Cellular and Molecular Life Sciences

, Volume 74, Issue 9, pp 1721–1739 | Cite as

Dynamic landscape of alternative polyadenylation during retinal development

  • Wenyan Hu
  • Shengguo Li
  • Ji Yeon Park
  • Sridhar Boppana
  • Ting Ni
  • Miaoxin Li
  • Jun Zhu
  • Bin Tian
  • Zhi Xie
  • Mengqing Xiang
Original Article


The development of the central nervous system (CNS) is a complex process that must be exquisitely controlled at multiple levels to ensure the production of appropriate types and quantity of neurons. RNA alternative polyadenylation (APA) contributes to transcriptome diversity and gene regulation, and has recently been shown to be widespread in the CNS. However, the previous studies have been primarily focused on the tissue specificity of APA and developmental APA change of whole model organisms; a systematic survey of APA usage is lacking during CNS development. Here, we conducted global analysis of APA during mouse retinal development, and identified stage-specific polyadenylation (pA) sites that are enriched for genes critical for retinal development and visual perception. Moreover, we demonstrated 3′UTR (untranslated region) lengthening and increased usage of intronic pA sites over development that would result in gaining many different RBP (RNA-binding protein) and miRNA target sites. Furthermore, we showed that a considerable number of polyadenylated lncRNAs are co-expressed with protein-coding genes involved in retinal development and functions. Together, our data indicate that APA is highly and dynamically regulated during retinal development and maturation, suggesting that APA may serve as a crucial mechanism of gene regulation underlying the delicate process of CNS development.


Central nervous system PA-seq RNA stability Post-transcriptional gene regulation Transcriptome Cleavage and polyadenylation-associated factor 



We thank Dr. Kangxin Jin for critical reading of and thoughtful comments on the manuscript. This work was supported by the China Postdoctoral Science Foundation (2015M582461) to HWY; the National Basic Research Program (973 Program) of China (2015CB964600), the National Institutes of Health (EY020849 and EY012020), and the Fundamental Research Funds of the State Key Laboratory of Ophthalmology, Sun Yat-sen University to MX; and the National Natural Science Foundation of China (31471232), Major Program of Science and Technology of Guangzhou (201607020001), Science and Technology Planning Projects of Guangdong Province (2014B030301040), and Joint Research Fund for Overseas Natural Science of China (3030901001222) to ZX.

Supplementary material

18_2016_2429_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1929 kb)


