Skip to main content
Log in

The role of dietary carbohydrates in organismal aging

Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Carbohydrates are essential nutrients that are used as a primary source of energy. Carbohydrate utilization should be properly controlled, as abnormal regulation of carbohydrate metabolism is associated with diseases, such as diabetes, cardiovascular diseases, and stroke. These metabolic syndromes have become a serious problem in developed countries, and there is an increased need for research examining the influence of carbohydrates on animal physiology. Diets enriched in glucose, a major carbohydrate, are also associated with accelerated aging in several model organisms, including yeast and Caenorhabditis elegans (C. elegans). Genetic factors that mediate the effects of high glucose diets on aging have been identified during the last decade, mostly through the use of C. elegans. In this review, we describe studies that determine the effects of carbohydrate-enriched diets on aging by focusing on the mechanisms through which evolutionarily conserved pathways mediate the lifespan-altering effects of glucose in C. elegans. These include the insulin/insulin-like growth factor-1, sterol-regulatory element-binding protein, and AMP-activated protein kinase signaling pathways. We also discuss the effects of various carbohydrates and carbohydrate-derived metabolites on aging in model organisms and cultured mammalian cells. Finally, we discuss how dietary carbohydrates influence health and aging in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Dickinson DJ, Goldstein B (2016) CRISPR-based methods for Caenorhabditis elegans genome engineering. Genetics 202(3):885–901. doi:10.1534/genetics.115.182162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Corsi AK, Wightman B, Chalfie M (2015) A transparent window into biology: a primer on Caenorhabditis elegans. Genetics 200(2):387–407. doi:10.1534/genetics.115.176099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512. doi:10.1038/nature08980

    Article  CAS  PubMed  Google Scholar 

  4. Lee Y, An SWA, Artan M, Seo M, Hwang AB, Jeong D-E, Son HG, Hwang W, Lee D, Seo K, Altintas O, Park S, Lee S-JV (2015) Genes and pathways that influence longevity in Caenorhabditis elegans. In: Mori N, Mook-Jung I (eds) Aging mechanisms: longevity, metabolism, and brain aging. Springer, Tokyo, pp 123–169. doi:10.1007/978-4-431-55763-0_8

  5. Stiernagle T (2006) Maintenance of C. elegans. WormBook. doi:10.1895/wormbook.1.101.1

    PubMed  PubMed Central  Google Scholar 

  6. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806. doi:10.1038/414799a

    Article  CAS  PubMed  Google Scholar 

  7. Altintas O, Park S, Lee SJ (2016) The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep 49(2):81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Riddle DL, Swanson MM, Albert PS (1981) Interacting genes in nematode dauer larva formation. Nature 290(5808):668–671

    Article  CAS  PubMed  Google Scholar 

  9. Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15(2):657–664. doi:10.1091/mbc.E03-07-0532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300(5622):1142–1145. doi:10.1126/science.1083701

    Article  CAS  PubMed  Google Scholar 

  11. Lee SS, Kennedy S, Tolonen AC, Ruvkun G (2003) DAF-16 target genes that control C. elegans life-span and metabolism. Science 300(5619):644–647. doi:10.1126/science.1083614

    Article  CAS  PubMed  Google Scholar 

  12. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424(6946):277–283. doi:10.1038/nature01789

    Article  CAS  PubMed  Google Scholar 

  13. Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132(6):1025–1038. doi:10.1016/j.cell.2008.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee SJ, Murphy CT, Kenyon C (2009) Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab 10(5):379–391. doi:10.1016/j.cmet.2009.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu PJ (2007) Dauer. WormBook. doi:10.1895/wormbook.1.144.1

    PubMed  PubMed Central  Google Scholar 

  16. Murphy CT, Lee SJ, Kenyon C (2007) Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc Natl Acad Sci USA 104(48):19046–19050. doi:10.1073/pnas.0709613104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W, Kishida K, Inoue K, Kuriyama H, Nakamura T, Fushiki T, Kihara S, Shimomura I (2005) Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci USA 102(31):10993–10998. doi:10.1073/pnas.0503291102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rojek AM, Skowronski MT, Fuchtbauer EM, Fuchtbauer AC, Fenton RA, Agre P, Frokiaer J, Nielsen S (2007) Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci USA 104(9):3609–3614. doi:10.1073/pnas.0610894104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pang S, Lynn DA, Lo JY, Paek J, Curran SP (2014) SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation. Nat Commun 5:5048. doi:10.1038/ncomms6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447(7144):545–549. doi:10.1038/nature05904

    Article  CAS  PubMed  Google Scholar 

  21. Fontana L, Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161(1):106–118. doi:10.1016/j.cell.2015.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walker AK, Näär AM (2012) SREBPs: regulators of cholesterol/lipids as therapeutic targets in metabolic disorders, cancers and viral diseases. Clin Lipidol 7(1):27–36

