart Fail Rev 15:133–142

    Article  CAS  PubMed  Google Scholar 

  182. Galli E, Pingitore A, Iervasi G (2010) The role of thyroid hormone in the pathophysiology of heart failure: clinical evidence. Heart Fail Rev 15:155–169

    Article  CAS  PubMed  Google Scholar 

  183. Mazza R, Tota B, Gattuso A (2015) Cardio-vascular activity of catestatin: Interlocking the puzzle pieces. Curr Med Chem 22:292–304

    Article  CAS  PubMed  Google Scholar 

  184. Angelone T, Quintieri AM, Brar BK, Limchaiyawat PT, Tota B, Mahata SK, Cerra MC (2008) The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinology 149:4780–4793

    Article  PubMed  PubMed Central  Google Scholar 

  185. Peng F, Chu S, Ding W, Liu L, Zhao J, Cui X, Li R, Wang J (2016) The predictive value of plasma catestatin for all-cause and cardiac deaths in chronic heart failure patients. Peptides 86:112–117

    Article  CAS  PubMed  Google Scholar 

  186. Xu W, Yu H, Wu H, Li S, Chen B, Gao W (2016) Plasma catestatin in patients with acute coronary syndrome. Cardiology 136:164–169

    Article  PubMed  CAS  Google Scholar 

  187. Wang D, Liu T, Shi S, Li R, Shan Y, Huang Y, Hu D, Huang C (2016) Chronic administration of catestatin improves autonomic function and exerts cardioprotective effects in myocardial infarction rats. J Cardiovasc Pharmacol Ther 21:526–535

    Article  CAS  PubMed  Google Scholar 

  188. Penna C, Pasqua T, Amelio D, et al. (2014) Catestatin increases the expression of anti-apoptotic and pro-angiogenetic factors in the post-ischemic hypertrophied heart of SHR. PLoS One 9:e102536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Bassino E, Fornero S, Gallo MP, Gallina C, Femmino S, Levi R, Tota B, Alloatti G (2015) Catestatin exerts direct protective effects on rat cardiomyocytes undergoing ischemia/reperfusion by stimulating PI3K-AKT-GSK3beta pathway and preserving mitochondrial membrane potential. PLoS One 10:e0119790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Kirchmair R, Marksteiner J, Troger J et al (1994) Human and rat primary c-fibre afferents store and release secretoneurin, a novel neuropeptide. Eur J Neurosci 6:861–868

    Article  CAS  PubMed  Google Scholar 

  191. Chan CK, Vanhoutte PM (2011) Secretoneurin facilitates endothelium-dependent relaxations in porcine coronary arteries. Am J Physiol Heart Circ Physiol 300:H1159–H1165

    Article  CAS  PubMed  Google Scholar 

  192. Rosjo H, Stridsberg M, Florholmen G, et al. (2012) Secretogranin II; a protein increased in the myocardium and circulation in heart failure with cardioprotective properties. PLoS One 7:e37401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Ottesen AH, Louch WE, Carlson CR et al (2015) Secretoneurin is a novel prognostic cardiovascular biomarker associated with cardiomyocyte calcium handling. J Am Coll Cardiol 65:339–351

    Article  CAS  PubMed  Google Scholar 

  194. Albrecht-Schgoer K, Schgoer W, Holfeld J et al (2012) The angiogenic factor secretoneurin induces coronary angiogenesis in a model of myocardial infarction by stimulation of vascular endothelial growth factor signaling in endothelial cells. Circulation 126:2491–2501

    Article  CAS  PubMed  Google Scholar 

  195. Herring N, Cranley J, Lokale MN et al (2012) The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: implications for neural control of cardiac excitability. J Mol Cell Cardiol 52:667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Fang P, Sun J, Wang X, Zhang Z, Bo P, Shi M (2013) Galanin participates in the functional regulation of the diabetic heart. Life Sci 92:628–632

    Article  CAS  PubMed  Google Scholar 

  197. Kocic I (1998) The influence of the neuropeptide galanin on the contractility and the effective refractory period of guinea-pig heart papillary muscle under normoxic and hypoxic conditions. J Pharm Pharmacol 50:1361–1364

    Article  CAS  PubMed  Google Scholar 

  198. Habecker BA, Gritman KR, Willison BD, Van Winkle DM (2005) Myocardial infarction stimulates galanin expression in cardiac sympathetic neurons. Neuropeptides 39:89–95

    Article  CAS  PubMed  Google Scholar 

  199. Chen A, Li M, Song L, Zhang Y, Luo Z, Zhang W, Chen Y, He B (2015) Effects of the galanin receptor antagonist M40 on cardiac function and remodeling in rats with heart failure. Cardiovasc Ther 33:288–293

    Article  CAS  PubMed  Google Scholar 

  200. Fang P, Yu M, Gu X, Shi M, Zhu Y, Zhang Z, Bo P (2016) Low levels of plasma galanin in obese subjects with hypertension. J Endocrinol Invest

  201. Fang P, Shi M, Guo L, He B, Wang Q, Yu M, Bo P, Zhang Z (2014) Effect of endogenous galanin on glucose transporter 4 expression in cardiac muscle of type 2 diabetic rats. Peptides 62:159–163

