Skip to main content
Log in

Assessing heterogeneity in oligomeric AAA+ machines

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

ATPases Associated with various cellular Activities (AAA+ ATPases) are molecular motors that use the energy of ATP binding and hydrolysis to remodel their target macromolecules. The majority of these ATPases form ring-shaped hexamers in which the active sites are located at the interfaces between neighboring subunits. Structural changes initiate in an active site and propagate to distant motor parts that interface and reshape the target macromolecules, thereby performing mechanical work. During the functioning cycle, the AAA+ motor transits through multiple distinct states. Ring architecture and placement of the catalytic sites at the intersubunit interfaces allow for a unique level of coordination among subunits of the motor. This in turn results in conformational differences among subunits and overall asymmetry of the motor ring as it functions. To date, a large amount of structural information has been gathered for different AAA+ motors, but even for the most characterized of them only a few structural states are known and the full mechanistic cycle cannot be yet reconstructed. Therefore, the first part of this work will provide a broad overview of what arrangements of AAA+ subunits have been structurally observed focusing on diversity of ATPase oligomeric ensembles and heterogeneity within the ensembles. The second part of this review will concentrate on methods that assess structural and functional heterogeneity among subunits of AAA+ motors, thus bringing us closer to understanding the mechanism of these fascinating molecular motors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43

    CAS  PubMed  Google Scholar 

  2. Ogura T, Wilkinson AJ (2001) AAA+ superfamily ATPases: common structure–diverse function. Genes Cells 6:575–597

    Article  CAS  PubMed  Google Scholar 

  3. Maurizi MR, Li CC (2001) AAA proteins: in search of a common molecular basis. International meeting on cellular functions of AAA proteins. EMBO Rep 2:980–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lupas AN, Martin J (2002) AAA proteins. Curr Opin Struct Biol 12:746–753

    Article  CAS  PubMed  Google Scholar 

  5. Wang J (2004) Nucleotide-dependent domain motions within rings of the RecA/AAA(+) superfamily. J Struct Biol 148:259–267

    Article  CAS  PubMed  Google Scholar 

  6. Ammelburg M, Frickey T, Lupas AN (2006) Classification of AAA+ proteins. J Struct Biol 156:2–11

    Article  CAS  PubMed  Google Scholar 

  7. Hanson PI, Whiteheart SW (2005) AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 6:519–529

    Article  CAS  PubMed  Google Scholar 

  8. Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146:11–31

    Article  CAS  PubMed  Google Scholar 

  9. White SR, Lauring B (2007) AAA+ ATPases: achieving diversity of function with conserved machinery. Traffic 8:1657–1667

    Article  CAS  PubMed  Google Scholar 

  10. Barthelme D, Jauregui R, Sauer RT (2015) An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication. Protein Sci 24:1521–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xia D, Tang WK, Ye Y (2016) Structure and function of the AAA+ ATPASE p97/Cdc48p. Gene 583:64–77

    Article  CAS  PubMed  Google Scholar 

  12. Hafezparast M, Klocke R, Ruhrberg C, Marquardt A et al (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:808–812

    Article  CAS  PubMed  Google Scholar 

  13. Eschbach J, Dupuis L (2011) Cytoplasmic dynein in neurodegeneration. Pharmacol Ther 130:348–363

    Article  CAS  PubMed  Google Scholar 

  14. Chen XJ, Xu H, Cooper HM, Liu Y (2014) Cytoplasmic dynein: a key player in neurodegenerative and neurodevelopmental diseases. Sci China Life Sci 57:372–377

    Article  CAS  PubMed  Google Scholar 

  15. Boyaci H, Shah T, Hurley A, Kokona B et al (2016) Structure, regulation, and inhibition of the quorum-sensing signal integrator LuxO. PLoS Biol 14:e1002464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Erzberger JP, Berger JM (2006) Evolutionary relationships and structural mechanisms of AAA plus proteins. Annu Rev Biophys Biomol Struct 35:93–114

    Article  CAS  PubMed  Google Scholar 

  17. Thomsen ND, Berger JM (2008) Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Mol Microbiol 69:1071–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frickey T, Lupas AN (2004) Phylogenetic analysis of AAA proteins. J Struct Biol 146:2–10