    Article  CAS  Google Scholar 

  23. Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H (1998) Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 101(11):2331–2339. doi:10.1172/JCI2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McKay RM, McKay JP, Avery L, Graff JM (2003) C elegans: a model for exploring the genetics of fat storage. Dev Cell 4(1):131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM, Shioda T, Hansen M, Yang F, Niebergall LJ, Vance DE, Tzoneva M, Hart AC, Naar AM (2011) A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147(4):840–852. doi:10.1016/j.cell.2011.09.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A, Boss O, Hirsch ML, Ribich S, Smith JJ, Israelian K, Westphal CH, Rodgers JT, Shioda T, Elson SL, Mulligan P, Najafi-Shoushtari H, Black JC, Thakur JK, Kadyk LC, Whetstine JR, Mostoslavsky R, Puigserver P, Li X, Dyson NJ, Hart AC, Naar AM (2010) Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 24(13):1403–1417. doi:10.1101/gad.1901210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee D, Jeong DE, Son HG, Yamaoka Y, Kim H, Seo K, Khan AA, Roh TY, Moon DW, Lee Y, Lee SJ (2015) SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes Dev 29(23):2490–2503. doi:10.1101/gad.266304.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nomura T, Horikawa M, Shimamura S, Hashimoto T, Sakamoto K (2010) Fat accumulation in Caenorhabditis elegans is mediated by SREBP homolog SBP-1. Genes Nutr 5(1):17–27. doi:10.1007/s12263-009-0157-y

    Article  CAS  PubMed  Google Scholar 

  29. Yang F, Vought BW, Satterlee JS, Walker AK, Jim Sun ZY, Watts JL, DeBeaumont R, Saito RM, Hyberts SG, Yang S, Macol C, Iyer L, Tjian R, van den Heuvel S, Hart AC, Wagner G, Naar AM (2006) An ARC/mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442(7103):700–704. doi:10.1038/nature04942

    Article  CAS  PubMed  Google Scholar 

  30. Allen BL, Taatjes DJ (2015) The mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 16(3):155–166. doi:10.1038/nrm3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taubert S, Van Gilst MR, Hansen M, Yamamoto KR (2006) A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev 20(9):1137–1149. doi:10.1101/gad.1395406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goh GY, Martelli KL, Parhar KS, Kwong AW, Wong MA, Mah A, Hou NS, Taubert S (2014) The conserved Mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans. Aging Cell 13(1):70–79. doi:10.1111/acel.12154

    Article  CAS  PubMed  Google Scholar 

  33. McGhee JD (2007) The C. elegans intestine. WormBook. doi:10.1895/wormbook.1.133.1

    PubMed  PubMed Central  Google Scholar 

  34. Becard D, Hainault I, Azzout-Marniche D, Bertry-Coussot L, Ferre P, Foufelle F (2001) Adenovirus-mediated overexpression of sterol regulatory element binding protein-1c mimics insulin effects on hepatic gene expression and glucose homeostasis in diabetic mice. Diabetes 50(11):2425–2430

    Article  CAS  PubMed  Google Scholar 

  35. Takahashi A, Shimano H, Nakagawa Y, Yamamoto T, Motomura K, Matsuzaka T, Sone H, Suzuki H, Toyoshima H, Yamada N (2005) Transgenic mice overexpressing SREBP-1a under the control of the PEPCK promoter exhibit insulin resistance, but not diabetes. Biochim Biophys Acta 1740(3):427–433. doi:10.1016/j.bbadis.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  36. Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 29(3):351–366. doi:10.1210/er.2007-0023

    Article  CAS  PubMed  Google Scholar 

  37. Goodridge AG (1972) Regulation of the activity of acetyl coenzyme A carboxylase by palmitoyl coenzyme A and citrate. J Biol Chem 247(21):6946–6952

    CAS  PubMed  Google Scholar 

  38. Ogiwara H, Tanabe T, Nikawa J, Numa S (1978) Inhibition of rat-liver acetyl-coenzyme-A carboxylase by palmitoyl-coenzyme A. Formation of equimolar enzyme-inhibitor complex. Eur J Biochem 89(1):33–41

    Article  CAS  PubMed  Google Scholar 

  39. Rabbani N, Thornalley PJ (2015) Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun 458(2):221–226. doi:10.1016/j.bbrc.2015.01.140

    Article  CAS  PubMed  Google Scholar 

  40. Schlotterer A, Kukudov G, Bozorgmehr F, Hutter H, Du X, Oikonomou D, Ibrahim Y, Pfisterer F, Rabbani N, Thornalley P, Sayed A, Fleming T, Humpert P, Schwenger V, Zeier M, Hamann A, Stern D, Brownlee M, Bierhaus A, Nawroth P, Morcos M (2009) C. elegans as model for the study of high glucose- mediated life span reduction. Diabetes 58(11):2450–2456. doi:10.2337/db09-0567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262. doi:10.1038/nrm3311

