Skip to main content
Log in

Activated protein C binds directly to Tie2: possible beneficial effects on endothelial barrier function

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Activated protein C (APC) is a natural anticoagulant with strong anti-inflammatory, anti-apoptotic, and barrier stabilizing properties. These cytoprotective properties of APC are thought to be exerted through its pathway involving the binding of APC to endothelial protein C receptor and cleavage of protease-activated receptors. In this study, we found that APC enhanced endothelial barrier integrity via a novel pathway, by binding directly to and activating Tie2, a transmembrane endothelial tyrosine kinase receptor. Binding assays demonstrated that APC competed with the only known ligands of Tie2, the angiopoietins (Angs). APC bound directly to Tie2 (Kd ~3 nM), with markedly stronger binding affinity than Ang2. After binding, APC rapidly activated Tie2 to enhance endothelial barrier function as shown by Evan’s blue dye transfer across confluent cell monolayers and in vivo studies. Blocking Tie2 restricted endothelial barrier integrity. This study highlights a novel mechanism by which APC binds directly to Tie2 to enhance endothelial barrier integrity, which helps to explain APC’s protective effects in vascular leakage-related pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Griffin JH, Fernandez JA, Mosnier LO, Liu D, Cheng T, Guo H, Zlokovic BV (2006) The promise of protein C. Blood cells Mol Dis 36 (2):211–216. doi:10.1016/j.bcmd.2005.12.023

  2. Feistritzer C, Riewald M (2005) Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105(8):3178–3184

    Article  CAS  PubMed  Google Scholar 

  3. Finigan JH, Dudek SM, Singleton PA, Chiang ET, Jacobson JR, Camp SM, Ye SQ, Garcia JG (2005) Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem 280(17):17286–17293. doi:10.1074/jbc.M412427200

    Article  CAS  PubMed  Google Scholar 

  4. Mosnier LO, Sinha RK, Burnier L, Bouwens EA, Griffin JH (2012) Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46. Blood 120(26):5237–5246. doi:10.1182/blood-2012-08-452169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bae JS, Yang L, Manithody C, Rezaie AR (2007) The ligand occupancy of endothelial protein C receptor switches the protease-activated receptor 1-dependent signaling specificity of thrombin from a permeability-enhancing to a barrier-protective response in endothelial cells. Blood 110(12):3909–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Minhas N, Xue M, Fukudome K, Jackson CJ (2010) Activated protein C utilizes the angiopoietin/Tie2 axis to promote endothelial barrier function. FASEB J 24(3):873–881. doi:10.1096/fj.09-134445

    Article  CAS  PubMed  Google Scholar 

  7. Gramling MW, Beaulieu LM, Church FC (2010) Activated protein C enhances cell motility of endothelial cells and MDA-MB-231 breast cancer cells by intracellular signal transduction. Exp Cell Res 316(3):314–328

    Article  CAS  PubMed  Google Scholar 

  8. Burnier L, Mosnier LO (2013) Novel mechanisms for activated protein C cytoprotective activities involving non-canonical activation of protease-activated receptor 3. Blood. doi:10.1182/blood-2013-03-488957

    PubMed  PubMed Central  Google Scholar 

  9. Fiedler U, Augustin HG (2006) Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol 27(12):552–558

    Article  CAS  PubMed  Google Scholar 

  10. Brindle NP, Saharinen P, Alitalo K (2006) Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 98:1014–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jones N, Voskas D, Master Z, Sarao R, Jones J, Dumont DJ (2001) Rescue of the early vascular defects in Tek/Tie2 null mice reveals an essential survival function. EMBO Rep 2(5):438–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McCarter SD, Mei SH, Lai PF, Zhang QW, Parker CH, Suen RS, Hood RD, Zhao YD, Deng Y, Han RN, Dumont DJ, Stewart DJ (2007) Cell-based angiopoietin-1 gene therapy for acute lung injury. Am J Respir Crit Care Med 175(10):1014–1026. doi:10.1164/rccm.200609-1370OC

    Article  CAS  PubMed  Google Scholar 

  13. Fukuhara S, Sako K, Noda K, Zhang J, Minami M, Mochizuki N (2010) Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis. Histol Histopathol 25(3):387–396