  1. 1.
    Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, Hayden Gephart MG, Barres BA, Quake SR (2015) A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA 112:7285–7290CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Di Giammartino DC, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative polyadenylation. Mol Cell 43:853–866CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Danckwardt S, Hentze MW, Kulozik AE (2008) 3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J 27:482–498CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Edmonds M (2002) A history of poly A sequences: from formation to factors to function. Prog Nucleic Acid Res Mol Biol 71:285–389CrossRefPubMedGoogle Scholar
  5. 5.
    Millevoi S, Vagner S (2010) Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res 38:2757–2774CrossRefPubMedGoogle Scholar
  6. 6.
    Colgan DF, Manley JL (1997) Mechanism and regulation of mRNA polyadenylation. Genes Dev 11:2755–2766CrossRefPubMedGoogle Scholar
  7. 7.
    Conne B, Stutz A, Vassalli JD (2000) The 3′ untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology? Nat Med 6:637–641CrossRefPubMedGoogle Scholar
  8. 8.
    Lutz CS, Moreira A (2011) Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. Wiley Interdiscip Rev RNA 2:22–31CrossRefPubMedGoogle Scholar
  9. 9.
    Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108:501–512CrossRefPubMedGoogle Scholar
  10. 10.
    Pascale A, Govoni S (2012) The complex world of post-transcriptional mechanisms: is their deregulation a common link for diseases? Focus on ELAV-like RNA-binding proteins. Cell Mol Life Sci 69:501–517CrossRefPubMedGoogle Scholar
  11. 11.
    Curinha A, Oliveira Braz S, Pereira-Castro I, Cruz A, Moreira A (2014) Implications of polyadenylation in health and disease. Nucleus 5:508–519CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rehfeld A, Plass M, Krogh A, Friis-Hansen L (2013) Alterations in polyadenylation and its implications for endocrine disease. Front Endocrinol (Lausanne) 4:53Google Scholar
  13. 13.
    Tian B, Hu J, Zhang H, Lutz CS (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33:201–212CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hoque M, Ji Z, Zheng D, Luo W, Li W, You B, Park JY, Yehia G, Tian B (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10:133–139CrossRefPubMedGoogle Scholar
  15. 15.
    Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, Gueroussov S, Albu M, Zheng H, Yang A, Na H, Irimia M, Matzat LH, Dale RK, Smith SA, Yarosh CA, Kelly SM, Nabet B, Mecenas D, Li W, Laishram RS, Qiao M, Lipshitz HD, Piano F, Corbett AH, Carstens RP, Frey BJ, Anderson RA, Lynch KW, Penalva LO, Lei EP, Fraser AG, Blencowe BJ, Morris QD, Hughes TR (2013) A compendium of RNA-binding motifs for decoding gene regulation. Nature 499:172–177CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Iadevaia V, Gerber AP (2015) Combinatorial control of mRNA fates by RNA-binding proteins and non-coding RNAs. Biomolecules 5:2207–2222CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379CrossRefPubMedGoogle Scholar
  19. 19.
    Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–1647CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Elkon R, Ugalde AP, Agami R (2013) Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet 14:496–506CrossRefPubMedGoogle Scholar
  21. 21.
    Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508:66–71CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Berkovits BD, Mayr C (2015) Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization. Nature 522:363–367CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    de Klerk E, ’t Hoen PA (2015) Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet 31:128–139CrossRefPubMedGoogle Scholar
  24. 24.
    Ji Z, Tian B (2009) Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One 4:e8419CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mayr C, Bartel DP (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–684CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Flavell SW, Kim TK, Gray JM, Harmin DA, Hemberg M, Hong EJ, Markenscoff-Papadimitriou E, Bear DM, Greenberg ME (2008) Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60:1022–1038CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Batra R, Charizanis K, Manchanda M, Mohan A, Li M, Finn DJ, Goodwin M, Zhang C, Sobczak K, Thornton CA, Swanson MS (2014) Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol Cell 