Skip to main content

Advertisement

Log in

Earlier and broader roles of Mesp1 in cardiovascular development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mesoderm posterior 1 is one of earliest markers of the nascent mesoderm. Its best-known function is driving the onset of the cardiovascular system. In the past decade, new evidence supports that Mesp1 acts earlier with greater breadth in cell fate decisions, and through cell-autonomous and cell non-autonomous mechanisms. This review summarizes these new aspects, with an emphasis on the upstream and downstream regulation around Mesp1 and how they may guide cell fate reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Saga Y, Hata N, Kobayashi S, Magnuson T, Seldin MF, Taketo MM (1996) MesP1: a novel basic helix–loop–helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development 122 (9):2769–2778

  2. Skinner MK, Rawls A, Wilson-Rawls J, Roalson EH (2010) Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature. Differentiation 80(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kitajima S, Takagi A, Inoue T, Saga Y (2000) MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127 (15):3215–3226

  4. Saga Y, Kitajima S, Miyagawa-Tomita S (2000) Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med 10(8):345–352

    Article  CAS  PubMed  Google Scholar 

  5. Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki J, Inoue T (1999) MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126 (15):3437–3447

  6. Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, Blanpain C (2008) Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3(1):69–84

    Article  CAS  PubMed  Google Scholar 

  7. David R, Brenner C, Stieber J, Schwarz F, Brunner S, Vollmer M, Mentele E, Muller-Hocker J, Kitajima S, Lickert H, Rupp R, Franz WM (2008) MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat Cell Biol 10(3):338–345

    Article  CAS  PubMed  Google Scholar 

  8. Lindsley RC, Gill JG, Murphy TL, Langer EM, Cai M, Mashayekhi M, Wang W, Niwa N, Nerbonne JM, Kyba M, Murphy KM (2008) Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 3(1):55–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Islas JF, Liu Y, Weng KC, Robertson MJ, Zhang S, Prejusa A, Harger J, Tikhomirova D, Chopra M, Iyer D, Mercola M, Oshima RG, Willerson JT, Potaman VN, Schwartz RJ (2012) Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci USA 109(32):13016–13021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wada R, Muraoka N, Inagawa K, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Kaneda R, Suzuki T, Kamiya K, Tohyama S, Yuasa S, Kokaji K, Aeba R, Yozu R, Yamagishi H, Kitamura T, Fukuda K, Ieda M (2013) Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci USA 110(31):12667–12672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fu JD, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, Delgado-Olguin P, Ding S, Bruneau BG, Srivastava D (2013) Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State. Stem Cell Rep 1(3):235–247

    Article  CAS  Google Scholar 

  12. Bondue A, Blanpain C (2010) Mesp1: a key regulator of cardiovascular lineage commitment. Circ Res 107(12):1414–1427

    Article  CAS  PubMed  Google Scholar 

  13. Saga Y (2007) Segmental border is defined by the key transcription factor Mesp2, by means of the suppression of Notch activity. Dev Dyn 236(6):1450–1455

    Article  CAS  PubMed  Google Scholar 

  14. Morimoto M, Takahashi Y, Endo M, Saga Y (2005) The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 435(7040):354–359

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi Y, Koizumi K, Takagi A, Kitajima S, Inoue T, Koseki H, Saga Y (2000) Mesp2 initiates somite segmentation through the Notch signalling pathway. Nat Genet 25(4):390–396

    Article  CAS  PubMed  Google Scholar 

  16. Saga Y, Hata N, Koseki H, Taketo MM (1997) Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 11(14):1827–1839

    Article  CAS  PubMed  Google Scholar 

  17. Saga Y (1998) Genetic rescue of segmentation defect in MesP2-deficient mice by MesP1 gene replacement. Mech Dev 75(1–2):53–66

    Article  CAS  PubMed  Google Scholar 

  18. Buchberger A, Bonneick S, Klein C, Arnold HH (2002) Dynamic expression of chicken cMeso2 in segmental plate and somites. Dev Dyn 223(1):108–118

    Article  CAS  PubMed  Google Scholar 

  19. Buchberger A, Seidl K, Klein C, Eberhardt H, Arnold HH (1998) cMeso-1, a novel bHLH transcription factor, is involved in somite formation in chicken embryos. Dev Biol 199(2):201–215

