Skip to main content

Advertisement

Log in

Dicer generates a regulatory microRNA network in smooth muscle cells that limits neointima formation during vascular repair

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) coordinate vascular repair by regulating injury-induced gene expression in vascular smooth muscle cells (SMCs) and promote the transition of SMCs from a contractile to a proliferating phenotype. However, the effect of miRNA expression in SMCs on neointima formation is unclear. Therefore, we studied the role of miRNA biogenesis by Dicer in SMCs in vascular repair. Following wire-induced injury to carotid arteries of Apolipoprotein E knockout (Apoe /) mice, miRNA microarray analysis revealed that the most significantly regulated miRNAs, such as miR-222 and miR-21-3p, were upregulated. Conditional deletion of Dicer in SMCs increased neointima formation by reducing SMC proliferation in Apoe / mice, and decreased mainly the expression of miRNAs, such as miR-147 and miR-100, which were not upregulated following vascular injury. SMC-specific deletion of Dicer promoted growth factor and inflammatory signaling and regulated a miRNA–target interaction network in injured arteries that was enriched in anti-proliferative miRNAs. The most connected miRNA in this network was miR-27a-3p [e.g., with Rho guanine nucleotide exchange factor 26 (ARHGEF26)], which was expressed in medial and neointimal SMCs in a Dicer-dependent manner. In vitro, miR-27a-3p suppresses ARHGEF26 expression and inhibits SMC proliferation by interacting with a conserved binding site in the 3′ untranslated region of ARHGEF26 mRNA. We propose that Dicer expression in SMCs plays an essential role in vascular repair by generating anti-proliferative miRNAs, such as miR-27a-3p, to prevent vessel stenosis due to exaggerated neointima formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Apoe :

Apolipoprotein E

ARHGEF26 :

Rho guanine nucleotide exchange factor 26

CHST1 :

Carbohydrate (keratan sulfate Gal-6) sulfotransferase 1

DAPI:

4’,6-Diamidino-2-phenylindole

DLL4 :

Delta-like 4

DMEM:

Dulbecco′s modified eagle medium

EC:

Endothelial cell

EGF:

Epidermal growth factor

HASMC:

Human aortic smooth muscle cell

HEK293:

Human embryonic kidney 293 cell

HFD:

High-fat diet

IGFBP3 :

Insulin-like growth-factor-binding protein 3

IL-1β:

Interleukin-1β

KO:

Knockout

LNA:

Locked nucleic acid

microRNA:

miRNA, miR

MYH11 :

Myosin, heavy chain 11, smooth muscle

NF-κB:

Nuclear factor of kappa light polypeptide gene enhancer in B-cells

OIT3 :

Oncoprotein-induced transcript 3

PDGF:

Platelet-derived growth factor

miRISC:

miRNA-induced-silencing complex

SH3BGRL2 :

SH3-domain-binding glutamate-rich protein-like 2

SMA:

Smooth muscle actin

SMC:

Smooth muscle cell

TAGLN :

Transgelin

TNFα:

Tumor necrosis factor α

TNRC6A:

Argonaute and trinucleotide repeat containing 6A

TSB:

Target site blocker

UTR:

Untranslated region

WT:

Wild type

References

  1. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  CAS  PubMed  Google Scholar 

  2. Alfonso F, Byrne RA, Rivero F, Kastrati A (2014) Current treatment of in-stent restenosis. J Am Coll Cardiol 63:2659–2673. doi:10.1016/j.jacc.2014.02.545

    Article  PubMed  Google Scholar 

  3. Liu B, Fisher M, Groves P (2002) Down-regulation of the ERK1 and ERK2 mitogen-activated protein kinases using antisense oligonucleotides inhibits intimal hyperplasia in a porcine model of coronary balloon angioplasty. Cardiovasc Res 54:640–648

    Article  CAS  PubMed  Google Scholar 

  4. Stabile E, Zhou YF, Saji M, Castagna M, Shou M, Kinnaird TD, Baffour R, Ringel MD, Epstein SE, Fuchs S (2003) Akt controls vascular smooth muscle cell proliferation in vitro and in vivo by delaying G1/S exit. Circ Res 93:1059–1065. doi:10.1161/01.res.0000105086.31909.1b