    CAS  PubMed  Google Scholar 

  14. van der Heijden M, van Nieuw Amerongen GP, Chedamni S, van Hinsbergh VW, Johan Groeneveld AB (2009) The angiopoietin-Tie2 system as a therapeutic target in sepsis and acute lung injury. Expert Opin Ther Targets 13(1):39–53. doi:10.1517/14728220802626256

    Article  PubMed  Google Scholar 

  15. Thurston G, Wang Q, Baffert F, Rudge J, Papadopoulos N, Jean-Guillaume D, Wiegand S, Yancopoulos GD, McDonald DM (2005) Angiopoietin 1 causes vessel enlargement, without angiogenic sprouting, during a critical developmental period. Development 132(14):3317–3326

    Article  CAS  PubMed  Google Scholar 

  16. Kobayashi H, Lin PC (2005) Angiopoietin/Tie2 signaling, tumor angiogenesis and inflammatory diseases. Front Biosci 10:666–674

    Article  CAS  PubMed  Google Scholar 

  17. David S, Mukherjee A, Ghosh CC, Yano M, Khankin EV, Wenger JB, Karumanchi SA, Shapiro NI, Parikh SM (2012) Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis*. Crit Care Med 40(11):3034–3041. doi:10.1097/CCM.0b013e31825fdc31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Giuliano JS Jr, Wheeler DS (2009) Excess circulating angiopoietin-2 levels in sepsis: harbinger of death in the intensive care unit? Crit Care 13(1):114. doi:10.1186/cc7685

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lukasz A, Kumpers P, David S (2012) Role of angiopoietin/tie2 in critical illness: promising biomarker, disease mediator, and therapeutic target? Scientifica (Cairo) 2012:160174. doi:10.6064/2012/160174

    Google Scholar 

  20. Shibata M, Kumar SR, Amar A, Fernandez JA, Hofman F, Griffin JH, Zlokovic BV (2001) Anti-inflammatory, antithrombotic, and neuroprotective effects of activated protein C in a Murine model of focal ischemic stroke. Circulation 103(13):1799–1805. doi:10.1161/01.cir.103.13.1799

    Article  CAS  PubMed  Google Scholar 

  21. Kaneider NC, Leger AJ, Agarwal A, Nguyen N, Perides G, Derian C, Covic L, Kuliopulos A (2007) ‘Role reversal’ for the receptor PAR1 in sepsis-induced vascular damage. Nat Immunol 8(12):1303–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirschfield GM, Herbert J, Kahan MC, Pepys MB (2003) Human C-reactive protein does not protect against acute lipopolysaccharide challenge in mice. J Immunol 171(11):6046–6051

    Article  CAS  PubMed  Google Scholar 

  23. Thompson WL, Karpus WJ, Van Eldik LJ (2008) MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J Neuroinflammation 5:35. doi:10.1186/1742-2094-5-35

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ye X, Ding J, Zhou X, Chen G, Liu SF (2008) Divergent roles of endothelial NF-{kappa}B in multiple organ injury and bacterial clearance in mouse models of sepsis. J Exp Med 205(6):1303–1315. doi:10.1084/jem.20071393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han Lee ED, Pappalardo E, Scafidi J, Davis AE (2003) Approaches toward reversal of increased vascular permeability in C1 inhibitor deficient mice. Immunol Lett 89(2–3):155–160

    Article  PubMed  Google Scholar 

  26. Moitra J, Sammani S, Garcia JG (2007) Re-evaluation of Evans Blue dye as a marker of albumin clearance in murine models of acute lung injury. Transl Res 150(4):253–265. doi:10.1016/j.trsl.2007.03.013

    Article  CAS  PubMed  Google Scholar 

  27. Patterson CE, Rhoades RA, Garcia JG (1992) Evans blue dye as a marker of albumin clearance in cultured endothelial monolayer and isolated lung. J Appl Phys 72(3):865–873

    Article  CAS  Google Scholar 

  28. Esser S, Lampugnani MG, Corada M, Dejana E, Risau W (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111(Pt 13):1853–1865