56:311–322CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Goodwin M, Mohan A, Batra R, Lee KY, Charizanis K, Gomez FJ, Eddarkaoui S, Sergeant N, Buee L, Kimura T, Clark HB, Dalton J, Takamura K, Weyn-Vanhentenryck SM, Zhang C, Reid T, Ranum LP, Day JW, Swanson MS (2015) MBNL sequestration by toxic RNAs and RNA misprocessing in the myotonic dystrophy brain. Cell Rep 12:1159–1168CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gennarino VA, Alcott CE, Chen CA, Chaudhury A, Gillentine MA, Rosenfeld JA, Parikh S, Wheless JW, Roeder ER, Horovitz DD, Roney EK, Smith JL, Cheung SW, Li W, Neilson JR, Schaaf CP (1078) Zoghbi HY (2015) NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation. Elife 4:e10782. doi: 10.7554/eLife.10782 Google Scholar
  30. 30.
    Bennett CL, Brunkow ME, Ramsdell F, O’Briant KC, Zhu Q, Fuleihan RL, Shigeoka AO, Ochs HD, Chance PF (2001) A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA → AAUGAA) leads to the IPEX syndrome. Immunogenetics 53:435–439CrossRefPubMedGoogle Scholar
  31. 31.
    Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20–21CrossRefPubMedGoogle Scholar
  32. 32.
    Hilgers V, Perry MW, Hendrix D, Stark A, Levine M, Haley B (2011) Neural-specific elongation of 3′ UTRs during Drosophila development. Proc Natl Acad Sci USA 108:15864–15869CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Miura P, Shenker S, Andreu-Agullo C, Westholm JO, Lai EC (2013) Widespread and extensive lengthening of 3′ UTRs in the mammalian brain. Genome Res 23:812–825CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shepard PJ, Choi EA, Lu J, Flanagan LA, Hertel KJ, Shi Y (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17:761–772CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ulitsky I, Shkumatava A, Jan CH, Subtelny AO, Koppstein D, Bell GW, Sive H, Bartel DP (2012) Extensive alternative polyadenylation during zebrafish development. Genome Res 22:2054–2066CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Smibert P, Miura P, Westholm JO, Shenker S, May G, Duff MO, Zhang D, Eads BD, Carlson J, Brown JB, Eisman RC, Andrews J, Kaufman T, Cherbas P, Celniker SE, Graveley BR, Lai EC (2012) Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Rep 1:277–289CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li Y, Sun Y, Fu Y, Li M, Huang G, Zhang C, Liang J, Huang S, Shen G, Yuan S, Chen L, Chen S, Xu A (2012) Dynamic landscape of tandem 3′ UTRs during zebrafish development. Genome Res 22:1899–1906CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ji Z, Lee JY, Pan Z, Jiang B, Tian B (2009) Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci USA 106:7028–7033CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4:877–886CrossRefPubMedGoogle Scholar
  40. 40.
    Masland RH (2012) The neuronal organization of the retina. Neuron 76:266–280CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Livesey FJ, Cepko CL (2001) Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci 2:109–118CrossRefPubMedGoogle Scholar
  42. 42.
    Agathocleous M, Harris WA (2009) From progenitors to differentiated cells in the vertebrate retina. Annu Rev Cell Dev Biol 25:45–69CrossRefPubMedGoogle Scholar
  43. 43.
    Xiang M (2013) Intrinsic control of mammalian retinogenesis. Cell Mol Life Sci 70:2519–2532CrossRefPubMedGoogle Scholar
  44. 44.
    Ni T, Yang Y, Hafez D, Yang W, Kiesewetter K, Wakabayashi Y, Ohler U, Peng W, Zhu J (2013) Distinct polyadenylation landscapes of diverse human tissues revealed by a modified PA-seq strategy. BMC Genom 14:615CrossRefGoogle Scholar
  45. 45.
    Hafez D, Ni T, Mukherjee S, Zhu J, Ohler U (2013) Genome-wide identification and predictive modeling of tissue-specific alternative polyadenylation. Bioinformatics 29:i108–i116CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Boyle AP, Guinney J, Crawford GE, Furey TS (2008) F-Seq: a feature density estimator for high-throughput sequence tags. Bioinformatics 24:2537–2538CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schug J, Schuller WP, Kappen C, Salbaum JM, Bucan M Jr, Stoeckert CJ (2005) Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol 6:R33CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Brooks MJ, Rajasimha HK, Roger JE, Swaroop A (2011) Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl (−/−) retinal transcriptomes. Mol Vis 17:3034–3054PubMedPubMedCentralGoogle Scholar
  50. 50.
    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169CrossRefPubMedGoogle Scholar