    Article  CAS  PubMed  Google Scholar 

  5. Peppel K, Zhang L, Orman ES, Hagen PO, Amalfitano A, Brian L, Freedman NJ (2005) Activation of vascular smooth muscle cells by TNF and PDGF: overlapping and complementary signal transduction mechanisms. Cardiovasc Res 65:674–682. doi:10.1016/j.cardiores.2004.10.031

    Article  CAS  PubMed  Google Scholar 

  6. Yoshida T, Yamashita M, Horimai C, Hayashi M (2013) Smooth muscle-selective inhibition of nuclear factor-kappaB attenuates smooth muscle phenotypic switching and neointima formation following vascular injury. J Am Heart Assoc 2:e000230. doi:10.1161/jaha.113.000230

    Article  PubMed  PubMed Central  Google Scholar 

  7. Siciliano V, Garzilli I, Fracassi C, Criscuolo S, Ventre S, di Bernardo D (2013) MiRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat Commun 4:2364. doi:10.1038/ncomms3364

    Article  PubMed  Google Scholar 

  8. Ebert MS, Sharp PA (2012) Roles for MicroRNAs in conferring robustness to biological processes. Cell 149:515–524. doi:10.1016/j.cell.2012.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. doi:10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  10. Clark PM, Loher P, Quann K, Brody J, Londin ER, Rigoutsos I (2014) Argonaute CLIP-Seq reveals miRNA targetome diversity across tissue types. Sci Rep 4:5947. doi:10.1038/srep05947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460:479–486. doi:10.1038/nature08170

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Albinsson S, Suarez Y, Skoura A, Offermanns S, Miano JM, Sessa WC (2010) MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function. Arterioscler Thromb Vasc Biol 30:1118–1126. doi:10.1161/atvbaha.109.200873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Albinsson S, Skoura A, Yu J, DiLorenzo A, Fernandez-Hernando C, Offermanns S, Miano JM, Sessa WC (2011) Smooth muscle miRNAs are critical for post-natal regulation of blood pressure and vascular function. PLoS One 6:e18869. doi:10.1371/journal.pone.0018869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C (2009) MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 105:158–166. doi:10.1161/circresaha.109.197517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100:1579–1588

    Article  CAS  PubMed  Google Scholar 

  16. Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, Richardson JA, Bassel-Duby R, Olson EN (2009) MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev 23:2166–2178. doi:10.1101/gad.1842409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McDonald RA, Hata A, MacLean MR, Morrell NW, Baker AH (2012) MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling. Cardiovasc Res 93:594–604. doi:10.1093/cvr/cvr299

    Article  CAS  PubMed  Google Scholar 

  18. Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA 102:10898–10903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wirth A, Benyo Z, Lukasova M, Leutgeb B, Wettschureck N, Gorbey S, Orsy P, Horvath B, Maser-Gluth C, Greiner E, Lemmer B, Schutz G, Gutkind JS, Offermanns S (2008) G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat Med 14:64–68

    Article  CAS  PubMed  Google Scholar 

  20. Schober A, Knarren S, Lietz M, Lin EA, Weber C (2003) Crucial role of stromal cell-derived factor-1alpha in neointima formation after vascular injury in apolipoprotein E-deficient mice. Circulation 108:2491–2497. doi:10.1161/01.CIR.0000099508.76665.9A

    Article  CAS  PubMed  Google Scholar 

  21. Bisognin A, Sales G, Coppe A, Bortoluzzi S, Romualdi C (2012) MAGIA2: from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update). Nucleic Acids Res. doi:10.1093/nar/gks460

    PubMed  PubMed Central  Google Scholar 

  22. Nuovo GJ, Elton TS, Nana-Sinkam P, Volinia S, Croce CM, Schmittgen TD (2009) A methodology for the combined in situ analyses of the precursor and mature forms of microRNAs and correlation with their putative targets. Nat Protoc 4:107–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cambronne XA, Shen R, Auer PL, Goodman RH (2012) Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach. Proc Natl Acad Sci USA 109:20473–20478. doi:10.1073/pnas.1218887109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nelson M, Mcclelland M (1992) Use of DNA methyltransferase endonuclease enzyme combinations for megabase mapping of chromosomes. Method Enzymol 216:279–303