    CAS  PubMed  Google Scholar 

  29. Xue M, Campbell D, Sambrook PN, Fukudome K, Jackson CJ (2005) Endothelial protein C receptor and protease-activated receptor-1 mediate induction of a wound-healing phenotype in human keratinocytes by activated protein C. J Invest Dermatol 125(6):1279–1285

    Article  CAS  PubMed  Google Scholar 

  30. Stitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C, Mattsson K, Fisher J, Gies DR, Jones PF et al (1995) The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80(4):661–670

    Article  CAS  PubMed  Google Scholar 

  31. Davis JQ, Lambert S, Bennett V (1996) Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (mucin+/third FNIII domain−) and NrCAM at nodal axon segments. J Cell Biol 135(5):1355–1367

    Article  CAS  PubMed  Google Scholar 

  32. Xu Y, Liu YJ, Yu Q (2004) Angiopoietin-3 is tethered on the cell surface via heparan sulfate proteoglycans. J Biol Chem 279(39):41179–41188. doi:10.1074/jbc.M400292200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hartig PC, Cardon MC, Blystone CR, Gray LE Jr, Wilson VS (2008) High throughput adjustable 96-well plate assay for androgen receptor binding: a practical approach for EDC screening using the chimpanzee AR. Toxicol Lett 181(2):126–131. doi:10.1016/j.toxlet.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  34. Yuan HT, Khankin EV, Karumanchi SA, Parikh SM (2009) Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol 29(8):2011–2022. doi:10.1128/MCB.01472-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grazzini E, Guillon G, Mouillac B, Zingg HH (1998) Inhibition of oxytocin receptor function by direct binding of progesterone. Nature 392(6675):509–512. doi:10.1038/33176

    Article  CAS  PubMed  Google Scholar 

  36. Lamping N, Dettmer R, Schroder NW, Pfeil D, Hallatschek W, Burger R, Schumann RR (1998) LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria. J Clin Invest 101(10):2065–2071. doi:10.1172/JCI2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87(7):1171–1180

    Article  CAS  PubMed  Google Scholar 

  38. Lay AJ, Donahue D, Tsai MJ, Castellino FJ (2007) Acute inflammation is exacerbated in mice genetically predisposed to a severe protein C deficiency. Blood 109(5):1984–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thurston G (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6:460–463

    Article  CAS  PubMed  Google Scholar 

  40. Witzenbichler B, Westermann D, Knueppel S, Schultheiss HP, Tschope C (2005) Protective role of angiopoietin-1 in endotoxic shock. Circulation 111(1):97–105

    Article  CAS  PubMed  Google Scholar 

  41. Thurston G (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286:2511–2514

    Article  CAS  PubMed  Google Scholar 

  42. Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW (2001) Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 276(14):11199–11203. doi:10.1074/jbc.C100017200

    Article  CAS  PubMed  Google Scholar 

  43. Russo A, Soh UJ, Paing MM, Arora P, Trejo J (2009) Caveolae are required for protease-selective signaling by protease-activated receptor-1. Proc Natl Acad Sci USA 106(15):6393–6397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lopez-Sagaseta J, Puy C, Tamayo I, Allende M, Cervero J, Velasco SE, Esmon CT, Montes R, Hermida J (2012) sPLA2-V inhibits EPCR anticoagulant and antiapoptotic properties by accommodating lysophosphatidylcholine or PAF in the hydrophobic groove. Blood 119(12):2914–2921. doi:10.1182/blood-2011-05-353409

    Article  CAS  PubMed  Google Scholar 

  45. Xue M, Shen K, McKelvey K, Li J, Chan YK, Hatzis V, March L, Little CB, Tonkin M, Jackson CJ (2014) Endothelial protein C receptor-associated invasiveness of rheumatoid synovial fibroblasts is likely driven by group V secretory phospholipase A2. Arth Res Ther 16(1):R44. doi:10.1186/ar4473

    Article  Google Scholar 

  46. Thwin MM, Douni E, Arjunan P, Kollias G, Kumar PV, Gopalakrishnakone P (2009) Suppressive effect of secretory phospholipase A2 inhibitory peptide on interleukin-1beta-induced matrix metalloproteinase production in rheumatoid synovial fibroblasts, and its antiarthritic activity in hTNFtg mice. Arth Res Ther 11(5):R138. doi:10.1186/ar2810