    Article  CAS  PubMed  Google Scholar 

  42. Mair W, Morantte I, Rodrigues AP, Manning G, Montminy M, Shaw RJ, Dillin A (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470(7334):404–408. doi:10.1038/nature09706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sagi D, Kim SK (2012) An engineering approach to extending lifespan in C. elegans. PLoS Genet 8(6):e1002780. doi:10.1371/journal.pgen.1002780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hwang AB, Ryu EA, Artan M, Chang HW, Kabir MH, Nam HJ, Lee D, Yang JS, Kim S, Mair WB, Lee C, Lee SS, Lee SJ (2014) Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc Natl Acad Sci USA 111(42):E4458–E4467. doi:10.1073/pnas.1411199111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18(24):3004–3009. doi:10.1101/gad.1255404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17(19):1646–1656. doi:10.1016/j.cub.2007.08.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6(4):280–293. doi:10.1016/j.cmet.2007.08.011

    Article  CAS  PubMed  Google Scholar 

  48. Yun J, Finkel T (2014) Mitohormesis. Cell Metab 19(5):757–766. doi:10.1016/j.cmet.2014.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Choi SS (2011) High glucose diets shorten lifespan of Caenorhabditis elegans via ectopic apoptosis induction. Nutr Res Pract 5(3):214–218. doi:10.4162/nrp.2011.5.3.214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kitaoka S, Morielli AD, Zhao FQ (2013) FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells. PLoS One 8(6):e68475. doi:10.1371/journal.pone.0068475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feng Y, Williams BG, Koumanov F, Wolstenholme AJ, Holman GD (2013) FGT-1 is the major glucose transporter in C. elegans and is central to aging pathways. Biochem J 456(2):219–229. doi:10.1042/BJ20131101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Svensk E, Devkota R, Stahlman M, Ranji P, Rauthan M, Magnusson F, Hammarsten S, Johansson M, Boren J, Pilon M (2016) Caenorhabditis elegans PAQR-2 and IGLR-2 protect against glucose toxicity by modulating membrane lipid composition. PLoS Genet 12(4):e1005982. doi:10.1371/journal.pgen.1005982

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tauffenberger A, Vaccaro A, Parker JA (2016) Fragile lifespan expansion by dietary mitohormesis in C. elegans. Aging (Albany, NY) 8(1):50–61. doi:10.18632/aging.100863

    Article  Google Scholar 

  54. Svensk E, Stahlman M, Andersson CH, Johansson M, Boren J, Pilon M (2013) PAQR-2 regulates fatty acid desaturation during cold adaptation in C. elegans. PLoS Genet 9(9):e1003801. doi:10.1371/journal.pgen.1003801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iwabu M, Okada-Iwabu M, Yamauchi T, Kadowaki T (2015) Adiponectin/adiponectin receptor in disease and aging. NPJ Aging Mech Dis 1:15013. doi:10.1038/npjamd.2015.13

    Article  Google Scholar 

  56. Jensen MB, Jasper H (2014) Mitochondrial proteostasis in the control of aging and longevity. Cell Metab 20(2):214–225. doi:10.1016/j.cmet.2014.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tauffenberger A, Vaccaro A, Aulas A, Vande Velde C, Parker JA (2012) Glucose delays age-dependent proteotoxicity. Aging Cell 11(5):856–866. doi:10.1111/j.1474-9726.2012.00855.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219(1–2):179–186

    Article  PubMed  Google Scholar 

  59. Watanabe M, Kikawada T, Minagawa N, Yukuhiro F, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205(Pt 18):2799–2802

    CAS  PubMed  Google Scholar 

  60. Sakurai M, Furuki T, Akao K, Tanaka D, Nakahara Y, Kikawada T, Watanabe M, Okuda T (2008) Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc Natl Acad Sci USA 105(13):5093–5098. doi:10.1073/pnas.0706197105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17R–27R. doi:10.1093/glycob/cwg047

    Article  CAS  PubMed  Google Scholar 

  62. Honda Y, Tanaka M, Honda S (2010) Trehalose extends longevity in the nematode Caenorhabditis elegans. Aging Cell 9(4):558–569. doi:10.1111/j.1474-9726.2010.00582.x

    Article  CAS  PubMed  Google Scholar 

  63. Mouchiroud L, Molin L, Kasturi P, Triba MN, Dumas ME, Wilson MC, Halestrap AP, Roussel D, Masse I, Dalliere N, Segalat L, Billaud M, Solari F (2011) Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans. Aging Cell 10(1):39–54. doi:10.1111/j.1474-9726.2010.00640.x