    Article  CAS  PubMed  Google Scholar 

  19. Iyer LM, Makarova KS, Koonin EV, Aravind L (2004) Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 32:5260–5279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Snider J, Houry WA (2008) AAA+ proteins: diversity in function, similarity in structure. Biochem Soc Trans 36:72–77

    Article  CAS  PubMed  Google Scholar 

  22. Wendler P, Ciniawsky S, Kock M, Kube S (2012) Structure and function of the AAA+ nucleotide binding pocket. Biochim Biophys Acta 1823:2–14

    Article  CAS  PubMed  Google Scholar 

  23. Ogura T, Whiteheart SW, Wilkinson AJ (2004) Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases. J Struct Biol 146:106–112

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Wigley DB (2008) The ‘glutamate switch’ provides a link between ATPase activity and ligand binding in AAA+ proteins. Nat Struct Mol Biol 15:1223–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee SY, De La Torre A, Yan D, Kustu S et al (2003) Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. Genes Dev 17:2552–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park E, Rho YM, Koh OJ, Ahn SW et al (2005) Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J Biol Chem 280:22892–22898

    Article  CAS  PubMed  Google Scholar 

  27. Enemark EJ, Joshua-Tor L (2006) Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442:270–275

    Article  CAS  PubMed  Google Scholar 

  28. Sauer RT, Baker TA (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587–612

    Article  CAS  PubMed  Google Scholar 

  29. Arias-Palomo E, Berger JM (2015) An atypical AAA+ ATPase assembly controls efficient transposition through DNA remodeling and transposase recruitment. Cell 162:860–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kon T, Sutoh K, Kurisu G (2011) X-ray structure of a functional full-length dynein motor domain. Nat Struct Mol Biol 18:638–642

    Article  CAS  PubMed  Google Scholar 

  31. Carter AP, Cho C, Jin L, Vale RD (2011) Crystal structure of the dynein motor domain. Science 331:1159–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen B, Sysoeva TA, Chowdhury S, Guo L et al (2010) Engagement of arginine finger to ATP triggers large conformational changes in NtrC1 AAA+ ATPase for remodeling bacterial RNA polymerase. Structure 18:1420–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Batchelor JD, Sterling HJ, Hong E, Williams ER et al (2009) Receiver domains control the active-state stoichiometry of Aquifex aeolicus sigma54 activator NtrC4, as revealed by electrospray ionization mass spectrometry. J Mol Biol 393:634–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dey S, Biswas M, Sen U, Dasgupta J (2015) Unique ATPase site architecture triggers cis-mediated synchronized ATP binding in heptameric AAA+-ATPase domain of flagellar regulatory protein FlrC. J Biol Chem 290:8734–8747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rohrwild M, Pfeifer G, Santarius U, Muller SA et al (1997) The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat Struct Biol 4:133–139

    Article  CAS  PubMed  Google Scholar 

  36. Toth EA, Li Y, Sawaya MR, Cheng Y et al (2003) The crystal structure of the bifunctional primase-helicase of bacteriophage T7. Mol Cell 12:1113–1123

    Article  CAS  PubMed  Google Scholar 

  37. Singleton MR, Sawaya MR, Ellenberger T, Wigley DB (2000) Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101:589–600

    Article  CAS  PubMed  Google Scholar 

  38. Ziebarth TD, Gonzalez-Soltero R, Makowska-Grzyska MM, Nunez-Ramirez R et al (2010) Dynamic effects of cofactors and DNA on the oligomeric state of human mitochondrial DNA helicase. J Biol Chem 285:14639–14647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu X, VanLoock MS, Poplawski A, Kelman Z et al (2002) The Methanobacterium thermoautotrophicum MCM protein can form heptameric rings. EMBO Rep 3:792–797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gomez-Llorente Y, Fletcher RJ, Chen XS, Carazo JM et al (2005) Polymorphism and double hexamer structure in the archaeal minichromosome maintenance (MCM) helicase from Methanobacterium thermoautotrophicum. J Biol Chem 280:40909–40915