    Article  Google Scholar 

  47. Bostrom MA, Boyanovsky BB, Jordan CT, Wadsworth MP, Taatjes DJ, de Beer FC, Webb NR (2007) Group v secretory phospholipase A2 promotes atherosclerosis: evidence from genetically altered mice. Arterioscler Thromb Vasc Biol 27(3):600–606. doi:10.1161/01.ATV.0000257133.60884.44

    Article  CAS  PubMed  Google Scholar 

  48. Yang XV, Banerjee Y, Fernandez JA, Deguchi H, Xu X, Mosnier LO, Urbanus RT, de Groot PG, White-Adams TC, McCarty OJ, Griffin JH (2009) Activated protein C ligation of ApoER2 (LRP8) causes Dab1-dependent signaling in U937 cells. Proc Natl Acad Sci USA 106(1):274–279. doi:10.1073/pnas.0807594106

    Article  CAS  PubMed  Google Scholar 

  49. Cao C, Gao Y, Li Y, Antalis TM, Castellino FJ, Zhang L (2010) The efficacy of activated protein C in murine endotoxemia is dependent on integrin CD11b. J Clin Invest 120(6):1971–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Elphick GF, Sarangi PP, Hyun YM, Hollenbaugh JA, Ayala A, Biffl WL, Chung HL, Rezaie AR, McGrath JL, Topham DJ, Reichner JS, Kim M (2009) Recombinant human activated protein C inhibits integrin-mediated neutrophil migration. Blood 113(17):4078–4085. doi:10.1182/blood-2008-09-180968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xue M, Chow SO, Dervish S, Chan YK, Julovi SM, Jackson CJ (2011) Activated protein C enhances human keratinocyte barrier integrity via sequential activation of epidermal growth factor receptor and Tie2. J Biol Chem 286(8):6742–6750

    Article  CAS  PubMed  Google Scholar 

  52. Stavenuiter F, Mosnier LO (2014) Noncanonical PAR3 activation by factor Xa identifies a novel pathway for Tie2 activation and stabilization of vascular integrity. Blood 124(23):3480–3489. doi:10.1182/blood-2014-06-582775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bae JS, Rezaie AR (2010) Thrombin upregulates the angiopoietin-Tie2 Axis: endothelial protein C receptor occupancy prevents the thrombin mobilization of angiopoietin 2 and P-selectin from Weibel-Palade bodies. J Thromb Haemost 8(5):1107–1115. doi:10.1111/j.1538-7836.2010.03812.x

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mather T, Oganessyan V, Hof P, Huber R, Foundling S, Esmon C, Bode W (1996) The 2.8-Angstrom crystal structure of gla-domainless activated protein c. EMBO J 15(24):6822–6831

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Barton WA, Tzvetkova D, Nikolov DB (2005) Structure of the angiopoietin-2 receptor binding domain and identification of surfaces involved in Tie2 recognition. Structure 13(5):825–832. doi:10.1016/j.str.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  56. Harfouche R, Hussain SN (2006) Signaling and regulation of endothelial cell survival by angiopoietin-2. Am J Physiol Heart Circ Physiol 291(4):H1635–H1645. doi:10.1152/ajpheart.01318.2005

    Article  CAS  PubMed  Google Scholar 

  57. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60

    Article  CAS  PubMed  Google Scholar 

  58. Roviezzo F, Tsigkos S, Kotanidou A, Bucci M, Brancaleone V, Cirino G, Papapetropoulos A (2005) Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J Pharmacol Exp Ther 314(2):738–744. doi:10.1124/jpet.105.086553

    Article  CAS  PubMed  Google Scholar 

  59. Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D, Karumanchi SA, Sukhatme VP (2006) Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 3(3):e46. doi:10.1371/journal.pmed.0030046

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ganter MT, Cohen MJ, Brohi K, Chesebro BB, Staudenmayer KL, Rahn P, Christiaans SC, Bir ND, Pittet JF (2008) Angiopoietin-2, marker and mediator of endothelial activation with prognostic significance early after trauma? Ann Surg 247(2):320–326