    Article  CAS  PubMed  Google Scholar 

  20. Kriegmair MC, Frenz S, Dusl M, Franz WM, David R, Rupp RA (2013) Cardiac differentiation in Xenopus is initiated by mespa. Cardiovasc Res 97(3):454–463

    Article  CAS  PubMed  Google Scholar 

  21. Hitachi K, Kondow A, Danno H, Nishimura Y, Okabayashi K, Asashima M (2009) Molecular analyses of Xenopus laevis Mesp-related genes. Integr Zool 4(4):387–394

    Article  PubMed  Google Scholar 

  22. Deshwar AR, Onderisin JC, Aleksandrova A, Yuan X, Burrows JT, Scott IC (2016) Mespaa can potently induce cardiac fates in zebrafish. Dev Biol 418(1):17–27

    Article  CAS  PubMed  Google Scholar 

  23. Cutty SJ, Fior R, Henriques PM, Saude L, Wardle FC (2012) Identification and expression analysis of two novel members of the Mesp family in zebrafish. Int J Dev Biol 56(4):285–294

    Article  CAS  PubMed  Google Scholar 

  24. Sawada A, Fritz A, Jiang YJ, Yamamoto A, Yamasu K, Kuroiwa A, Saga Y, Takeda H (2000) Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development 127(8):1691–1702

    CAS  PubMed  Google Scholar 

  25. Satou Y, Imai KS, Satoh N (2004) The ascidian Mesp gene specifies heart precursor cells. Development 131(11):2533–2541

    Article  CAS  PubMed  Google Scholar 

  26. Hirano T, Nishida H (1997) Developmental fates of larval tissues after metamorphosis in ascidian Halocynthia roretzi. I. Origin of mesodermal tissues of the juvenile. Dev Biol 192(2):199–210

    Article  CAS  PubMed  Google Scholar 

  27. Davidson B, Levine M (2003) Evolutionary origins of the vertebrate heart: specification of the cardiac lineage in Ciona intestinalis. Proc Natl Acad Sci USA 100(20):11469–11473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beh J, Shi W, Levine M, Davidson B, Christiaen L (2007) FoxF is essential for FGF-induced migration of heart progenitor cells in the ascidian Ciona intestinalis. Development 134(18):3297–3305

    Article  CAS  PubMed  Google Scholar 

  29. Davidson B, Shi W, Beh J, Christiaen L, Levine M (2006) FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev 20(19):2728–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485(7400):593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485(7400):599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu JD, Nie B, Xie M, Zhang M, Wang H, Ma T, Xu T, Shi G, Srivastava D, Ding S (2016) Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352(6290):1216–1220

    Article  CAS  PubMed  Google Scholar 

  34. Nam YJ, Song K, Luo X, Daniel E, Lambeth K, West K, Hill JA, DiMaio JM, Baker LA, Bassel-Duby R, Olson EN (2013) Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci USA 110(14):5588–5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Evans SM, Yelon D, Conlon FL, Kirby ML (2010) Myocardial lineage development. Circ Res 107(12):1428–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bruneau BG (2013) Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb Perspect Biol 5(3):a008292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Parameswaran M, Tam PP (1995) Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev Genet 17(1):16–28

    Article  CAS  PubMed  Google Scholar 

  38. Tam PP, Parameswaran M, Kinder SJ, Weinberger RP (1997) The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development 124(9):1631–1642

    CAS  PubMed  Google Scholar 

  39. Meilhac SM, Esner M, Kelly RG, Nicolas JF, Buckingham ME (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6(5):685–698

    Article  CAS  PubMed  Google Scholar 

  40. Kinder SJ, Loebel DA, Tam PP (2001) Allocation and early differentiation of cardiovascular progenitors in the mouse embryo. Trends Cardiovasc Med 11(5):177–184

    Article  CAS  PubMed  Google Scholar 

  41. Meilhac SM, Kelly RG, Rocancourt D, Eloy-Trinquet S, Nicolas JF, Buckingham ME (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130(16):3877–3889

  42. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6(11):826–835

    Article  CAS  PubMed  Google Scholar 

  43. Devine WP, Wythe JD, George M, Koshiba-Takeuchi K, Bruneau BG (2014) Early patterning and specification of cardiac progenitors in gastrulating mesoderm. Elife:3