    Article  CAS  PubMed  Google Scholar 

  41. Kim KI, Cheong GW, Park SC, Ha JS et al (2000) Heptameric ring structure of the heat-shock protein ClpB, a protein-activated ATPase in Escherichia coli. J Mol Biol 303:655–666

    Article  CAS  PubMed  Google Scholar 

  42. Lee S, Sowa ME, Watanabe YH, Sigler PB et al (2003) The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115:229–240

    Article  CAS  PubMed  Google Scholar 

  43. Watanabe YH, Takano M, Yoshida M (2005) ATP binding to nucleotide binding domain (NBD)1 of the ClpB chaperone induces motion of the long coiled-coil, stabilizes the hexamer, and activates NBD2. J Biol Chem 280:24562–24567

    Article  CAS  PubMed  Google Scholar 

  44. Akoev V, Gogol EP, Barnett ME, Zolkiewski M (2004) Nucleotide-induced switch in oligomerization of the AAA+ ATPase ClpB. Protein Sci 13:567–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davies JM, Brunger AT, Weis WI (2008) Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Structure 16:715–726

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X, Shaw A, Bates PA, Newman RH et al (2000) Structure of the AAA ATPase p97. Mol Cell 6:1473–1484

    Article  CAS  PubMed  Google Scholar 

  47. Cha SS, An YJ, Lee CR, Lee HS et al (2010) Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J 29:3520–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stahlberg H, Kutejova E, Suda K, Wolpensinger B et al (1999) Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc Natl Acad Sci USA 96:6787–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyata T, Yamada K, Iwasaki H, Shinagawa H et al (2000) Two different oligomeric states of the RuvB branch migration motor protein as revealed by electron microscopy. J Struct Biol 131:83–89

    Article  CAS  PubMed  Google Scholar 

  50. Kazmirski SL, Podobnik M, Weitze TF, O’Donnell M et al (2004) Structural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex. Proc Natl Acad Sci USA 101:16750–16755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kelch BA, Makino DL, O’Donnell M, Kuriyan J (2011) How a DNA polymerase clamp loader opens a sliding clamp. Science 334:1675–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hedglin M, Kumar R, Benkovic SJ (2013) Replication clamps and clamp loaders. Cold Spring Harb Perspect Biol 5:a010165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Alam TI, Rao VB (2008) The ATPase domain of the large terminase protein, gp17, from bacteriophage T4 binds DNA: implications to the DNA packaging mechanism. J Mol Biol 376:1272–1281

    Article  CAS  PubMed  Google Scholar 

  54. Mao H, Saha M, Reyes-Aldrete E, Sherman MB et al (2016) Structural and molecular basis for coordination in a viral DNA packaging motor. Cell Rep 14:2017–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moffitt JR, Chemla YR, Aathavan K, Grimes S et al (2009) Intersubunit coordination in a homomeric ring ATPase. Nature 457:446–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwartz C, De Donatis GM, Fang H, Guo P (2013) The ATPase of the phi29 DNA packaging motor is a member of the hexameric AAA+ superfamily. Virology 443:20–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schwartz C, De Donatis GM, Zhang H, Fang H et al (2013) Revolution rather than rotation of AAA+ hexameric phi29 nanomotor for viral dsDNA packaging without coiling. Virology 443:28–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qi S, Pang Y, Hu Q, Liu Q et al (2010) Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4. Cell 141:446–457

    Article  CAS  PubMed  Google Scholar 

  59. Mansilla-Soto J, Yoon-Robarts M, Rice WJ, Arya S et al (2009) DNA structure modulates the oligomerization properties of the AAV initiator protein Rep68. PLoS Pathog 5:e1000513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Putnam CD, Clancy SB, Tsuruta H, Gonzalez S et al (2001) Structure and mechanism of the RuvB Holliday junction branch migration motor. J Mol Biol 311:297–310

    Article  CAS  PubMed  Google Scholar 

  61. Sawaya MR, Guo S, Tabor S, Richardson CC et al (1999) Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 99:167–177

    Article  CAS  PubMed  Google Scholar 

  62. Kim DY, Kim KK (2003) Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J Biol Chem 278:50664–50670

    Article  CAS  PubMed  Google Scholar 

  63. Erzberger JP, Mott ML, Berger JM (2006) Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Nat Struct Mol Biol 13:676–683