    Article  PubMed  Google Scholar 

  61. Ziegler T, Horstkotte J, Schwab C, Pfetsch V, Weinmann K, Dietzel S, Rohwedder I, Hinkel R, Gross L, Lee S, Hu J, Soehnlein O, Franz WM, Sperandio M, Pohl U, Thomas M, Weber C, Augustin HG, Fassler R, Deutsch U, Kupatt C (2013) Angiopoietin 2 mediates microvascular and hemodynamic alterations in sepsis. J Clin Invest. doi:10.1172/JCI66549

    PubMed  PubMed Central  Google Scholar 

  62. Levi M, Dorffler-Melly J, Reitsma P, Buller H, Florquin S, van der Poll T, Carmeliet P (2003) Aggravation of endotoxin-induced disseminated intravascular coagulation and cytokine activation in heterozygous protein-C-deficient mice. Blood 101(12):4823–4827. doi:10.1182/blood-2002-10-3254

    Article  CAS  PubMed  Google Scholar 

  63. Ganopolsky JG, Castellino FJ (2004) A protein C deficiency exacerbates inflammatory and hypotensive responses in mice during polymicrobial sepsis in a cecal ligation and puncture model. Am J Path 165(4):1433–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fisher CJ Jr, Yan SB (2000) Protein C levels as a prognostic indicator of outcome in sepsis and related diseases. Crit Care Med 28(9 Suppl):S49–S56

    Article  PubMed  Google Scholar 

  65. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. New Eng J Med 344(10):699–709

    Article  CAS  PubMed  Google Scholar 

  66. Marti-Carvajal AJ, Sola I, Lathyris D, Cardona AF (2011) Human recombinant activated protein C for severe sepsis. Coch Data Syst Rev 4:CD004388

  67. Sadaka F, O’Brien J, Migneron M, Stortz J, Vanston A, Taylor RW (2011) Activated protein C in septic shock: a propensity-matched analysis. Crit Care 15(2):R89

    Article  PubMed  PubMed Central  Google Scholar 

  68. Murakami K, Okajima K, Uchiba M, Johno M, Nakagaki T, Okabe H, Takatsuki K (1996) Activated protein C attenuates endotoxin-induced pulmonary vascular injury by inhibiting activated leukocytes in rats. Blood 87(2):642–647

    CAS  PubMed  Google Scholar 

  69. Murakami K, Okajima K, Uchiba M, Johno M, Nakagaki T, Okabe H, Takatsuki K (1997) Activated protein C prevents LPS-induced pulmonary vascular injury by inhibiting cytokine production. Am J Physiol Lung Cell Mol Physio 272(2):L197–L202

    CAS  Google Scholar 

  70. Gupta A, Rhodes GJ, Berg DT, Gerlitz B, Molitoris BA, Grinnell BW (2007) Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2. Am J Physio Ren Physio 293 (1):F245–F254. doi:10.1152/ajprenal.00477.2006

Download references

Acknowledgements

We thank Dr Anthony Ashton for helpful discussions and The Maternity unit at Royal North Shore Hospital for providing umbilical cords.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Jackson.

Ethics declarations

Conflict of interest

CJ and MX have patents and commercial interests in molecular variants of APC and skin conditions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2016_2440_MOESM1_ESM.pptx

Supplementary Fig. 1. APC regulates Tie2 in HUVEC at least partially through EPCR at 4 h. HUVEC were incubated with Biorich medium +2% FCS for 24 h before treatment with APC (1 or 10 µg/ml) for 4 h. For some experiments, HUVEC were pre-incubated in Biorich medium + 2% FCS for 1 h with RCR52 (1 µg/ml), before treatment with APC (1 µg/ml) for 4 h. The cell lysates were analyzed for P-Tie2 by western blotting. Results were normalized with β-actin (PPTX 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minhas, N., Xue, M. & Jackson, C.J. Activated protein C binds directly to Tie2: possible beneficial effects on endothelial barrier function. Cell. Mol. Life Sci. 74, 1895–1906 (2017). https://doi.org/10.1007/s00018-016-2440-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2440-6

Keywords

Navigation