  52. 52.
    Varemo L, Nielsen J, Nookaew I (2013) Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 41:4378–4391CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Retelska D, Iseli C, Bucher P, Jongeneel CV, Naef F (2006) Similarities and differences of polyadenylation signals in human and fly. BMC Genom 7:176CrossRefGoogle Scholar
  54. 54.
    Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36PubMedGoogle Scholar
  55. 55.
  56. 56.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73CrossRefPubMedGoogle Scholar
  57. 57.
    McLeay RC, Bailey TL (2010) Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinform 11:165CrossRefGoogle Scholar
  58. 58.
    Qiu F, Jiang H, Xiang M (2008) A comprehensive negative regulatory program controlled by Brn3b to ensure ganglion cell specification from multipotential retinal precursors. J Neurosci 28:3392–3403CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Fujitani Y, Fujitani S, Luo H, Qiu F, Burlison J, Long Q, Kawaguchi Y, Edlund H, Macdonald RJ, Furukawa T, Fujikado T, Magnuson MA, Xiang M, Wright CV (2006) Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development 133:4439–4450CrossRefPubMedGoogle Scholar
  60. 60.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lee JY, Yeh I, Park JY, Tian B (2007) PolyA_DB 2: mRNA polyadenylation sites in vertebrate genes. Nucleic Acids Res 35:D165–D168CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Jan CH, Friedman RC, Ruby JG, Bartel DP (2011) Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469:97–101CrossRefPubMedGoogle Scholar
  63. 63.
    Fu Y, Sun Y, Li Y, Li J, Rao X, Chen C, Xu A (2011) Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res 21:741–747CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Gene Expression Atlas database.
  65. 65.
    Marzinke MA, Clagett-Dame M (2012) The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells. Exp Cell Res 318:85–93CrossRefPubMedGoogle Scholar
  66. 66.
    Pires-daSilva A, Nayernia K, Engel W, Torres M, Stoykova A, Chowdhury K, Gruss P (2001) Mice deficient for spermatid perinuclear RNA-binding protein show neurologic, spermatogenic, and sperm morphological abnormalities. Dev Biol 233:319–328CrossRefPubMedGoogle Scholar
  67. 67.
    Yano M, Hayakawa-Yano Y, Mele A, Darnell RB (2010) Nova2 regulates neuronal migration through an RNA switch in disabled-1 signaling. Neuron 66:848–858CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zhang C, Frias MA, Mele A, Ruggiu M, Eom T, Marney CB, Wang H, Licatalosi DD, Fak JJ, Darnell RB (2010) Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls. Science 329:439–443CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Sinning A, Liebmann L, Kougioumtzes A, Westermann M, Bruehl C, Hubner CA (2011) Synaptic glutamate release is modulated by the Na+-driven Cl-/HCO(3)(–) exchanger Slc4a8. J Neurosci 31:7300–7311CrossRefPubMedGoogle Scholar
  70. 70.
    Lachke SA, Higgins AW, Inagaki M, Saadi I, Xi Q, Long M, Quade BJ, Talkowski ME, Gusella JF, Fujimoto A, Robinson ML, Yang Y, Duong QT, Shapira I, Motro B, Miyoshi J, Takai Y, Morton CC, Maas RL (2012) The cell adhesion gene PVRL3 is associated with congenital ocular defects. Hum Genet 131:235–250CrossRefPubMedGoogle Scholar
  71. 71.
    Zhang H, Lee JY, Tian B (2005) Biased alternative polyadenylation in human tissues. Genome Biol 6:R100CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ji Z, Luo W, Li W, Hoque M, Pan Z, Zhao Y, Tian B (2011) Transcriptional activity regulates alternative cleavage and polyadenylation. Mol Syst Biol 7:534CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR 3rd, Frank J, Manley JL (2009) Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 33:365–376CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sokolowski M, Schwartz S (2001) Heterogeneous nuclear ribonucleoprotein C binds exclusively to the functionally important UUUUU-motifs in the human papillomavirus type-1 AU-rich inhibitory element. Virus Res 73:163–175CrossRefPubMedGoogle Scholar
  75. 75.
    Shetty S (2005) Regulation of urokinase receptor mRNA stability by hnRNP C in lung epithelial cells. Mol Cell Biochem 272:107–118CrossRefPubMedGoogle Scholar
  76. 76.