    Article  CAS  PubMed  Google Scholar 

  64. Rappas M, Schumacher J, Beuron F, Niwa H et al (2005) Structural insights into the activity of enhancer-binding proteins. Science 307:1972–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu RC, Hanson PI, Jahn R, Brunger AT (1998) Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP. Nat Struct Biol 5:803–811

    Article  CAS  PubMed  Google Scholar 

  66. Lenzen CU, Steinmann D, Whiteheart SW, Weis WI (1998) Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94:525–536

    Article  CAS  PubMed  Google Scholar 

  67. Lee S, Choi JM, Tsai FT (2007) Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB. Mol Cell 25:261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee S, Sielaff B, Lee J, Tsai FT (2010) CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation. Proc Natl Acad Sci USA 107:8135–8140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wendler P, Shorter J, Plisson C, Cashikar AG et al (2007) Atypical AAA+ subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104. Cell 131:1366–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wendler P, Shorter J, Snead D, Plisson C et al (2009) Motor mechanism for protein threading through Hsp104. Mol Cell 34:81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gardner BM, Chowdhury S, Lander GC, Martin A (2015) The Pex1/Pex6 complex is a heterohexameric AAA+ motor with alternating and highly coordinated subunits. J Mol Biol 427:1375–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cheung KL, Huen J, Kakihara Y, Houry WA et al (2010) Alternative oligomeric states of the yeast Rvb1/Rvb2 complex induced by histidine tags. J Mol Biol 404:478–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nguyen VQ, Ranjan A, Stengel F, Wei D et al (2013) Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell 154:1220–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Champion PA, Stanley SA, Champion MM, Brown EJ et al (2006) C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 313:1632–1636

    Article  PubMed  CAS  Google Scholar 

  75. Ramsdell TL, Huppert LA, Sysoeva TA, Fortune SM et al (2015) Linked domain architectures allow for specialization of function in the FtsK/SpoIIIE ATPases of ESX secretion systems. J Mol Biol 427:1119–1132

    Article  CAS  PubMed  Google Scholar 

  76. Rosenberg OS, Dovala D, Li X, Connolly L et al (2015) Substrates control multimerization and activation of the multi-domain ATPase motor of type VII secretion. Cell 161:501–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ates LS, Ummels R, Commandeur S, van de Weerd R et al (2015) Essential role of the ESX-5 secretion system in outer membrane permeability of pathogenic mycobacteria. PLoS Genet 11:e1005190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Glynn SE, Martin A, Nager AR, Baker TA et al (2009) Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139:744–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fouts ET, Yu X, Egelman EH, Botchan MR (1999) Biochemical and electron microscopic image analysis of the hexameric E1 helicase. J Biol Chem 274:4447–4458

    Article  CAS  PubMed  Google Scholar 

  80. Bochtler M, Hartmann C, Song HK, Bourenkov GP et al (2000) The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403:800–805

    Article  CAS  PubMed  Google Scholar 

  81. Bieniossek C, Niederhauser B, Baumann UM (2009) The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation. Proc Natl Acad Sci USA 106:21579–21584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Caillat C, Macheboeuf P, Wu Y, McCarthy AA et al (2015) Asymmetric ring structure of Vps4 required for ESCRT-III disassembly. Nat Commun 6:8781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin CC, Su SC, Su MY, Liang PH et al (2016) Structural insights into the allosteric operation of the lon AAA+ protease. Structure 24:667–675

    Article  CAS  PubMed  Google Scholar 

  84. Sanders CM, Kovalevskiy OV, Sizov D, Lebedev AA et al (2007) Papillomavirus E1 helicase assembly maintains an asymmetric state in the absence of DNA and nucleotide cofactors. Nucleic Acids Res 35:6451–6457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Itsathitphaisarn O, Wing RA, Eliason WK, Wang J et al (2012) The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 151:267–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cuesta I, Nunez-Ramirez R, Scheres SH, Gai D et al (2010) Conformational rearrangements of SV40 large T antigen during early replication events. J Mol Biol 397:1276–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sysoeva TA, Chowdhury S, Guo L, Nixon BT (2013) Nucleotide-induced asymmetry within ATPase activator ring drives sigma54-RNAP interaction and ATP hydrolysis. Genes Dev 27:2500–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhao M, Wu S, Zhou Q, Vivona S et al (2015) Mechanistic insights into the recycling machine of the SNARE complex. Nature 518:61–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Crampton DJ, Ohi M, Qimron U, Walz T et al (2006) Oligomeric states of bacteriophage T7 gene 4 primase/helicase. J Mol Biol 360:667–677

