Cellular and Molecular Life Sciences

, Volume 74, Issue 2, pp 359–372 | Cite as

Dicer generates a regulatory microRNA network in smooth muscle cells that limits neointima formation during vascular repair

  • Farima Zahedi
  • Maliheh Nazari-Jahantigh
  • Zhe Zhou
  • Pallavi Subramanian
  • Yuanyuan Wei
  • Jochen Grommes
  • Stefan Offermanns
  • Sabine Steffens
  • Christian Weber
  • Andreas Schober
Original Article

Abstract

MicroRNAs (miRNAs) coordinate vascular repair by regulating injury-induced gene expression in vascular smooth muscle cells (SMCs) and promote the transition of SMCs from a contractile to a proliferating phenotype. However, the effect of miRNA expression in SMCs on neointima formation is unclear. Therefore, we studied the role of miRNA biogenesis by Dicer in SMCs in vascular repair. Following wire-induced injury to carotid arteries of Apolipoprotein E knockout (Apoe/) mice, miRNA microarray analysis revealed that the most significantly regulated miRNAs, such as miR-222 and miR-21-3p, were upregulated. Conditional deletion of Dicer in SMCs increased neointima formation by reducing SMC proliferation in Apoe/ mice, and decreased mainly the expression of miRNAs, such as miR-147 and miR-100, which were not upregulated following vascular injury. SMC-specific deletion of Dicer promoted growth factor and inflammatory signaling and regulated a miRNA–target interaction network in injured arteries that was enriched in anti-proliferative miRNAs. The most connected miRNA in this network was miR-27a-3p [e.g., with Rho guanine nucleotide exchange factor 26 (ARHGEF26)], which was expressed in medial and neointimal SMCs in a Dicer-dependent manner. In vitro, miR-27a-3p suppresses ARHGEF26 expression and inhibits SMC proliferation by interacting with a conserved binding site in the 3′ untranslated region of ARHGEF26 mRNA. We propose that Dicer expression in SMCs plays an essential role in vascular repair by generating anti-proliferative miRNAs, such as miR-27a-3p, to prevent vessel stenosis due to exaggerated neointima formation.

Keywords

MicroRNA Dicer Smooth muscle cells Cell proliferation ARHGEF26 

Abbreviations

Apoe

Apolipoprotein E

ARHGEF26

Rho guanine nucleotide exchange factor 26

CHST1

Carbohydrate (keratan sulfate Gal-6) sulfotransferase 1

DAPI

4’,6-Diamidino-2-phenylindole

DLL4

Delta-like 4

DMEM

Dulbecco′s modified eagle medium

EC

Endothelial cell

EGF

Epidermal growth factor

HASMC

Human aortic smooth muscle cell

HEK293

Human embryonic kidney 293 cell

HFD

High-fat diet

IGFBP3

Insulin-like growth-factor-binding protein 3

IL-1β

Interleukin-1β

KO

Knockout

LNA

Locked nucleic acid

microRNA

miRNA, miR

MYH11

Myosin, heavy chain 11, smooth muscle

NF-κB

Nuclear factor of kappa light polypeptide gene enhancer in B-cells

OIT3

Oncoprotein-induced transcript 3

PDGF

Platelet-derived growth factor

miRISC

miRNA-induced-silencing complex

SH3BGRL2

SH3-domain-binding glutamate-rich protein-like 2

SMA

Smooth muscle actin

SMC

Smooth muscle cell

TAGLN

Transgelin

TNFα

Tumor necrosis factor α

TNRC6A

Argonaute and trinucleotide repeat containing 6A

TSB

Target site blocker

UTR

Untranslated region

WT

Wild type

Supplementary material

18_2016_2349_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2231 kb)
18_2016_2349_MOESM2_ESM.xlsx (135 kb)
Supplementary material 2 (XLSX 135 kb)
18_2016_2349_MOESM3_ESM.xlsx (140 kb)
Supplementary material 3 (XLSX 140 kb)
18_2016_2349_MOESM4_ESM.xlsx (316 kb)
Supplementary material 4 (XLSX 315 kb)
18_2016_2349_MOESM5_ESM.xlsx (30 kb)
Supplementary material 5 (XLSX 30 kb)