  44. Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121(3):479–492

    Article  CAS  PubMed  Google Scholar 

  45. Lescroart F, Chabab S, Lin X, Rulands S, Paulissen C, Rodolosse A, Auer H, Achouri Y, Dubois C, Bondue A, Simons BD, Blanpain C (2014) Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol 16(9):829–840

    Article  CAS  PubMed  Google Scholar 

  46. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26(2):99–109

    Article  CAS  PubMed  Google Scholar 

  47. Chan SS, Shi X, Toyama A, Arpke RW, Dandapat A, Iacovino M, Kang J, Le G, Hagen HR, Garry DJ, Kyba M (2013) Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell 12(5):587–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cai M, Langer EM, Gill JG, Satpathy AT, Albring JC, Kc W, Murphy TL, Murphy KM (2012) Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation. Blood 120(2):335–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lammerts van Bueren K, Black BL (2012) Regulation of endothelial and hematopoietic development by the ETS transcription factor Etv2. Curr Opin Hematol 19(3):199–205

    Article  CAS  PubMed  Google Scholar 

  50. Shi X, Zirbes KM, Rasmussen TL, Ferdous A, Garry MG, Koyano-Nakagawa N, Garry DJ (2015) The transcription factor Mesp1 interacts with cAMP-responsive element binding protein 1 (Creb1) and coactivates Ets variant 2 (Etv2) gene expression. J Biol Chem 290(15):9614–9625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferdous A, Caprioli A, Iacovino M, Martin CM, Morris J, Richardson JA, Latif S, Hammer RE, Harvey RP, Olson EN, Kyba M, Garry DJ (2009) Nkx2-5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo. Proc Natl Acad Sci USA 106(3):814–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee D, Park C, Lee H, Lugus JJ, Kim SH, Arentson E, Chung YS, Gomez G, Kyba M, Lin S, Janknecht R, Lim DS, Choi K (2008) ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2(5):497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1 + cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11(5):723–732

    Article  CAS  PubMed  Google Scholar 

  54. Kouskoff V, Lacaud G, Schwantz S, Fehling HJ, Keller G (2005) Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proc Natl Acad Sci USA 102(37):13170–13175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Irion S, Clarke RL, Luche H, Kim I, Morrison SJ, Fehling HJ, Keller GM (2010) Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development 137(17):2829–2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chan SS, Chan HH, Kyba M (2016) Heterogeneity of Mesp1+ mesoderm revealed by single-cell RNA-sEq. Biochem Biophys Res Commun 474(3):469–475

    Article  CAS  PubMed  Google Scholar 

  57. Van Handel B, Montel-Hagen A, Sasidharan R, Nakano H, Ferrari R, Boogerd CJ, Schredelseker J, Wang Y, Hunter S, Org T, Zhou J, Li X, Pellegrini M, Chen JN, Orkin SH, Kurdistani SK, Evans SM, Nakano A, Mikkola HK (2012) Scl represses cardiomyogenesis in prospective hemogenic endothelium and endocardium. Cell 150(3):590–605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chan SS, Hagen HR, Swanson SA, Stewart R, Boll KA, Aho J, Thomson JA, Kyba M (2016) Development of bipotent cardiac/skeletal myogenic progenitors from MESP1+ mesoderm. Stem Cell Rep 6(1):26–34

    Article  CAS  Google Scholar 

  59. Lescroart F, Kelly RG, Le Garrec JF, Nicolas JF, Meilhac SM, Buckingham M (2010) Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development 137(19):3269–3279

  60. Tirosh-Finkel L, Elhanany H, Rinon A, Tzahor E (2006) Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract. Development 133(10):1943–1953

    Article  CAS  PubMed  Google Scholar 

  61. Harel I, Nathan E, Tirosh-Finkel L, Zigdon H, Guimaraes-Camboa N, Evans SM, Tzahor E (2009) Distinct origins and genetic programs of head muscle satellite cells. Dev Cell 16(6):822–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Emery AE (2002) The muscular dystrophies. Lancet 359(9307):687–695

    Article  CAS  PubMed  Google Scholar 

  63. Yoshida T, Vivatbutsiri P, Morriss-Kay G, Saga Y, Iseki S (2008) Cell lineage in mammalian craniofacial mesenchyme. Mech Dev 125(9–10):797–808