    Article  CAS  PubMed  Google Scholar 

  90. O’Shea VL, Berger JM (2014) Loading strategies of ring-shaped nucleic acid translocases and helicases. Curr Opin Struct Biol 25:16–24

    Article  PubMed  CAS  Google Scholar 

  91. Arias-Palomo E, O’Shea VL, Hood IV, Berger JM (2013) The bacterial DnaC helicase loader is a DnaB ring breaker. Cell 153:438–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Blok NB, Tan D, Wang RY, Penczek PA et al (2015) Unique double-ring structure of the peroxisomal Pex1/Pex6 ATPase complex revealed by cryo-electron microscopy. Proc Natl Acad Sci USA 112:E4017–E4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tye BK (1999) MCM proteins in DNA replication. Annu Rev Biochem 68:649–686

    Article  CAS  PubMed  Google Scholar 

  94. Bar-Nun S, Glickman MH (2012) Proteasomal AAA-ATPases: structure and function. Biochim Biophys Acta 1823:67–82

    Article  CAS  PubMed  Google Scholar 

  95. Cho C, Vale RD (2012) The mechanism of dynein motility: insight from crystal structures of the motor domain. Biochim Biophys Acta 1823:182–191

    Article  CAS  PubMed  Google Scholar 

  96. Garbarino JE, Gibbons IR (2002) Expression and genomic analysis of midasin, a novel and highly conserved AAA protein distantly related to dynein. BMC Genom 3:18

    Article  Google Scholar 

  97. Silvanovich A, Li MG, Serr M, Mische S et al (2003) The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. Mol Biol Cell 14:1355–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kon T, Nishiura M, Ohkura R, Toyoshima YY et al (2004) Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43:11266–11274

    Article  CAS  PubMed  Google Scholar 

  99. Cho C, Reck-Peterson SL, Vale RD (2008) Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. J Biol Chem 283:25839–25845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Martin A, Baker TA, Sauer RT (2005) Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines. Nature 437:1115–1120

    Article  CAS  PubMed  Google Scholar 

  101. Joly N, Buck M (2010) Engineered interfaces of an AAA+ ATPase reveal a new nucleotide-dependent coordination mechanism. J Biol Chem 285:15178–15186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lyubimov AY, Strycharska M, Berger JM (2011) The nuts and bolts of ring-translocase structure and mechanism. Curr Opin Struct Biol 21:240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gai D, Zhao R, Li D, Finkielstein CV et al (2004) Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119:47–60

    Article  CAS  PubMed  Google Scholar 

  104. Boyer PD (1989) A perspective of the binding change mechanism for ATP synthesis. FASEB J 3:2164–2178

    CAS  PubMed  Google Scholar 

  105. Stinson BM, Baytshtok V, Schmitz KR, Baker TA et al (2015) Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX. Nat Struct Mol Biol 22:411–416

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Danko SJ, Suzuki H (2016) The use of metal fluoride compounds as phosphate analogs for understanding the structural mechanism in P-type ATPases. Methods Mol Biol 1377:195–209

    Article  PubMed  Google Scholar 

  107. Ogawa H, Cornelius F, Hirata A, Toyoshima C (2015) Sequential substitution of K(+) bound to Na(+), K(+)-ATPase visualized by X-ray crystallography. Nat Commun 6:8004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wendler P, Saibil HR (2010) Cryo electron microscopy structures of Hsp100 proteins: crowbars in or out? Biochem Cell Biol 88:89–96

    Article  CAS  PubMed  Google Scholar 

  109. Carroni M, Kummer E, Oguchi Y, Wendler P et al (2014) Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. Elife 3:e02481