    Article  CAS  PubMed  Google Scholar 

  64. Cho SC, Park MC, Keam B, Choi JM, Cho Y, Hyun S, Park SC, Lee J (2010) DDS, 4,4′-diaminodiphenylsulfone, extends organismic lifespan. Proc Natl Acad Sci USA 107(45):19326–19331. doi:10.1073/pnas.1005078107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Edwards CB, Copes N, Brito AG, Canfield J, Bradshaw PC (2013) Malate and fumarate extend lifespan in Caenorhabditis elegans. PLoS One 8(3):e58345. doi:10.1371/journal.pone.0058345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, Diep S, Lomenick B, Meli VS, Monsalve GC, Hu E, Whelan SA, Wang JX, Jung G, Solis GM, Fazlollahi F, Kaweeteerawat C, Quach A, Nili M, Krall AS, Godwin HA, Chang HR, Faull KF, Guo F, Jiang M, Trauger SA, Saghatelian A, Braas D, Christofk HR, Clarke CF, Teitell MA, Petrascheck M, Reue K, Jung ME, Frand AR, Huang J (2014) The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510(7505):397–401. doi:10.1038/nature13264

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Denzel MS, Storm NJ, Gutschmidt A, Baddi R, Hinze Y, Jarosch E, Sommer T, Hoppe T, Antebi A (2014) Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell 156(6):1167–1178. doi:10.1016/j.cell.2014.01.061

    Article  CAS  PubMed  Google Scholar 

  68. Roux AE, Leroux A, Alaamery MA, Hoffman CS, Chartrand P, Ferbeyre G, Rokeach LA (2009) Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet 5(3):e1000408. doi:10.1371/journal.pgen.1000408

    Article  PubMed  PubMed Central  Google Scholar 

  69. Weinberger M, Mesquita A, Caroll T, Marks L, Yang H, Zhang Z, Ludovico P, Burhans WC (2010) Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging (Albany NY) 2(10):709–726. doi:10.18632/aging.100215

    Article  CAS  Google Scholar 

  70. Semchyshyn HM, Lozinska LM, Miedzobrodzki J, Lushchak VI (2011) Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells. Carbohydr Res 346(7):933–938. doi:10.1016/j.carres.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  71. Suarez G, Rajaram R, Oronsky AL, Gawinowicz MA (1989) Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. J Biol Chem 264(7):3674–3679

    CAS  PubMed  Google Scholar 

  72. Mortuza R, Chen S, Feng B, Sen S, Chakrabarti S (2013) High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS One 8(1):e54514. doi:10.1371/journal.pone.0054514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang B, Cui S, Bai X, Zhuo L, Sun X, Hong Q, Fu B, Wang J, Chen X, Cai G (2013) SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age (Dordr) 35(6):2237–2253. doi:10.1007/s11357-013-9520-4

    Article  CAS  Google Scholar 

  74. Imai S, Guarente L (2014) NAD+ and sirtuins in aging and disease. Trends Cell Biol 24(8):464–471. doi:10.1016/j.tcb.2014.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kuki S, Imanishi T, Kobayashi K, Matsuo Y, Obana M, Akasaka T (2006) Hyperglycemia accelerated endothelial progenitor cell senescence via the activation of p38 mitogen-activated protein kinase. Circ J 70(8):1076–1081

    Article  CAS  PubMed  Google Scholar 

  76. Samaha FF, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, Williams T, Williams M, Gracely EJ, Stern L (2003) A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med 348(21):2074–2081. doi:10.1056/NEJMoa022637

    Article  CAS  PubMed  Google Scholar 

  77. Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohammed BS, Szapary PO, Rader DJ, Edman JS, Klein S (2003) A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 348(21):2082–2090. doi:10.1056/NEJMoa022207

    Article  CAS  PubMed  Google Scholar 

  78. Rosedale R, Westman EC, Konhilas JP (2009) Clinical experience of a diet designed to reduce aging. J Appl Res 9(4):159–165

    PubMed  PubMed Central  Google Scholar 

  79. Le Couteur DG, Solon-Biet S, Cogger VC, Mitchell SJ, Senior A, de Cabo R, Raubenheimer D, Simpson SJ (2016) The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell Mol Life Sci 73(6):1237–1252. doi:10.1007/s00018-015-2120-y

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Murat Artan and other Lee lab members for helpful comments. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (Ministry of Science, ICT, and Future Planning; NRF-2012R1A4A1028200) and a Grant of the Korean Health Technology R&D Project, Ministry of Health and Welfare (HI14C2337 to S.-J.V.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Jae V. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Son, H.G., Jung, Y. et al. The role of dietary carbohydrates in organismal aging. Cell. Mol. Life Sci. 74, 1793–1803 (2017). https://doi.org/10.1007/s00018-016-2432-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2432-6

Keywords

Navigation