References

  1. 1.
    Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801CrossRefPubMedGoogle Scholar
  2. 2.
    Alfonso F, Byrne RA, Rivero F, Kastrati A (2014) Current treatment of in-stent restenosis. J Am Coll Cardiol 63:2659–2673. doi:10.1016/j.jacc.2014.02.545 CrossRefPubMedGoogle Scholar
  3. 3.
    Liu B, Fisher M, Groves P (2002) Down-regulation of the ERK1 and ERK2 mitogen-activated protein kinases using antisense oligonucleotides inhibits intimal hyperplasia in a porcine model of coronary balloon angioplasty. Cardiovasc Res 54:640–648CrossRefPubMedGoogle Scholar
  4. 4.
    Stabile E, Zhou YF, Saji M, Castagna M, Shou M, Kinnaird TD, Baffour R, Ringel MD, Epstein SE, Fuchs S (2003) Akt controls vascular smooth muscle cell proliferation in vitro and in vivo by delaying G1/S exit. Circ Res 93:1059–1065. doi:10.1161/01.res.0000105086.31909.1b CrossRefPubMedGoogle Scholar
  5. 5.
    Peppel K, Zhang L, Orman ES, Hagen PO, Amalfitano A, Brian L, Freedman NJ (2005) Activation of vascular smooth muscle cells by TNF and PDGF: overlapping and complementary signal transduction mechanisms. Cardiovasc Res 65:674–682. doi:10.1016/j.cardiores.2004.10.031 CrossRefPubMedGoogle Scholar
  6. 6.
    Yoshida T, Yamashita M, Horimai C, Hayashi M (2013) Smooth muscle-selective inhibition of nuclear factor-kappaB attenuates smooth muscle phenotypic switching and neointima formation following vascular injury. J Am Heart Assoc 2:e000230. doi:10.1161/jaha.113.000230 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Siciliano V, Garzilli I, Fracassi C, Criscuolo S, Ventre S, di Bernardo D (2013) MiRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat Commun 4:2364. doi:10.1038/ncomms3364 CrossRefPubMedGoogle Scholar
  8. 8.
    Ebert MS, Sharp PA (2012) Roles for MicroRNAs in conferring robustness to biological processes. Cell 149:515–524. doi:10.1016/j.cell.2012.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. doi:10.1038/nrm3838 CrossRefPubMedGoogle Scholar
  10. 10.
    Clark PM, Loher P, Quann K, Brody J, Londin ER, Rigoutsos I (2014) Argonaute CLIP-Seq reveals miRNA targetome diversity across tissue types. Sci Rep 4:5947. doi:10.1038/srep05947 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460:479–486. doi:10.1038/nature08170 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Albinsson S, Suarez Y, Skoura A, Offermanns S, Miano JM, Sessa WC (2010) MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function. Arterioscler Thromb Vasc Biol 30:1118–1126. doi:10.1161/atvbaha.109.200873 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Albinsson S, Skoura A, Yu J, DiLorenzo A, Fernandez-Hernando C, Offermanns S, Miano JM, Sessa WC (2011) Smooth muscle miRNAs are critical for post-natal regulation of blood pressure and vascular function. PLoS One 6:e18869. doi:10.1371/journal.pone.0018869 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C (2009) MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 105:158–166. doi:10.1161/circresaha.109.197517 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100:1579–1588CrossRefPubMedGoogle Scholar
  16. 16.
    Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, Richardson JA, Bassel-Duby R, Olson EN (2009) MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev 23:2166–2178. doi:10.1101/gad.1842409 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    McDonald RA, Hata A, MacLean MR, Morrell NW, Baker AH (2012) MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling. Cardiovasc Res 93:594–604. doi:10.1093/cvr/cvr299 CrossRefPubMedGoogle Scholar
  18. 18.
    Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA 102:10898–10903CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wirth A, Benyo Z, Lukasova M, Leutgeb B, Wettschureck N, Gorbey S, Orsy P, Horvath B, Maser-Gluth C, Greiner E, Lemmer B, Schutz G, Gutkind JS, Offermanns S (2008) G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat Med 14:64–68CrossRefPubMedGoogle Scholar
  20. 20.
    Schober A, Knarren S, Lietz M, Lin EA, Weber C (2003) Crucial role of stromal cell-derived factor-1alpha in neointima formation after vascular injury in apolipoprotein E-deficient mice. Circulation 108:2491–2497. doi:10.1161/01.CIR.0000099508.76665.9A CrossRefPubMedGoogle Scholar
  21. 21.
    Bisognin A, Sales G, Coppe A, Bortoluzzi S, Romualdi C (2012) MAGIA2: from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update). Nucleic Acids Res. doi:10.1093/nar/gks460 PubMedPubMedCentralGoogle Scholar
  22. 22.
    Nuovo GJ, Elton TS, Nana-Sinkam P, Volinia S, Croce CM, Schmittgen TD (2009) A methodology for the combined in situ analyses of the precursor and mature forms of microRNAs and correlation with their putative targets. Nat Protoc 4:107–115CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cambronne XA, Shen R, Auer PL, Goodman RH (2012) Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach. Proc Natl Acad Sci USA 109:20473–20478. doi:10.1073/pnas.1218887109 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nelson M, Mcclelland M (1992) Use of DNA methyltransferase endonuclease enzyme combinations for megabase mapping of chromosomes. Method Enzymol 216:279–303CrossRefGoogle Scholar