    Article  CAS  PubMed  Google Scholar 

  64. Bildsoe H, Loebel DA, Jones VJ, Hor AC, Braithwaite AW, Chen YT, Behringer RR, Tam PP (2013) The mesenchymal architecture of the cranial mesoderm of mouse embryos is disrupted by the loss of Twist1 function. Dev Biol 374(2):295–307

    Article  CAS  PubMed  Google Scholar 

  65. Lua I, Li Y, Pappoe LS, Asahina K (2015) Myofibroblastic conversion and regeneration of mesothelial cells in peritoneal and liver fibrosis. Am J Pathol 185(12):3258–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li Y, Wang J, Asahina K (2013) Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial-mesenchymal transition in liver injury. Proc Natl Acad Sci USA 110(6):2324–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lua I, James D, Wang J, Wang KS, Asahina K (2014) Mesodermal mesenchymal cells give rise to myofibroblasts, but not epithelial cells, in mouse liver injury. Hepatology 60(1):311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kordes C, Sawitza I, Muller-Marbach A, Ale-Agha N, Keitel V, Klonowski-Stumpe H, Haussinger D (2007) CD133 + hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun 352(2):410–417

    Article  CAS  PubMed  Google Scholar 

  69. Kanisicak O, Khalil H, Ivey MJ, Karch J, Maliken BD, Correll RN, Brody MJ, SC JL, Aronow BJ, Tallquist MD, Molkentin JD (2016) Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun 7:12260

    Article  CAS  PubMed  Google Scholar 

  70. den Hartogh SC, Wolstencroft K, Mummery CL, Passier R (2016) A comprehensive gene expression analysis at sequential stages of in vitro cardiac differentiation from isolated MESP1-expressing-mesoderm progenitors. Scientific reports 6:19386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Den Hartogh SC, Schreurs C, Monshouwer-Kloots JJ, Davis RP, Elliott DA, Mummery CL, Passier R (2015) Dual reporter MESP1 mCherry/w-NKX2-5 eGFP/w hESCs enable studying early human cardiac differentiation. Stem Cells 33(1):56–67

    Article  CAS  PubMed  Google Scholar 

  72. Davidson B, Shi W, Levine M (2005) Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis. Development 132(21):4811–4818

    Article  CAS  PubMed  Google Scholar 

  73. Christiaen L, Davidson B, Kawashima T, Powell W, Nolla H, Vranizan K, Levine M (2008) The transcription/migration interface in heart precursors of Ciona intestinalis. Science 320(5881):1349–1352

    Article  CAS  PubMed  Google Scholar 

  74. Chiapparo G, Lin X, Lescroart F, Chabab S, Paulissen C, Pitisci L, Bondue A, Blanpain C (2016) Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration. J Cell Biol 213(4):463–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun J, Ting MC, Ishii M, Maxson R (2016) Msx1 and Msx2 function together in the regulation of primordial germ cell migration in the mouse. Dev Biol 417(1):11–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liang D, Wang X, Mittal A, Dhiman S, Hou SY, Degenhardt K, Astrof S (2014) Mesodermal expression of integrin alpha5beta1 regulates neural crest development and cardiovascular morphogenesis. Dev Biol 395(2):232–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Haraguchi S, Kitajima S, Takagi A, Takeda H, Inoue T, Saga Y (2001) Transcriptional regulation of Mesp1 and Mesp2 genes: differential usage of enhancers during development. Mech Dev 108(1–2):59–69

    Article  CAS  PubMed  Google Scholar 

  78. Oginuma M, Hirata T, Saga Y (2008) Identification of presomitic mesoderm (PSM)-specific Mesp1 enhancer and generation of a PSM-specific Mesp1/Mesp2-null mouse using BAC-based rescue technology. Mech Dev 125(5–6):432–440

    Article  CAS  PubMed  Google Scholar 

  79. Beketaev I, Zhang Y, Weng KC, Rhee S, Yu W, Liu Y, Mager J, Wang J (2016) cis-regulatory control of Mesp1 expression by YY1 and SP1 during mouse embryogenesis. Dev Dyn 245(3):379–387