    Article  PubMed  PubMed Central  Google Scholar 

  110. Fernandez-Millan P, Lazaro M, Cansiz-Arda S, Gerhold JM et al (2015) The hexameric structure of the human mitochondrial replicative helicase Twinkle. Nucleic Acids Res 43:4284–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yeung HO, Forster A, Bebeacua C, Niwa H et al (2014) Inter-ring rotations of AAA ATPase p97 revealed by electron cryomicroscopy. Open Biol 4:130142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Beuron F, Flynn TC, Ma J, Kondo H et al (2003) Motions and negative cooperativity between p97 domains revealed by cryo-electron microscopy and quantised elastic deformational model. J Mol Biol 327:619–629

    Article  CAS  PubMed  Google Scholar 

  113. Banerjee S, Bartesaghi A, Merk A, Rao P et al (2016) 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351:871–875

    Article  CAS  PubMed  Google Scholar 

  114. Hanzelmann P, Schindelin H (2016) Structural basis of ATP hydrolysis and intersubunit signaling in the AAA+ ATPase p97. Structure 24:127–139

    Article  PubMed  CAS  Google Scholar 

  115. Schuller JM, Beck F, Lossl P, Heck AJ et al (2016) Nucleotide-dependent conformational changes of the AAA+ ATPase p97 revisited. FEBS Lett 590:595–604

    Article  CAS  PubMed  Google Scholar 

  116. Huang X, Luan B, Wu J, Shi Y (2016) An atomic structure of the human 26S proteasome. Nat Struct Mol Biol 23:778–785

    Article  CAS  PubMed  Google Scholar 

  117. Schweitzer A, Aufderheide A, Rudack T, Beck F et al (2016) Structure of the human 26S proteasome at a resolution of 3.9 A. Proc Natl Acad Sci USA 113:7816–7821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Davies JM, Tsuruta H, May AP, Weis WI (2005) Conformational changes of p97 during nucleotide hydrolysis determined by small-angle X-ray scattering. Structure 13:183–195

    Article  CAS  PubMed  Google Scholar 

  119. Chen B, Doucleff M, Wemmer DE, De Carlo S et al (2007) ATP ground- and transition states of bacterial enhancer binding AAA+ ATPases support complex formation with their target protein, sigma54. Structure 15:429–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Roessle M, Manakova E, Laure I, Nawroth T et al (2000) Time-resolved small angle scattering: kinetic and structural data from proteins in solution. J Appl Crystallogr 33:548–551

    Article  CAS  Google Scholar 

  121. Kirby NM, Cowieson NP (2014) Time-resolved studies of dynamic biomolecules using small angle X-ray scattering. Curr Opin Struct Biol 28:41–46

    Article  CAS  PubMed  Google Scholar 

  122. Murayama Y, Mukaiyama A, Imai K, Onoue Y et al (2011) Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution. EMBO J 30:68–78

    Article  CAS  PubMed  Google Scholar 

  123. Inobe T, Arai M, Nakao M, Ito K et al (2003) Equilibrium and kinetics of the allosteric transition of GroEL studied by solution X-ray scattering and fluorescence spectroscopy. J Mol Biol 327:183–191

    Article  CAS  PubMed  Google Scholar 

  124. Svergun DI, Stuhrmann HB (1991) New developments in direct shape determination from small-angle scattering. 1. Theory and model-calculations. Acta Crystallogr Sect A 47:736–744

    Article  Google Scholar 

  125. Schneidman-Duhovny D, Kim SJ, Sali A (2012) Integrative structural modeling with small angle X-ray scattering profiles. BMC Struct Biol 12:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rambo RP, Tainer JA (2013) Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496:477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Valentini E, Kikhney AG, Previtali G, Jeffries CM et al (2015) SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res 43:D357–D363

    Article  PubMed  Google Scholar 

  128. Huang R, Ripstein ZA, Augustyniak R, Lazniewski M et al (2016) Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study. Proc Natl Acad Sci USA 113:E4190–E4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Joly N, Zhang N, Buck M (2012) ATPase site architecture is required for self-assembly and remodeling activity of a hexameric AAA+ transcriptional activator. Mol Cell 47:484–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Eckert T, Link S, Le DT, Sobczak JP et al (2012) Subunit interactions and cooperativity in the microtubule-severing AAA ATPase spastin. J Biol Chem 287:26278–26290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hoskins JR, Doyle SM, Wickner S (2009) Coupling ATP utilization to protein remodeling by ClpB, a hexameric AAA+ protein. Proc Natl Acad Sci USA 106:22233–22238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Werbeck ND, Schlee S, Reinstein J (2008) Coupling and dynamics of subunits in the hexameric AAA+ chaperone ClpB. J Mol Biol 378:178–190