  25. 25.
    Hartmann P, Zhou Z, Natarelli L, Wei Y, Nazari-Jahantigh M, Zhu M, Grommes J, Steffens S, Weber C, Schober A (2016) Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4. Nat Commun 7:10521. doi:10.1038/ncomms10521 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schober A, Nazari-Jahantigh M, Weber C (2015) MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat Rev Cardiol 12:361–374. doi:10.1038/nrcardio.2015.38 CrossRefPubMedGoogle Scholar
  27. 27.
    Cook CL, Weiser MC, Schwartz PE, Jones CL, Majack RA (1994) Developmentally timed expression of an embryonic growth phenotype in vascular smooth muscle cells. Circ Res 74:189–196CrossRefPubMedGoogle Scholar
  28. 28.
    Chen CN, Li YS, Yeh YT, Lee PL, Usami S, Chien S, Chiu JJ (2006) Synergistic roles of platelet-derived growth factor-BB and interleukin-1beta in phenotypic modulation of human aortic smooth muscle cells. Proc Natl Acad Sci USA 103:2665–2670. doi:10.1073/pnas.0510973103 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Kundu RK, Quertermous T, Tsao PS, Spin JM (2011) MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol 226:1035–1043. doi:10.1002/jcp.22422 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fiedler J, Stohr A, Gupta SK, Hartmann D, Holzmann A, Just A, Hansen A, Hilfiker-Kleiner D, Eschenhagen T, Thum T (2014) Functional microRNA library screening identifies the hypoxamir miR-24 as a potent regulator of smooth muscle cell proliferation and vascularization. Antioxid Redox Signal 21:1167–1176. doi:10.1089/ars.2013.5418 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460:705–710. doi:10.1038/nature08195 PubMedPubMedCentralGoogle Scholar
  32. 32.
    Choe N, Kwon JS, Kim JR, Eom GH, Kim Y, Nam KI, Ahn Y, Kee HJ, Kook H (2013) The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis 229:348–355. doi:10.1016/j.atherosclerosis.2013.05.009 CrossRefPubMedGoogle Scholar
  33. 33.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060. doi:10.1038/sj.emboj.7600385 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hernandez-Torres F, Aranega AE, Franco D (2014) Identification of regulatory elements directing miR-23a-miR-27a-miR-24-2 transcriptional regulation in response to muscle hypertrophic stimuli. Biochim Biophys Acta 1839:885–897. doi:10.1016/j.bbagrm.2014.07.009 CrossRefPubMedGoogle Scholar
  35. 35.
    Ellerbroek SM, Wennerberg K, Arthur WT, Dunty JM, Bowman DR, DeMali KA, Der C, Burridge K (2004) SGEF, a RhoG guanine nucleotide exchange factor that stimulates macropinocytosis. Mol Biol Cell 15:3309–3319. doi:10.1091/mbc.E04-02-0146 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang H, Wu R, Yu L, Wu F, Li S, Zhao Y, Li H, Luo G, Wang J, Zhou J (2012) SGEF is overexpressed in prostate cancer and contributes to prostate cancer progression. Oncol Rep 28:1468–1474. doi:10.3892/or.2012.1917 PubMedGoogle Scholar
  37. 37.
    Wang H, Li S, Li H, Wang P, Huang F, Zhao Y, Yu L, Luo G, Zhang X, Wang J, Zhou J (2014) Grb2 interacts with SGEF and antagonizes the ability of SGEF to enhance EGF-induced ERK1/2 activation. Mol Cell Biochem 389:239–247. doi:10.1007/s11010-013-1945-7 CrossRefPubMedGoogle Scholar
  38. 38.
    Tang RH, Zheng XL, Callis TE, Stansfield WE, He J, Baldwin AS, Wang DZ, Selzman CH (2008) Myocardin inhibits cellular proliferation by inhibiting NF-kappaB(p65)-dependent cell cycle progression. Proc Natl Acad Sci USA 105:3362–3367. doi:10.1073/pnas.0705842105 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Farima Zahedi
    • 1
  • Maliheh Nazari-Jahantigh
    • 1
    • 2
  • Zhe Zhou
    • 3
    • 7
  • Pallavi Subramanian
    • 1
    • 8
  • Yuanyuan Wei
    • 1
    • 2
  • Jochen Grommes
    • 4
    • 5
  • Stefan Offermanns
    • 6
  • Sabine Steffens
    • 1
    • 2
  • Christian Weber
    • 1
    • 2
  • Andreas Schober
    • 1
    • 2
    • 3
  1. 1.Institute for Cardiovascular PreventionLudwig-Maximilians-University MunichMunichGermany
  2. 2.DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart AllianceMunichGermany
  3. 3.Institute for Molecular Cardiovascular ResearchRWTH Aachen UniversityAachenGermany
  4. 4.European Vascular Center Aachen-MaastrichtMedical University MaastrichtMaastrichtThe Netherlands
  5. 5.European Vascular Center Aachen-MaastrichtRWTH Aachen UniversityAachenGermany
  6. 6.Max Planck Institute for Heart and Lung ResearchBad NauheimGermany
  7. 7.The Genomics Center of AMMSBeijing Institute of Radiation MedicineBeijingPeople’s Republic of China
  8. 8.Department of Clinical PathobiochemistryUniversity Clinic Carl Gustav Carus, Dresden University of TechnologyDresdenGermany

Personalised recommendations