    Article  CAS  PubMed  Google Scholar 

  80. van den Ameele J, Tiberi L, Bondue A, Paulissen C, Herpoel A, Iacovino M, Kyba M, Blanpain C, Vanderhaeghen P (2012) Eomesodermin induces Mesp1 expression and cardiac differentiation from embryonic stem cells in the absence of Activin. EMBO Rep 13(4):355–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Costello I, Pimeisl IM, Drager S, Bikoff EK, Robertson EJ, Arnold SJ (2011) The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat Cell Biol 13(9):1084–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. David R, Jarsch VB, Schwarz F, Nathan P, Gegg M, Lickert H, Franz WM (2011) Induction of MesP1 by Brachyury(T) generates the common multipotent cardiovascular stem cell. Cardiovasc Res 92(1):115–122

    Article  CAS  PubMed  Google Scholar 

  83. Li Y, Yu W, Cooney AJ, Schwartz RJ, Liu Y (2013) Brief report: Oct4 and canonical Wnt signaling regulate the cardiac lineage factor Mesp1 through a Tcf/Lef-Oct4 composite element. Stem Cells 31(6):1213–1217

    Article  CAS  PubMed  Google Scholar 

  84. Christiaen L, Stolfi A, Davidson B, Levine M (2009) Spatio-temporal intersection of Lhx3 and Tbx6 defines the cardiac field through synergistic activation of Mesp. Dev Biol 328(2):552–560

    Article  CAS  PubMed  Google Scholar 

  85. Soibam B, Benham A, Kim J, Weng KC, Yang L, Xu X, Robertson M, Azares A, Cooney AJ, Schwartz RJ, Liu Y (2015) Genome-wide identification of MESP1 targets demonstrates primary regulation over mesendoderm gene activity. Stem Cells 33(11):3254–3265

    Article  CAS  PubMed  Google Scholar 

  86. Ai D, Fu X, Wang J, Lu MF, Chen L, Baldini A, Klein WH, Martin JF (2007) Canonical Wnt signaling functions in second heart field to promote right ventricular growth. Proc Natl Acad Sci USA 104(22):9319–9324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cohen ED, Wang Z, Lepore JJ, Lu MM, Taketo MM, Epstein DJ, Morrisey EE (2007) Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. J Clin Invest 117(7):1794–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nakamura T, Sano M, Songyang Z, Schneider MD (2003) A Wnt- and beta -catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci USA 100(10):5834–5839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lindsley RC, Gill JG, Kyba M, Murphy TL, Murphy KM (2006) Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development 133(19):3787–3796

    Article  CAS  PubMed  Google Scholar 

  90. Schneider VA, Mercola M (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15(3):304–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Foley AC, Mercola M (2005) Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev 19(3):387–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci USA 109(27):E1848–E1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8(1):162–175

    Article  CAS  PubMed  Google Scholar 

  94. Liu Y, Chen L, Diaz AD, Benham A, Xu X, Wijaya CS, Fa’ak F, Luo W, Soibam B, Azares A, Yu W, Lyu Q, Stewart MD, Gunaratne P, Cooney A, McConnell BK, Schwartz RJ (2016) Mesp1 marked cardiac progenitor cells repair infarcted mouse hearts. Sci Rep 6:31457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38(4):431–440

    Article  CAS  PubMed  Google Scholar 

  96. Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, Li P, Ang YS, Lim B, Robson P, Ng HH (2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 25(14):6031–6046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280(26):24731–24737

    Article  CAS  PubMed  Google Scholar 

  98. Ambrosetti DC, Basilico C, Dailey L (1997) Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein–protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol Cell Biol 17(11):6321–6329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dailey L, Basilico C (2001) Coevolution of HMG domains and homeodomains and the generation of transcriptional regulation by Sox/POU complexes. J Cell Physiol 186(3):315–328