    Article  CAS  PubMed  Google Scholar 

  133. Stotz M, Mueller-Cajar O, Ciniawsky S, Wendler P et al (2011) Structure of green-type Rubisco activase from tobacco. Nat Struct Mol Biol 18:1366–1370

    Article  CAS  PubMed  Google Scholar 

  134. Lundqvist J, Braumann I, Kurowska M, Muller AH et al (2013) Catalytic turnover triggers exchange of subunits of the magnesium chelatase AAA+ motor unit. J Biol Chem 288:24012–24019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Batchelor JD, Doucleff M, Lee CJ, Matsubara K et al (2008) Structure and regulatory mechanism of Aquifex aeolicus NtrC4: variability and evolution in bacterial transcriptional regulation. J Mol Biol 384:1058–1075

    Article  CAS  PubMed  Google Scholar 

  136. De Carlo S, Chen B, Hoover TR, Kondrashkina E et al (2006) The structural basis for regulated assembly and function of the transcriptional activator NtrC. Genes Dev 20:1485–1495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Stinson BM, Nager AR, Glynn SE, Schmitz KR et al (2013) Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell 153:628–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lowe J, Ellonen A, Allen MD, Atkinson C et al (2008) Molecular mechanism of sequence-directed DNA loading and translocation by FtsK. Mol Cell 31:498–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Crozat E, Meglio A, Allemand JF, Chivers CE et al (2010) Separating speed and ability to displace roadblocks during DNA translocation by FtsK. EMBO J 29:1423–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen Z, Yang H, Pavletich NP (2008) Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453:489–494

    Article  CAS  PubMed  Google Scholar 

  141. Glynn SE, Nager AR, Baker TA, Sauer RT (2012) Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine. Nat Struct Mol Biol 19:616–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Biter AB, Lee S, Sung N, Tsai FT (2012) Structural basis for intersubunit signaling in a protein disaggregating machine. Proc Natl Acad Sci USA 109:12515–12520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zakeri B, Fierer JO, Celik E, Chittock EC et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci USA 109:E690–E697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Popp MW, Antos JM, Grotenbreg GM, Spooner E et al (2007) Sortagging: a versatile method for protein labeling. Nat Chem Biol 3:707–708

    Article  CAS  PubMed  Google Scholar 

  145. Liu S, Chistol G, Bustamante C (2014) Mechanical operation and intersubunit coordination of ring-shaped molecular motors: insights from single-molecule studies. Biophys J 106:1844–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Besprozvannaya M, Burton BM (2014) Do the same traffic rules apply? Directional chromosome segregation by SpoIIIE and FtsK. Mol Microbiol 93:599–608

    Article  CAS  PubMed  Google Scholar 

  147. Olivares AO, Baker TA, Sauer RT (2016) Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nat Rev Microbiol 14:33–44

    Article  CAS  PubMed  Google Scholar 

  148. Belyy V, Yildiz A (2014) Processive cytoskeletal motors studied with single-molecule fluorescence techniques. FEBS Lett 588:3520–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chemla YR, Smith DE (2012) Single-molecule studies of viral DNA packaging. Adv Exp Med Biol 726:549–584

    Article  CAS  PubMed  Google Scholar 

  150. Fili N (2014) Single-molecule and single-particle imaging of molecular motors in vitro and in vivo. EXS 105:131–159

    CAS  PubMed  Google Scholar 

  151. Taraska JW, Puljung MC, Olivier NB, Flynn GE et al (2009) Mapping the structure and conformational movements of proteins with transition metal ion FRET. Nat Methods 6:532–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim YC, Snoberger A, Schupp J, Smith DM (2015) ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function. Nat Commun 6:8520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Aker J, Hesselink R, Engel R, Karlova R et al (2007) In vivo hexamerization and characterization of the Arabidopsis AAA ATPase CDC48A complex using Forster resonance energy transfer-fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. Plant Physiol 145:339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang N, Gordiyenko Y, Joly N, Lawton E et al (2014) Subunit dynamics and nucleotide-dependent asymmetry of an AAA(+) transcription complex. J Mol Biol 426:71–83