    Article  CAS  PubMed  Google Scholar 

  202. Fang P, Shi M, Zhu Y, Zhang Z, Bo P (2015) Central injection of Galr1 agonist M617 facilitates Glut4 expression in cardiac muscle of type 2 diabetic rats. Exp Gerontol 65:85–89

    Article  PubMed  CAS  Google Scholar 

  203. Brain SD, Cox HM (2006) Neuropeptides and their receptors: Innovative science providing novel therapeutic targets. Br. J Pharmacol 147(Suppl 1):S202–S211

    CAS  Google Scholar 

  204. Hoover DB, Chang Y, Hancock JC, Zhang L (2000) Actions of tachykinins within the heart and their relevance to cardiovascular disease. Jpn J Pharmacol 84:367–373

    Article  CAS  PubMed  Google Scholar 

  205. Hoover DB, Chang Y, Hancock JC (1998) Characterization of responses to neurokinin A in the isolated perfused guinea pig heart. Am J Physiol 275:R1803–R1811

    CAS  PubMed  Google Scholar 

  206. Gulati N, Mathison R, Huggel H, Regoli D, Beny JL (1987) Effects of neurokinins on the isolated pig coronary artery. Eur J Pharmacol 137:149–154

    Article  CAS  PubMed  Google Scholar 

  207. Hoover DB, Hossler FE (1993) Vasoconstrictor and dilator responses to neurokinin A in isolated guinea pig heart. Peptides 14:29–36

    Article  CAS  PubMed  Google Scholar 

  208. Hernandez JM, Cox G, Janssen LJ (2008) Involvement of the neurokinin-2 receptor in airway smooth muscle stretch-activated contractions assessed in perfused intact bovine bronchial segments. J Pharmacol Exp Ther 327:503–510

    Article  CAS  PubMed  Google Scholar 

  209. Miotto D, Boschetto P, Cavallesco G, Zeni E, Querzoli P, Pedriali M, Chiarelli S, Fabbri LM, Mapp CE (2007) Increased neurokinin-2 receptor expression in alveolar macrophages of smokers with COPD. Histopathology 51:128–131

    Article  CAS  PubMed  Google Scholar 

  210. Sculptoreanu A, Aura KF, De Groat WC (2008) Neurokinin 2 receptor-mediated activation of protein kinase C modulates capsaicin responses in drg neurons from adult rats. Eur J Neurosci 27:3171–3181

    Article  PubMed  PubMed Central  Google Scholar 

  211. Michalski CW, Shi X, Reiser C, Fachinger P, Zimmermann A, Buchler MW, Di Sebastiano P, Friess H (2007) Neurokinin-2 receptor levels correlate with intensity, frequency, and duration of pain in chronic pancreatitis. Ann Surg 246:786–793

    Article  PubMed  Google Scholar 

  212. Kitamura H, Kobayashi M, Wakita D, Nishimura T (2012) Neuropeptide signaling activates dendritic cell-mediated type 1 immune responses through neurokinin-2 receptor. J Immunol 188:4200–4208

    Article  CAS  PubMed  Google Scholar 

  213. Hastrup H, Schwartz TW (1996) Septide and neurokinin A are high-affinity ligands on the NK-1 receptor: evidence from homologous versus heterologous binding analysis. FEBS Lett 399:264–266

    Article  CAS  PubMed  Google Scholar 

  214. Maggi CA, Schwartz TW (1997) The dual nature of the tachykinin NK1 receptor. Trends Pharmacol Sci 18:351–355

    Article  CAS  PubMed  Google Scholar 

  215. Picard P, Regoli D, Couture R (1994) Cardiovascular and behavioural effects of centrally administered tachykinins in the rat: characterization of receptors with selective antagonists. Br J Pharmacol 112:240–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Tschope C, Picard P, Culman J, Prat A, Itoi K, Regoli D, Unger T, Couture R (1992) Use of selective antagonists to dissociate the central cardiovascular and behavioural effects of tachykinins on NK1 and NK2 receptors in the rat. Br J Pharmacol 107:750–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wijkhuisen A, Sagot MA, Frobert Y, Creminon C, Grassi J, Boquet D, Couraud JY (1999) Identification in the NK1 tachykinin receptor of a domain involved in recognition of neurokinin A and septide but not of substance P. FEBS Lett 447:155–159

    Article  CAS  PubMed  Google Scholar 

  218. Tauer U, Zhao Y, Hunt SP, Culman J (2012) Are biological actions of neurokinin A in the adult brain mediated by a cross-talk between the NK1 and NK2 receptors? Neuropharmacology 63:958–965

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott P. Levick.

Ethics declarations

Funding

This work was supported by the National Heart, Lung and Blood Institute at the National Institutes of Health HL-093215 (S.P.L.), HL-132908 (S.P.L.), and the Greater Milwaukee Foundation-Elsa Schoeneich Medical Research Fund (S.P.L.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widiapradja, A., Chunduri, P. & Levick, S.P. The role of neuropeptides in adverse myocardial remodeling and heart failure. Cell. Mol. Life Sci. 74, 2019–2038 (2017). https://doi.org/10.1007/s00018-017-2452-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2452-x

Keywords

Navigation