    Article  CAS  PubMed  Google Scholar 

  100. Nishimoto M, Fukushima A, Okuda A, Muramatsu M (1999) The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol Cell Biol 19(8):5453–5465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tomioka M, Nishimoto M, Miyagi S, Katayanagi T, Fukui N, Niwa H, Muramatsu M, Okuda A (2002) Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res 30(14):3202–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M, Niwa H, Yamanaka S (2003) Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol 23(8):2699–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kokkinopoulos I, Ishida H, Saba R, Ruchaya P, Cabrera C, Struebig M, Barnes M, Terry A, Kaneko M, Shintani Y, Coppen S, Shiratori H, Ameen T, Mein C, Hamada H, Suzuki K, Yashiro K (2015) Single-cell expression profiling reveals a dynamic state of cardiac precursor cells in the early mouse embryo. PLoS One 10(10):e0140831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Payne S, Burney MJ, McCue K, Popal N, Davidson SM, Anderson RH, Scambler PJ (2015) A critical role for the chromatin remodeller CHD7 in anterior mesoderm during cardiovascular development. Dev Biol 405(1):82–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu Y, Harmelink C, Peng Y, Chen Y, Wang Q, Jiao K (2014) CHD7 interacts with BMP R-SMADs to epigenetically regulate cardiogenesis in mice. Hum Mol Genet 23(8):2145–2156

    Article  CAS  PubMed  Google Scholar 

  106. Vanyai HK, Thomas T, Voss AK (2015) Mesodermal expression of Moz is necessary for cardiac septum development. Dev Biol 403(1):22–29

    Article  CAS  PubMed  Google Scholar 

  107. Voss AK, Vanyai HK, Collin C, Dixon MP, McLennan TJ, Sheikh BN, Scambler P, Thomas T (2012) MOZ regulates the Tbx1 locus, and Moz mutation partially phenocopies DiGeorge syndrome. Dev Cell 23(3):652–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kalsotra A, Singh RK, Gurha P, Ward AJ, Creighton CJ, Cooper TA (2014) The Mef2 transcription network is disrupted in myotonic dystrophy heart tissue, dramatically altering miRNA and mRNA expression. Cell Rep 6(2):336–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22(23):3242–3254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129(2):303–317

    Article  CAS  PubMed  Google Scholar 

  111. Mishima Y, Stahlhut C, Giraldez AJ (2007) miR-1-2 gets to the heart of the matter. Cell 129(2):247–249

    Article  CAS  PubMed  Google Scholar 

  112. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17(5):662–673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316(5824):575–579

    Article  PubMed  CAS  Google Scholar 

  114. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8(2):228–240

    Article  CAS  PubMed  Google Scholar 

  115. Shen X, Soibam B, Benham A, Xu X, Chopra M, Peng X, Yu W, Bao W, Liang R, Azares A, Liu P, Gunaratne PH, Mercola M, Cooney AJ, Schwartz RJ, Liu Y (2016) miR-322/-503 cluster is expressed in the earliest cardiac progenitor cells and drives cardiomyocyte specification. Proc Natl Acad Sci USA 113(34):9551–9556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen J, Huang ZP, Seok HY, Ding J, Kataoka M, Zhang Z, Hu X, Wang G, Lin Z, Wang S, Pu WT, Liao R, Wang DZ (2013) mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 112(12):1557–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133(2):217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132(5):875–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC, Grutzner F, Kaessmann H (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505(7485):635–640

    Article  CAS  PubMed  Google Scholar 

  120. Udd B, Krahe R (2012) The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 11(10):891–905

    Article  CAS  PubMed  Google Scholar 

  121. Wang GS, Kearney DL, De Biasi M, Taffet G, Cooper TA (2007) Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy. J Clin Invest 117(10):2802–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lahm H, Deutsch MA, Dressen M, Doppler S, Werner A, Horer J, Cleuziou J, Schreiber C, Bohm J, Laugwitz KL, Lange R, Krane M (2013) Mutational analysis of the human MESP1 gene in patients with congenital heart disease reveals a highly variable sequence in exon 1. Eur J Med Genet 56(11):591–598

    Article  PubMed  Google Scholar 

  123. Werner P, Latney B, Deardorff MA, Goldmuntz E (2016) MESP1 mutations in patients with congenital heart defects. Hum Mutat 37(3):308–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Robert J. Schwartz, Shuxing Zhang and M. David Stewart for helpful discussions; Research in my laboratory is supported by a startup fund from University of Houston, multiple American Heart Association grants (11SDG5260033, 16GRNT27760164) and a grant from US Department of Defense (LC140601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y. Earlier and broader roles of Mesp1 in cardiovascular development. Cell. Mol. Life Sci. 74, 1969–1983 (2017). https://doi.org/10.1007/s00018-016-2448-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2448-y

Keywords