    Article  CAS  PubMed  Google Scholar 

  155. Dyachenko A, Gruber R, Shimon L, Horovitz A et al (2013) Allosteric mechanisms can be distinguished using structural mass spectrometry. Proc Natl Acad Sci USA 110:7235–7239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rand KD, Zehl M, Jorgensen TJ (2014) Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry: overcoming gas-phase hydrogen/deuterium scrambling. Acc Chem Res 47:3018–3027

    Article  CAS  PubMed  Google Scholar 

  157. Konermann L, Pan J, Liu YH (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev 40:1224–1234

    Article  CAS  PubMed  Google Scholar 

  158. Zhang Q, Chen J, Kuwajima K, Zhang HM et al (2013) Nucleotide-induced conformational changes of tetradecameric GroEL mapped by H/D exchange monitored by FT-ICR mass spectrometry. Sci Rep 3:1247

    PubMed  PubMed Central  Google Scholar 

  159. Chodavarapu S, Jones AD, Feig M, Kaguni JM (2016) DnaC traps DnaB as an open ring and remodels the domain that binds primase. Nucleic Acids Res 44:210–220

    Article  CAS  PubMed  Google Scholar 

  160. Snijder J, Burnley RJ, Wiegard A, Melquiond AS et al (2014) Insight into cyanobacterial circadian timing from structural details of the KaiB-KaiC interaction. Proc Natl Acad Sci USA 111:1379–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ando T (2013) Molecular machines directly observed by high-speed atomic force microscopy. FEBS Lett 587:997–1007

    Article  CAS  PubMed  Google Scholar 

  162. Ando T (2013) High-speed atomic force microscopy. Microscopy (Oxf) 62:81–93

    Article  CAS  Google Scholar 

  163. Eghiaian F, Rico F, Colom A, Casuso I et al (2014) High-speed atomic force microscopy: imaging and force spectroscopy. FEBS Lett 588:3631–3638

    Article  CAS  PubMed  Google Scholar 

  164. Noi K, Yamamoto D, Nishikori S, Arita-Morioka K et al (2013) High-speed atomic force microscopic observation of ATP-dependent rotation of the AAA+ chaperone p97. Structure 21:1992–2002

    Article  CAS  PubMed  Google Scholar 

  165. Uchihashi T, Iino R, Ando T, Noji H (2011) High-speed atomic force microscopy reveals rotary catalysis of rotorless F(1)-ATPase. Science 333:755–758

    Article  CAS  PubMed  Google Scholar 

  166. Bujalowski W, Klonowska MM, Jezewska MJ (1994) Oligomeric structure of Escherichia coli primary replicative helicase DnaB protein. J Biol Chem 269:31350–31358

    CAS  PubMed  Google Scholar 

  167. Hurley JH, Yang B (2014) Making sense of Vps4. J Mol Biol 426:503–506

    Article  CAS  PubMed  Google Scholar 

  168. Wang J, Song JJ, Franklin MC, Kamtekar S et al (2001) Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9:177–184

    Article  CAS  PubMed  Google Scholar 

  169. Lo YH, Tsai KL, Sun YJ, Chen WT et al (2009) The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA. Nucleic Acids Res 37:804–814

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Drs. Marina Besprozvannaya, Lia Cardarelli, Baoyu Chen, Prashanti Iyer, Ryan Tsoi, and my anonymous reviewers for their helpful comments and suggestions on the manuscript. I apologize for not including a significant number of relevant and detailed studies from my colleagues in the field on account of limited space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana A. Sysoeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sysoeva, T.A. Assessing heterogeneity in oligomeric AAA+ machines. Cell. Mol. Life Sci. 74, 1001–1018 (2017). https://doi.org/10.1007/s00018-016-2374-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2374-z

Keywords

Navigation