    Article  CAS  Google Scholar 

  25. Hartmann P, Zhou Z, Natarelli L, Wei Y, Nazari-Jahantigh M, Zhu M, Grommes J, Steffens S, Weber C, Schober A (2016) Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4. Nat Commun 7:10521. doi:10.1038/ncomms10521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schober A, Nazari-Jahantigh M, Weber C (2015) MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat Rev Cardiol 12:361–374. doi:10.1038/nrcardio.2015.38

    Article  CAS  PubMed  Google Scholar 

  27. Cook CL, Weiser MC, Schwartz PE, Jones CL, Majack RA (1994) Developmentally timed expression of an embryonic growth phenotype in vascular smooth muscle cells. Circ Res 74:189–196

    Article  CAS  PubMed  Google Scholar 

  28. Chen CN, Li YS, Yeh YT, Lee PL, Usami S, Chien S, Chiu JJ (2006) Synergistic roles of platelet-derived growth factor-BB and interleukin-1beta in phenotypic modulation of human aortic smooth muscle cells. Proc Natl Acad Sci USA 103:2665–2670. doi:10.1073/pnas.0510973103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Kundu RK, Quertermous T, Tsao PS, Spin JM (2011) MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol 226:1035–1043. doi:10.1002/jcp.22422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fiedler J, Stohr A, Gupta SK, Hartmann D, Holzmann A, Just A, Hansen A, Hilfiker-Kleiner D, Eschenhagen T, Thum T (2014) Functional microRNA library screening identifies the hypoxamir miR-24 as a potent regulator of smooth muscle cell proliferation and vascularization. Antioxid Redox Signal 21:1167–1176. doi:10.1089/ars.2013.5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460:705–710. doi:10.1038/nature08195

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Choe N, Kwon JS, Kim JR, Eom GH, Kim Y, Nam KI, Ahn Y, Kee HJ, Kook H (2013) The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis 229:348–355. doi:10.1016/j.atherosclerosis.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  33. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060. doi:10.1038/sj.emboj.7600385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hernandez-Torres F, Aranega AE, Franco D (2014) Identification of regulatory elements directing miR-23a-miR-27a-miR-24-2 transcriptional regulation in response to muscle hypertrophic stimuli. Biochim Biophys Acta 1839:885–897. doi:10.1016/j.bbagrm.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  35. Ellerbroek SM, Wennerberg K, Arthur WT, Dunty JM, Bowman DR, DeMali KA, Der C, Burridge K (2004) SGEF, a RhoG guanine nucleotide exchange factor that stimulates macropinocytosis. Mol Biol Cell 15:3309–3319. doi:10.1091/mbc.E04-02-0146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang H, Wu R, Yu L, Wu F, Li S, Zhao Y, Li H, Luo G, Wang J, Zhou J (2012) SGEF is overexpressed in prostate cancer and contributes to prostate cancer progression. Oncol Rep 28:1468–1474. doi:10.3892/or.2012.1917

    CAS  PubMed  Google Scholar 

  37. Wang H, Li S, Li H, Wang P, Huang F, Zhao Y, Yu L, Luo G, Zhang X, Wang J, Zhou J (2014) Grb2 interacts with SGEF and antagonizes the ability of SGEF to enhance EGF-induced ERK1/2 activation. Mol Cell Biochem 389:239–247. doi:10.1007/s11010-013-1945-7

    Article  CAS  PubMed  Google Scholar 

  38. Tang RH, Zheng XL, Callis TE, Stansfield WE, He J, Baldwin AS, Wang DZ, Selzman CH (2008) Myocardin inhibits cellular proliferation by inhibiting NF-kappaB(p65)-dependent cell cycle progression. Proc Natl Acad Sci USA 105:3362–3367. doi:10.1073/pnas.0705842105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been funded by the German Research Foundation (DFG) as part of the Collaborative Research Center 1123 (B04) and by the German Center for Cardiovascular Research (MHA VD1.2). The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schober.

Additional information

F. Zahedi and M. Nazari-Jahantigh are co-first authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahedi, F., Nazari-Jahantigh, M., Zhou, Z. et al. Dicer generates a regulatory microRNA network in smooth muscle cells that limits neointima formation during vascular repair. Cell. Mol. Life Sci. 74, 359–372 (2017). https://doi.org/10.1007/s00018-016-2349-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2349-0

Keywords

Navigation