    Clark BS, Blackshaw S (2014) Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet 5:164CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Krol J, Krol I, Alvarez CP, Fiscella M, Hierlemann A, Roska B, Filipowicz W (2015) A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture. Nat Commun 6:7305CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Alfano G, Vitiello C, Caccioppoli C, Caramico T, Carola A, Szego MJ, McInnes RR, Auricchio A, Banfi S (2005) Natural antisense transcripts associated with genes involved in eye development. Hum Mol Genet 14:913–923CrossRefPubMedGoogle Scholar
  79. 79.
    Rapicavoli NA, Poth EM, Zhu H, Blackshaw S (2011) The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity. Neural Dev 6:32CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Meola N, Pizzo M, Alfano G, Surace EM, Banfi S (2012) The long noncoding RNA Vax2os1 controls the cell cycle progression of photoreceptor progenitors in the mouse retina. RNA 18:111–123CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147:1537–1550CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Yan B, Tao ZF, Li XM, Zhang H, Yao J, Jiang Q (2014) Aberrant expression of long noncoding RNAs in early diabetic retinopathy. Invest Ophthalmol Vis Sci 55:941–951CrossRefPubMedGoogle Scholar
  83. 83.
    Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, Zhang MQ, Sedel F, Jourdren L, Coulpier F, Triller A, Spector DL, Bessis A (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29:3082–3093CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Cepko C (2014) Intrinsically different retinal progenitor cells produce specific types of progeny. Nat Rev Neurosci 15:615–627CrossRefPubMedGoogle Scholar
  85. 85.
    Urbanczyk A, Junemann A, Enz R (2011) PKCzeta-interacting protein ZIP3 is generated by intronic polyadenylation, and is expressed in the brain and retina of the rat. Biochem J 433:43–50CrossRefPubMedGoogle Scholar
  86. 86.
    Lambert de Rouvroit C, Bernier B, Royaux I, de Bergeyck V, Goffinet AM (1999) Evolutionarily conserved, alternative splicing of reelin during brain development. Exp Neurol 156:229–238CrossRefPubMedGoogle Scholar
  87. 87.
    Morrow EM, Belliveau MJ, Cepko CL (1998) Two phases of rod photoreceptor differentiation during rat retinal development. J Neurosci 18:3738–3748PubMedGoogle Scholar
  88. 88.
    Zack DJ, Bennett J, Wang Y, Davenport C, Klaunberg B, Gearhart J, Nathans J (1991) Unusual topography of bovine rhodopsin promoter-lacZ fusion gene expression in transgenic mouse retinas. Neuron 6:187–199CrossRefPubMedGoogle Scholar
  89. 89.
    Liu MM, Zack DJ (2013) Alternative splicing and retinal degeneration. Clin Genet 84:142–149CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH (2006) Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 29:77–103CrossRefPubMedGoogle Scholar
  91. 91.
    Szostak E, Gebauer F (2013) Translational control by 3′-UTR-binding proteins. Brief Funct Genomics 12:58–65CrossRefPubMedGoogle Scholar
  92. 92.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531CrossRefPubMedGoogle Scholar
  93. 93.
    Shyu AB, Wilkinson MF, van Hoof A (2008) Messenger RNA regulation: to translate or to degrade. EMBO J 27:471–481CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Gardiner AS, Twiss JL, Perrone-Bizzozero NI (2015) Competing interactions of RNA-binding proteins, microRNAs, and their targets control neuronal development and function. Biomolecules 5:2903–2918CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Mercer TR, Dinger ME, Bracken CP, Kolle G, Szubert JM, Korbie DJ, Askarian-Amiri ME, Gardiner BB, Goodall GJ, Grimmond SM, Mattick JS (2010) Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome. Genome Res 20:1639–1650CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Wenyan Hu
    • 1
  • Shengguo Li
    • 2
  • Ji Yeon Park
    • 3
  • Sridhar Boppana
    • 2
  • Ting Ni
    • 4
  • Miaoxin Li
    • 5
  • Jun Zhu
    • 6
  • Bin Tian
    • 3
  • Zhi Xie
    • 1
  • Mengqing Xiang
    • 1
    • 2
  1. 1.State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic CenterSun Yat-sen UniversityGuangzhouChina
  2. 2.Center for Advanced Biotechnology and Medicine and Department of PediatricsRutgers University-Robert Wood Johnson Medical SchoolPiscatawayUSA
  3. 3.Department of Microbiology, Biochemistry and Molecular GeneticsRutgers New Jersey Medical SchoolNewarkUSA
  4. 4.State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life SciencesFudan UniversityShanghaiChina
  5. 5.Department of Medical Genetics, Center for Genome Research, Zhongshan School of MedicineSun Yat-sen UniversityGuangzhouChina
  6. 6.Systems Biology Center, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations