Cellular and Molecular Life Sciences

, Volume 74, Issue 2, pp 183–212 | Cite as

Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease

  • Zhe Lyu
  • William B. WhitmanEmail author


Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.


Mutation Cancer Medicine Health Genome TACK Prokaryote Methanococcus 



The authors thank Prof. Xiuzhu Dong for suggesting the importance of this topic, and Feng Long for ideas in improving the figures’ layout. This work was supported in part by National Science Foundation grant MCB-1410102.


  1. 1.
    Cavicchioli R (2011) Archaea–timeline of the third domain. Nat Rev Microbiol 9(1):51–61. doi: 10.1038/nrmicro2482 PubMedCrossRefGoogle Scholar
  2. 2.
    Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87(12):4576–4579PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Horiike T, Hamada K, Kanaya S, Shinozawa T (2001) Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nat Cell Biol 3(2):210–214PubMedCrossRefGoogle Scholar
  4. 4.
    Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6(3):245–252PubMedCrossRefGoogle Scholar
  5. 5.
    Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlund BP, Brochier-Armanet C, Kunin V, Anderson I, Lapidus A, Goltsman E, Barry K, Koonin EV, Hugenholtz P, Kyrpides N, Wanner G, Richardson P, Keller M, Stetter KO (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci USA 105(23):8102–8107. doi: 10.1073/pnas.0801980105 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, Kanai A, Atomi H, Takai K, Takami H (2011) Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 39(8):3204–3223. doi: 10.1093/nar/gkq1228 PubMedCrossRefGoogle Scholar
  7. 7.
    Whitman WB (2009) The modern concept of the procaryote. J Bacteriol 191(7):2000–2005. doi: 10.1128/jb.00962-08 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W, Schleifer KH, Whitman WB, Euzeby J, Amann R, Rossello-Mora R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12(9):635–645. doi: 10.1038/nrmicro3330 PubMedCrossRefGoogle Scholar
  9. 9.
    Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409(6819):507–510. doi: 10.1038/35054051 PubMedCrossRefGoogle Scholar
  10. 10.
    Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5(5):908–917. doi: 10.1038/ismej.2010.171 PubMedCrossRefGoogle Scholar
  11. 11.
    Basen M, Schut GJ, Nguyen DM, Lipscomb GL, Benn RA, Prybol CJ, Vaccaro BJ, Poole FL 2nd, Kelly RM, Adams MW (2014) Single gene insertion drives bioalcohol production by a thermophilic archaeon. Proc Natl Acad Sci USA 111(49):17618–17623. doi: 10.1073/pnas.1413789111 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Keller MW, Schut GJ, Lipscomb GL, Menon AL, Iwuchukwu IJ, Leuko TT, Thorgersen MP, Nixon WJ, Hawkins AS, Kelly RM, Adams MWW (2013) Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci. doi: 10.1073/pnas.1222607110 Google Scholar
  13. 13.
    Eckburg PB, Lepp PW, Relman DA (2003) Archaea and their potential role in human disease. Infect Immun 71(2):591–596. doi: 10.1128/iai.71.2.591-596.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Horz HP, Conrads G (2011) Methanogenic Archaea and oral infections—ways to unravel the black box. J Oral Microbiol 3. doi: 10.3402/jom.v3i0.5940
  15. 15.
    Aminov RI (2013) Role of archaea in human disease. Front Cell Infect Microbiol 3:42. doi: 10.3389/fcimb.2013.00042 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Pimentel M, Gunsalus RP, Rao SSC, Zhang H (2012) Methanogens in human health and disease. Am J Gastroenterol Suppl 1(1):28–33CrossRefGoogle Scholar
  17. 17.
    Lyu Z, Jain R, Smith P, Fetchko T, Yan Y, Whitman WB (2016) Engineering the Autotroph Methanococcus maripaludis for geraniol production. ACS Synth Biol. doi: 10.1021/acssynbio.5b00267 PubMedGoogle Scholar
  18. 18.
    Williams TA, Foster PG, Cox CJ, Embley TM (2013) An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504(7479):231–236. doi: 10.1038/nature12779 PubMedCrossRefGoogle Scholar
  19. 19.
    Cox CJ, Foster PG, Hirt RP, Harris SR, Embley TM (2008) The archaebacterial origin of eukaryotes. Proc Natl Acad Sci USA 105(51):20356–20361. doi: 10.1073/pnas.0810647105 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521(7551):173–179. doi: 10.1038/nature14447 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lake JA (1988) Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331(6152):184–186. doi: 10.1038/331184a0 PubMedCrossRefGoogle Scholar
  22. 22.
    Lake JA, Henderson E, Oakes M, Clark MW (1984) Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci USA 81(12):3786–3790PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Altermann W, Kazmierczak J (2003) Archean microfossils: a reappraisal of early life on Earth. Res Microbiol 154(9):611–617. doi: 10.1016/j.resmic.2003.08.006 PubMedCrossRefGoogle Scholar
  24. 24.
    Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci 361(1470):869–885. doi: 10.1098/rstb.2006.1834 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101(43):15386–15391. doi: 10.1073/pnas.0403984101 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hedges SB, Blair JE, Venturi ML, Shoe JL (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 4:2. doi: 10.1186/1471-2148-4-2 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc Lond B Biol Sci 361(1470):1023–1038. doi: 10.1098/rstb.2006.1843 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99(13):8742–8747. doi: 10.1073/pnas.132266999 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kachroo AH, Laurent JM, Yellman CM, Meyer AG, Wilke CO, Marcotte EM (2015) Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science 348(6237):921–925. doi: 10.1126/science.aaa0769 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kelman Z, White MF (2005) Archaeal DNA replication and repair. Curr Opin Microbiol 8(6):669–676. doi: 10.1016/j.mib.2005.10.001 PubMedCrossRefGoogle Scholar
  31. 31.
    Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36(21):6688–6719. doi: 10.1093/nar/gkn668 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Grabowski B, Kelman Z (2003) Archeal DNA replication: eukaryal proteins in a bacterial context. Annu Rev Microbiol 57:487–516. doi: 10.1146/annurev.micro.57.030502.090709 PubMedCrossRefGoogle Scholar
  33. 33.
    Myllykallio H, Lopez P, Lopez-Garcia P, Heilig R, Saurin W, Zivanovic Y, Philippe H, Forterre P (2000) Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288(5474):2212–2215PubMedCrossRefGoogle Scholar
  34. 34.
    Barry ER, Bell SD (2006) DNA replication in the archaea. Microbiol Mol Biol Rev 70(4):876–887. doi: 10.1128/MMBR.00029-06 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Beattie TR, Bell SD (2011) Molecular machines in archaeal DNA replication. Curr Opin Chem Biol 15(5):614–619. doi: 10.1016/j.cbpa.2011.07.017 PubMedCrossRefGoogle Scholar
  36. 36.
    Sarmiento F, Long F, Cann I, Whitman WB (2014) Diversity of the DNA replication system in the Archaea domain. Archaea 2014:675946. doi: 10.1155/2014/675946 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Thu YM, Bielinsky AK (2013) Enigmatic roles of Mcm10 in DNA replication. Trends Biochem Sci 38(4):184–194. doi: 10.1016/j.tibs.2012.12.003 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Maiorano D, Cuvier O, Danis E, Mechali M (2005) MCM8 is an MCM2-7-related protein that functions as a DNA helicase during replication elongation and not initiation. Cell 120(3):315–328. doi: 10.1016/j.cell.2004.12.010 PubMedCrossRefGoogle Scholar
  39. 39.
    Gambus A, Blow JJ (2013) Mcm8 and Mcm9 form a dimeric complex in Xenopus laevis egg extract that is not essential for DNA replication initiation. Cell Cycle 12(8):1225–1232. doi: 10.4161/cc.24310 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Park J, Long DT, Lee KY, Abbas T, Shibata E, Negishi M, Luo Y, Schimenti JC, Gambus A, Walter JC, Dutta A (2013) The MCM8-MCM9 complex promotes RAD51 recruitment at DNA damage sites to facilitate homologous recombination. Mol Cell Biol 33(8):1632–1644. doi: 10.1128/MCB.01503-12 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kinoshita Y, Johnson EM, Gordon RE, Negri-Bell H, Evans MT, Coolbaugh J, Rosario-Peralta Y, Samet J, Slusser E, Birkenbach MP, Daniel DC (2008) Colocalization of MCM8 and MCM7 with proteins involved in distinct aspects of DNA replication. Microsc Res Tech 71(4):288–297. doi: 10.1002/jemt.20553 PubMedCrossRefGoogle Scholar
  42. 42.
    Lutzmann M, Mechali M (2008) MCM9 binds Cdt1 and is required for the assembly of prereplication complexes. Mol Cell 31(2):190–200. doi: 10.1016/j.molcel.2008.07.001 PubMedCrossRefGoogle Scholar
  43. 43.
    Robinson NP, Bell SD (2007) Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proc Natl Acad Sci USA 104 (14):5806–5811. doi: 10.1073/pnas.0700206104 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Berquist BR, DasSarma P, DasSarma S (2007) Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1. BMC Genet 8:31. doi: 10.1186/1471-2156-8-31 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Makarova KS, Koonin EV, Kelman Z (2012) The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol Direct 7:7. doi: 10.1186/1745-6150-7-7 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lindas AC, Bernander R (2013) The cell cycle of archaea. Nat Rev Microbiol 11(9):627–638. doi: 10.1038/nrmicro3077 PubMedCrossRefGoogle Scholar
  47. 47.
    Archibald JM (2008) The eocyte hypothesis and the origin of eukaryotic cells. Proc Natl Acad Sci USA 105(51):20049–20050. doi: 10.1073/pnas.0811118106 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Marinsek N, Barry ER, Makarova KS, Dionne I, Koonin EV, Bell SD (2006) GINS, a central nexus in the archaeal DNA replication fork. EMBO Rep 7(5):539–545. doi: 10.1038/sj.embor.7400649 PubMedPubMedCentralGoogle Scholar
  49. 49.
    Ogino H, Ishino S, Mayanagi K, Haugland GT, Birkeland NK, Yamagishi A, Ishino Y (2011) The GINS complex from the thermophilic archaeon, Thermoplasma acidophilum may function as a homotetramer in DNA replication. Extremophiles 15(4):529–539. doi: 10.1007/s00792-011-0383-2 PubMedCrossRefGoogle Scholar
  50. 50.
    Yoshimochi T, Fujikane R, Kawanami M, Matsunaga F, Ishino Y (2008) The GINS complex from Pyrococcus furiosus stimulates the MCM helicase activity. J Biol Chem 283(3):1601–1609. doi: 10.1074/jbc.M707654200 PubMedCrossRefGoogle Scholar
  51. 51.
    Bell SD (2011) DNA replication: archaeal oriGINS. BMC Biol 9:36. doi: 10.1186/1741-7007-9-36 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Li Z, Pan M, Santangelo TJ, Chemnitz W, Yuan W, Edwards JL, Hurwitz J, Reeve JN, Kelman Z (2011) A novel DNA nuclease is stimulated by association with the GINS complex. Nucleic Acids Res 39(14):6114–6123. doi: 10.1093/nar/gkr181 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Makarova KS, Krupovic M, Koonin EV (2014) Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery. Front Microbiol 5:354. doi: 10.3389/fmicb.2014.00354 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cann IK, Ishino Y (1999) Archaeal DNA replication: identifying the pieces to solve a puzzle. Genetics 152(4):1249–1267PubMedPubMedCentralGoogle Scholar
  55. 55.
    Hubscher U, Maga G, Spadari S (2002) Eukaryotic DNA polymerases. Annu Rev Biochem 71:133–163. doi: 10.1146/annurev.biochem.71.090501.150041 PubMedCrossRefGoogle Scholar
  56. 56.
    Makiniemi M, Pospiech H, Kilpelainen S, Jokela M, Vihinen M, Syvaoja JE (1999) A novel family of DNA-polymerase-associated B subunits. Trends Biochem Sci 24(1):14–16PubMedCrossRefGoogle Scholar
  57. 57.
    Henneke G, Flament D, Hubscher U, Querellou J, Raffin JP (2005) The hyperthermophilic euryarchaeota Pyrococcus abyssi likely requires the two DNA polymerases D and B for DNA replication. J Mol Biol 350(1):53–64. doi: 10.1016/j.jmb.2005.04.042 PubMedCrossRefGoogle Scholar
  58. 58.
    Cubonova L, Richardson T, Burkhart BW, Kelman Z, Connolly BA, Reeve JN, Santangelo TJ (2013) Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis. J Bacteriol 195(10):2322–2328. doi: 10.1128/JB.02037-12 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Foiani M, Lucchini G, Plevani P (1997) The DNA polymerase alpha-primase complex couples DNA replication, cell-cycle progression and DNA-damage response. Trends Biochem Sci 22(11):424–427PubMedCrossRefGoogle Scholar
  60. 60.
    Frick DN, Richardson CC (2001) DNA primases. Annu Rev Biochem 70:39–80. doi: 10.1146/annurev.biochem.70.1.39 PubMedCrossRefGoogle Scholar
  61. 61.
    Liu L, Komori K, Ishino S, Bocquier AA, Cann IK, Kohda D, Ishino Y (2001) The archaeal DNA primase: biochemical characterization of the p41–p46 complex from Pyrococcus furiosus. J Biol Chem 276(48):45484–45490. doi: 10.1074/jbc.M106391200 PubMedCrossRefGoogle Scholar
  62. 62.
    Liu B, Ouyang S, Makarova KS, Xia Q, Zhu Y, Li Z, Guo L, Koonin EV, Liu ZJ, Huang L (2015) A primase subunit essential for efficient primer synthesis by an archaeal eukaryotic-type primase. Nat Commun 6:7300. doi: 10.1038/ncomms8300 PubMedCrossRefGoogle Scholar
  63. 63.
    Cullmann G, Fien K, Kobayashi R, Stillman B (1995) Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Mol Cell Biol 15(9):4661–4671PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Pan M, Santangelo TJ, Cubonova L, Li Z, Metangmo H, Ladner J, Hurwitz J, Reeve JN, Kelman Z (2013) Thermococcus kodakarensis has two functional PCNA homologs but only one is required for viability. Extremophiles 17(3):453–461. doi: 10.1007/s00792-013-0526-8 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Henneke G, Raffin JP, Ferrari E, Jonsson ZO, Dietrich J, Hubscher U (2000) The PCNA from Thermococcus fumicolans functionally interacts with DNA polymerase delta. Biochem Biophys Res Commun 276(2):600–606. doi: 10.1006/bbrc.2000.3481 PubMedCrossRefGoogle Scholar
  66. 66.
    Ishino Y, Tsurimoto T, Ishino S, Cann IK (2001) Functional interactions of an archaeal sliding clamp with mammalian clamp loader and DNA polymerase delta. Genes Cells 6(8):699–706PubMedCrossRefGoogle Scholar
  67. 67.
    Cann IK, Ishino S, Hayashi I, Komori K, Toh H, Morikawa K, Ishino Y (1999) Functional interactions of a homolog of proliferating cell nuclear antigen with DNA polymerases in Archaea. J Bacteriol 181(21):6591–6599PubMedPubMedCentralGoogle Scholar
  68. 68.
    Daimon K, Kawarabayasi Y, Kikuchi H, Sako Y, Ishino Y (2002) Three proliferating cell nuclear antigen-like proteins found in the hyperthermophilic archaeon Aeropyrum pernix: interactions with the two DNA polymerases. J Bacteriol 184(3):687–694PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    De Felice M, Sensen CW, Charlebois RL, Rossi M, Pisani FM (1999) Two DNA polymerase sliding clamps from the thermophilic archaeon Sulfolobus solfataricus. J Mol Biol 291(1):47–57. doi: 10.1006/jmbi.1999.2939 PubMedCrossRefGoogle Scholar
  70. 70.
    Dionne I, Nookala RK, Jackson SP, Doherty AJ, Bell SD (2003) A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Cell 11(1):275–282PubMedCrossRefGoogle Scholar
  71. 71.
    Cann IK, Ishino S, Yuasa M, Daiyasu H, Toh H, Ishino Y (2001) Biochemical analysis of replication factor C from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 183(8):2614–2623. doi: 10.1128/JB.183.8.2614-2623.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kelman Z, Hurwitz J (2000) A unique organization of the protein subunits of the DNA polymerase clamp loader in the archaeon Methanobacterium thermoautotrophicum deltaH. J Biol Chem 275(10):7327–7336PubMedCrossRefGoogle Scholar
  73. 73.
    Kelman Z, Pietrokovski S, Hurwitz J (1999) Isolation and characterization of a split B-type DNA polymerase from the archaeon Methanobacterium thermoautotrophicum deltaH. J Biol Chem 274(40):28751–28761PubMedCrossRefGoogle Scholar
  74. 74.
    Pisani FM, De Felice M, Carpentieri F, Rossi M (2000) Biochemical characterization of a clamp-loader complex homologous to eukaryotic replication factor C from the hyperthermophilic archaeon Sulfolobus solfataricus. J Mol Biol 301(1):61–73. doi: 10.1006/jmbi.2000.3964 PubMedCrossRefGoogle Scholar
  75. 75.
    Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413. doi: 10.1146/annurev.biochem.70.1.369 PubMedCrossRefGoogle Scholar
  76. 76.
    Forterre P, Gadelle D (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 37(3):679–692. doi: 10.1093/nar/gkp032 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Brochier-Armanet C, Gribaldo S, Forterre P (2008) A DNA topoisomerase IB in Thaumarchaeota testifies for the presence of this enzyme in the last common ancestor of Archaea and Eucarya. Biol Direct 3:54. doi: 10.1186/1745-6150-3-54 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Robert T, Nore A, Brun C, Maffre C, Crimi B, Bourbon HM, de Massy B (2016) The TopoVIB-like protein family is required for meiotic DNA double-strand break formation. Science 351(6276):943–949. doi: 10.1126/science.aad5309 PubMedCrossRefGoogle Scholar
  79. 79.
    Vrielynck N, Chambon A, Vezon D, Pereira L, Chelysheva L, De Muyt A, Mezard C, Mayer C, Grelon M (2016) A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 351(6276):939–943. doi: 10.1126/science.aad5196 PubMedCrossRefGoogle Scholar
  80. 80.
    Zheng L, Shen B (2011) Okazaki fragment maturation: nucleases take centre stage. J Mol Cell Biol 3(1):23–30. doi: 10.1093/jmcb/mjq048 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Hubscher U, Seo YS (2001) Replication of the lagging strand: a concert of at least 23 polypeptides. Mol Cells 12(2):149–157PubMedGoogle Scholar
  82. 82.
    Harrington JJ, Lieber MR (1994) The characterization of a mammalian DNA structure-specific endonuclease. EMBO J 13(5):1235–1246PubMedPubMedCentralGoogle Scholar
  83. 83.
    Hosfield DJ, Frank G, Weng Y, Tainer JA, Shen B (1998) Newly discovered archaebacterial flap endonucleases show a structure-specific mechanism for DNA substrate binding and catalysis resembling human flap endonuclease-1. J Biol Chem 273(42):27154–27161PubMedCrossRefGoogle Scholar
  84. 84.
    Hwang KY, Baek K, Kim HY, Cho Y (1998) The crystal structure of flap endonuclease-1 from Methanococcus jannaschii. Nat Struct Biol 5(8):707–713. doi: 10.1038/1406 PubMedCrossRefGoogle Scholar
  85. 85.
    Kaiser MW, Lyamicheva N, Ma W, Miller C, Neri B, Fors L, Lyamichev VI (1999) A comparison of eubacterial and archaeal structure-specific 5′-exonucleases. J Biol Chem 274(30):21387–21394PubMedCrossRefGoogle Scholar
  86. 86.
    Matsui E, Kawasaki S, Ishida H, Ishikawa K, Kosugi Y, Kikuchi H, Kawarabayashi Y, Matsui I (1999) Thermostable flap endonuclease from the archaeon, Pyrococcus horikoshii, cleaves the replication fork-like structure endo/exonucleolytically. J Biol Chem 274(26):18297–18309PubMedCrossRefGoogle Scholar
  87. 87.
    Rao HG, Rosenfeld A, Wetmur JG (1998) Methanococcus jannaschii flap endonuclease: expression, purification, and substrate requirements. J Bacteriol 180(20):5406–5412PubMedPubMedCentralGoogle Scholar
  88. 88.
    Chai Q, Qiu J, Chapados BR, Shen B (2001) Archaeoglobus fulgidus RNase HII in DNA replication: enzymological functions and activity regulation via metal cofactors. Biochem Biophys Res Commun 286(5):1073–1081. doi: 10.1006/bbrc.2001.5523 PubMedCrossRefGoogle Scholar
  89. 89.
    Chapados BR, Chai Q, Hosfield DJ, Qiu J, Shen B, Tainer JA (2001) Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication. J Mol Biol 307(2):541–556. doi: 10.1006/jmbi.2001.4494 PubMedCrossRefGoogle Scholar
  90. 90.
    Haruki M, Hayashi K, Kochi T, Muroya A, Koga Y, Morikawa M, Imanaka T, Kanaya S (1998) Gene cloning and characterization of recombinant RNase HII from a hyperthermophilic archaeon. J Bacteriol 180(23):6207–6214PubMedPubMedCentralGoogle Scholar
  91. 91.
    Henneke G (2012) In vitro reconstitution of RNA primer removal in Archaea reveals the existence of two pathways. Biochem J 447(2):271–280. doi: 10.1042/BJ20120959 PubMedCrossRefGoogle Scholar
  92. 92.
    Beattie TR, Bell SD (2012) Coordination of multiple enzyme activities by a single PCNA in archaeal Okazaki fragment maturation. EMBO J 31(6):1556–1567. doi: 10.1038/emboj.2012.12 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Matsunaga F, Norais C, Forterre P, Myllykallio H (2003) Identification of short ‘eukaryotic’ Okazaki fragments synthesized from a prokaryotic replication origin. EMBO Rep 4(2):154–158. doi: 10.1038/sj.embor.embor732 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kochiwa H, Tomita M, Kanai A (2007) Evolution of ribonuclease H genes in prokaryotes to avoid inheritance of redundant genes. BMC Evol Biol 7:128. doi: 10.1186/1471-2148-7-128 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ohtani N, Haruki M, Morikawa M, Kanaya S (1999) Molecular diversities of RNases H. J Biosci Bioeng 88(1):12–19PubMedCrossRefGoogle Scholar
  96. 96.
    Ohtani N, Yanagawa H, Tomita M, Itaya M (2004) Identification of the first archaeal Type 1 RNase H gene from Halobacterium sp. NRC-1: archaeal RNase HI can cleave an RNA-DNA junction. Biochem J 381(Pt 3):795–802. doi: 10.1042/BJ20040153 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ohtani N, Yanagawa H, Tomita M, Itaya M (2004) Cleavage of double-stranded RNA by RNase HI from a thermoacidophilic archaeon, Sulfolobus tokodaii 7. Nucleic Acids Res 32(19):5809–5819. doi: 10.1093/nar/gkh917 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Howes TR, Tomkinson AE (2012) DNA ligase I, the replicative DNA ligase. Subcell Biochem 62:327–341. doi: 10.1007/978-94-007-4572-8_17 PubMedCrossRefGoogle Scholar
  99. 99.
    Bell SD, Jackson SP (1998) Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Trends Microbiol 6(6):222–228. doi: 10.1016/S0966-842X(98)01281-5 PubMedCrossRefGoogle Scholar
  100. 100.
    Langer D, Hain J, Thuriaux P, Zillig W (1995) Transcription in archaea: similarity to that in eucarya. Proc Natl Acad Sci 92(13):5768–5772PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hirata A, Klein BJ, Murakami KS (2008) The X-ray crystal structure of RNA polymerase from Archaea. Nature 451(7180):851–854. doi: 10.1038/nature06530 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Korkhin Y, Unligil UM, Littlefield O, Nelson PJ, Stuart DI, Sigler PB, Bell SD, Abrescia NG (2009) Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure. PLoS Biol 7(5):e1000102. doi: 10.1371/journal.pbio.1000102 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Armache KJ, Kettenberger H, Cramer P (2003) Architecture of initiation-competent 12-subunit RNA polymerase II. Proc Natl Acad Sci USA 100(12):6964–6968. doi: 10.1073/pnas.1030608100 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Werner F (2013) Molecular mechanisms of transcription elongation in Archaea. Chem Rev 113(11):8331–8349. doi: 10.1021/cr4002325 PubMedCrossRefGoogle Scholar
  105. 105.
    Werner F, Grohmann D (2011) Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol 9(2):85–98. doi: 10.1038/nrmicro2507 PubMedCrossRefGoogle Scholar
  106. 106.
    Blombach F, Makarova KS, Marrero J, Siebers B, Koonin EV, van der Oost J (2009) Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea. Biol Direct 4:39. doi: 10.1186/1745-6150-4-39 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Nudler E (2012) RNA polymerase backtracking in gene regulation and genome instability. Cell 149(7):1438–1445. doi: 10.1016/j.cell.2012.06.003 PubMedCrossRefGoogle Scholar
  108. 108.
    Grohmann D, Werner F (2011) Recent advances in the understanding of archaeal transcription. Curr Opin Microbiol 14(3):328–334. doi: 10.1016/j.mib.2011.04.012 PubMedCrossRefGoogle Scholar
  109. 109.
    Hirtreiter A, Grohmann D, Werner F (2010) Molecular mechanisms of RNA polymerase—the F/E (RPB4/7) complex is required for high processivity in vitro. Nucleic Acids Res 38(2):585–596. doi: 10.1093/nar/gkp928 PubMedCrossRefGoogle Scholar
  110. 110.
    Santangelo TJ, Cubonova L, Skinner KM, Reeve JN (2009) Archaeal intrinsic transcription termination in vivo. J Bacteriol 191(22):7102–7108. doi: 10.1128/JB.00982-09 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Shibata R, Bessho Y, Shinkai A, Nishimoto M, Fusatomi E, Terada T, Shirouzu M, Yokoyama S (2007) Crystal structure and RNA-binding analysis of the archaeal transcription factor NusA. Biochem Biophys Res Commun 355(1):122–128. doi: 10.1016/j.bbrc.2007.01.119 PubMedCrossRefGoogle Scholar
  112. 112.
    Londei P (2007) Translation. In: Archaea. American Society of Microbiology, Washington, D.C. doi: 10.1128/9781555815516.ch8
  113. 113.
    Yutin N, Puigbo P, Koonin EV, Wolf YI (2012) Phylogenomics of prokaryotic ribosomal proteins. PLoS One 7(5):e36972. doi: 10.1371/journal.pone.0036972 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Lecompte O, Ripp R, Thierry JC, Moras D, Poch O (2002) Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res 30(24):5382–5390. doi: 10.1093/nar/gkf693 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Londei P (2007) Translational mechanisms and protein synthesis. In: Archaea. Blackwell Publishing Ltd, Malden, MA, USA, pp 217–228. doi: 10.1002/9780470750865.ch19
  116. 116.
    Cammarano P, Teichner A, Londei P, Acca M, Nicolaus B, Sanz JL, Amils R (1985) Insensitivity of archaebacterial ribosomes to protein synthesis inhibitors. Evolutionary implications. EMBO J 4(3):811–816PubMedPubMedCentralGoogle Scholar
  117. 117.
    Elhardt D, Böck A (1982) An in vitro polypeptide synthesizing system from methanogenic bacteria: sensitivity to antibiotics. Mol Gen Genet MGG 188(1):128–134. doi: 10.1007/BF00333006 CrossRefGoogle Scholar
  118. 118.
    Lai MD, Xu J (2007) Ribosomal proteins and colorectal cancer. Curr Genomics 8(1):43–49PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Greber BJ, Boehringer D, Godinic-Mikulcic V, Crnkovic A, Ibba M, Weygand-Durasevic I, Ban N (2012) Cryo-EM structure of the Archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution. J Mol Biol 418(3–4):145–160. doi: 10.1016/j.jmb.2012.01.018 PubMedCrossRefGoogle Scholar
  120. 120.
    Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289(5481):905–920PubMedCrossRefGoogle Scholar
  121. 121.
    Armache J-P, Anger AM, Márquez V, Franckenberg S, Fröhlich T, Villa E, Berninghausen O, Thomm M, Arnold GJ, Beckmann R, Wilson DN (2013) Promiscuous behaviour of archaeal ribosomal proteins: implications for eukaryotic ribosome evolution. Nucleic Acids Res 41(2):1284–1293. doi: 10.1093/nar/gks1259 PubMedCrossRefGoogle Scholar
  122. 122.
    Cho IM, Lai LB, Susanti D, Mukhopadhyay B, Gopalan V (2010) Ribosomal protein L7Ae is a subunit of archaeal RNase P. Proc Natl Acad Sci USA 107(33):14573–14578. doi: 10.1073/pnas.1005556107 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Moore T, Zhang Y, Fenley MO, Li H (2004) Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure 12(5):807–818. doi: 10.1016/j.str.2004.02.033 PubMedCrossRefGoogle Scholar
  124. 124.
    Li L, Ye K (2006) Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443(7109):302–307. doi: 10.1038/nature05151 PubMedCrossRefGoogle Scholar
  125. 125.
    Dave B, Granados-Principal S, Zhu R, Benz S, Rabizadeh S, Soon-Shiong P, Yu KD, Shao Z, Li X, Gilcrease M, Lai Z, Chen Y, Huang TH, Shen H, Liu X, Ferrari M, Zhan M, Wong ST, Kumaraswami M, Mittal V, Chen X, Gross SS, Chang JC (2014) Targeting RPL39 and MLF2 reduces tumor initiation and metastasis in breast cancer by inhibiting nitric oxide synthase signaling. Proc Natl Acad Sci USA 111(24):8838–8843. doi: 10.1073/pnas.1320769111 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Hartman H, Favaretto P, Smith TF (2006) The archaeal origins of the eukaryotic translational system. Archaea 2(1):1–9PubMedCrossRefGoogle Scholar
  127. 127.
    Gabel K, Schmitt J, Schulz S, Nather DJ, Soppa J (2013) A comprehensive analysis of the importance of translation initiation factors for Haloferax volcanii applying deletion and conditional depletion mutants. PLoS One 8(11):e77188. doi: 10.1371/journal.pone.0077188 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Malys N, McCarthy JE (2011) Translation initiation: variations in the mechanism can be anticipated. Cell Mol Life Sci 68(6):991–1003. doi: 10.1007/s00018-010-0588-z PubMedCrossRefGoogle Scholar
  129. 129.
    Marintchev A, Wagner G (2004) Translation initiation: structures, mechanisms and evolution. Q Rev Biophys 37(3–4):197–284. doi: 10.1017/S0033583505004026 PubMedGoogle Scholar
  130. 130.
    Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11(2):113–127. doi: 10.1038/nrm2838 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Merrick W (2009) Translation: till termination us do part. Nature 459(7243):44–45. doi: 10.1038/459044a PubMedCrossRefGoogle Scholar
  132. 132.
    Benelli D, Londei P (2011) Translation initiation in Archaea: conserved and domain-specific features. Biochem Soc Trans 39(1):89–93. doi: 10.1042/BST0390089 PubMedCrossRefGoogle Scholar
  133. 133.
    Hasenohrl D, Fabbretti A, Londei P, Gualerzi CO, Blasi U (2009) Translation initiation complex formation in the crenarchaeon Sulfolobus solfataricus. RNA 15(12):2288–2298. doi: 10.1261/rna.1662609 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Maone E, Di Stefano M, Berardi A, Benelli D, Marzi S, La Teana A, Londei P (2007) Functional analysis of the translation factor aIF2/5B in the thermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 65(3):700–713. doi: 10.1111/j.1365-2958.2007.05820.x PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Lee JH, Choi SK, Roll-Mecak A, Burley SK, Dever TE (1999) Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc Natl Acad Sci USA 96(8):4342–4347PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Atkinson GC (2015) The evolutionary and functional diversity of classical and lesser-known cytoplasmic and organellar translational GTPases across the tree of life. BMC Genom 16:78. doi: 10.1186/s12864-015-1289-7 CrossRefGoogle Scholar
  137. 137.
    Guillon L, Schmitt E, Blanquet S, Mechulam Y (2005) Initiator tRNA binding by e/aIF5B, the eukaryotic/archaeal homologue of bacterial initiation factor IF2. Biochemistry 44(47):15594–15601. doi: 10.1021/bi051514j PubMedCrossRefGoogle Scholar
  138. 138.
    Dmitriev SE, Stolboushkina EA, Terenin IM, Andreev DE, Garber MB, Shatsky IN (2011) Archaeal translation initiation factor aIF2 can substitute for eukaryotic eIF2 in ribosomal scanning during mammalian 48S complex formation. J Mol Biol 413(1):106–114. doi: 10.1016/j.jmb.2011.08.026 PubMedCrossRefGoogle Scholar
  139. 139.
    Yatime L, Schmitt E, Blanquet S, Mechulam Y (2004) Functional molecular mapping of archaeal translation initiation factor 2. J Biol Chem 279(16):15984–15993. doi: 10.1074/jbc.M311561200 PubMedCrossRefGoogle Scholar
  140. 140.
    Dey M, Trieselmann B, Locke EG, Lu J, Cao C, Dar AC, Krishnamoorthy T, Dong J, Sicheri F, Dever TE (2005) PKR and GCN2 kinases and guanine nucleotide exchange factor eukaryotic translation initiation factor 2B (eIF2B) recognize overlapping surfaces on eIF2alpha. Mol Cell Biol 25(8):3063–3075. doi: 10.1128/MCB.25.8.3063-3075.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Gai Z, Kitagawa Y, Tanaka Y, Shimizu N, Komoda K, Tanaka I, Yao M (2012) The binding mechanism of eIF2beta with its partner proteins, eIF5 and eIF2Bepsilon. Biochem Biophys Res Commun 423(3):515–519. doi: 10.1016/j.bbrc.2012.05.155 PubMedCrossRefGoogle Scholar
  142. 142.
    Gomez E, Mohammad SS, Pavitt GD (2002) Characterization of the minimal catalytic domain within eIF2B: the guanine-nucleotide exchange factor for translation initiation. EMBO J 21(19):5292–5301PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Kyrpides NC, Woese CR (1998) Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families. Proc Natl Acad Sci USA 95(7):3726–3730PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Dev K, Santangelo TJ, Rothenburg S, Neculai D, Dey M, Sicheri F, Dever TE, Reeve JN, Hinnebusch AG (2009) Archaeal aIF2B interacts with eukaryotic translation initiation factors eIF2alpha and eIF2Balpha: implications for aIF2B function and eIF2B regulation. J Mol Biol 392(3):701–722. doi: 10.1016/j.jmb.2009.07.030 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Sunker A, Alkuraya FS (2013) Identification of MRI1, encoding translation initiation factor eIF-2B subunit alpha/beta/delta-like protein, as a candidate locus for infantile epilepsy with severe cystic degeneration of the brain. Gene 512(2):450–452. doi: 10.1016/j.gene.2012.10.063 PubMedCrossRefGoogle Scholar
  146. 146.
    Ma J, Campbell A, Karlin S (2002) Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 184(20):5733–5745. doi: 10.1128/jb.184.20.5733-5745.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Torarinsson E, Klenk HP, Garrett RA (2005) Divergent transcriptional and translational signals in Archaea. Environ Microbiol 7(1):47–54. doi: 10.1111/j.1462-2920.2004.00674.x PubMedCrossRefGoogle Scholar
  148. 148.
    Nakagawa S, Niimura Y, Miura K, Gojobori T (2010) Dynamic evolution of translation initiation mechanisms in prokaryotes. Proc Natl Acad Sci USA 107(14):6382–6387. doi: 10.1073/pnas.1002036107 PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Ganoza MC, Kiel MC, Aoki H (2002) Evolutionary conservation of reactions in translation. Microbiol Mol Biol Rev 66(3):460–485 (table of contents) PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Dubiez E, Aleksandrov A, Lazennec-Schurdevin C, Mechulam Y, Schmitt E (2015) Identification of a second GTP-bound magnesium ion in archaeal initiation factor 2. Nucleic Acids Res 43(5):2946–2957. doi: 10.1093/nar/gkv053 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Majumdar R, Maitra U (2005) Regulation of GTP hydrolysis prior to ribosomal AUG selection during eukaryotic translation initiation. EMBO J 24(21):3737–3746. doi: 10.1038/sj.emboj.7600844 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Kuhle B, Ficner R (2014) eIF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining. EMBO J 33(10):1177–1191. doi: 10.1002/embj.201387344 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Benelli D, Marzi S, Mancone C, Alonzi T, la Teana A, Londei P (2009) Function and ribosomal localization of aIF6, a translational regulator shared by archaea and eukarya. Nucleic Acids Res 37(1):256–267. doi: 10.1093/nar/gkn959 PubMedCrossRefGoogle Scholar
  154. 154.
    Menne TF, Goyenechea B, Sanchez-Puig N, Wong CC, Tonkin LM, Ancliff PJ, Brost RL, Costanzo M, Boone C, Warren AJ (2007) The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat Genet 39(4):486–495. doi: 10.1038/ng1994 PubMedCrossRefGoogle Scholar
  155. 155.
    Ceci M, Gaviraghi C, Gorrini C, Sala LA, Offenhauser N, Marchisio PC, Biffo S (2003) Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 426(6966):579–584. doi: 10.1038/nature02160 PubMedCrossRefGoogle Scholar
  156. 156.
    Henderson A, Hershey JWB (2011) The role of eIF5A in protein synthesis. Cell Cycle 10(21):3617–3618. doi: 10.4161/cc.10.21.17850 PubMedCrossRefGoogle Scholar
  157. 157.
    Henderson A, Hershey JW (2011) Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 108(16):6415–6419. doi: 10.1073/pnas.1008150108 PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459(7243):118–121. doi: 10.1038/nature08034 PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Wolff EC, Park MH, Folk JE (1990) Cleavage of spermidine as the first step in deoxyhypusine synthesis. The role of NAD. J Biol Chem 265(9):4793–4799PubMedGoogle Scholar
  160. 160.
    Abbruzzese A, Park MH, Folk JE (1986) Deoxyhypusine hydroxylase from rat testis. Partial purification and characterization. J Biol Chem 261(7):3085–3089PubMedGoogle Scholar
  161. 161.
    Cooper HL, Park MH, Folk JE, Safer B, Braverman R (1983) Identification of the hypusine-containing protein hy+ as translation initiation factor eIF-4D. Proc Natl Acad Sci USA 80(7):1854–1857PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Park JH, Aravind L, Wolff EC, Kaevel J, Kim YS, Park MH (2006) Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metalloenzyme. Proc Natl Acad Sci USA 103(1):51–56. doi: 10.1073/pnas.0509348102 PubMedCrossRefGoogle Scholar
  163. 163.
    Bartig D, Schümann H, Klink F (1990) The unique posttranslational modification leading to deoxyhypusine or hypusine is a general feature of the archaebacterial kingdom. Syst Appl Microbiol 13(2):112–116. doi: 10.1016/S0723-2020(11)80156-6 CrossRefGoogle Scholar
  164. 164.
    Schümann H, Klink F (1989) Archaebacterial protein contains hypusine, a unique amino acid characteristic for eukaryotic translation initiation factor 4D. Syst Appl Microbiol 11(2):103–107. doi: 10.1016/S0723-2020(89)80047-5 CrossRefGoogle Scholar
  165. 165.
    Bartig D, Lemkemeier K, Frank J, Lottspeich F, Klink F (1992) The archaebacterial hypusine-containing protein. Structural features suggest common ancestry with eukaryotic translation initiation factor 5A. Eur J Biochem 204(2):751–758PubMedCrossRefGoogle Scholar
  166. 166.
    Bevec D, Jaksche H, Oft M, Wohl T, Himmelspach M, Pacher A, Schebesta M, Koettnitz K, Dobrovnik M, Csonga R, Lottspeich F, Hauber J (1996) Inhibition of HIV-1 replication in lymphocytes by mutants of the Rev cofactor eIF-5A. Science 271(5257):1858–1860PubMedCrossRefGoogle Scholar
  167. 167.
    Gutierrez E, Shin BS, Woolstenhulme CJ, Kim JR, Saini P, Buskirk AR, Dever TE (2013) eIF5A promotes translation of polyproline motifs. Mol Cell 51(1):35–45. doi: 10.1016/j.molcel.2013.04.021 PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Schrader R, Young C, Kozian D, Hoffmann R, Lottspeich F (2006) Temperature-sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-mediated decay pathway. J Biol Chem 281(46):35336–35346. doi: 10.1074/jbc.M601460200 PubMedCrossRefGoogle Scholar
  169. 169.
    Zuk D, Jacobson A (1998) A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J 17(10):2914–2925. doi: 10.1093/emboj/17.10.2914 PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Ramakrishnan V (2002) Ribosome structure and the mechanism of translation. Cell 108(4):557–572PubMedCrossRefGoogle Scholar
  171. 171.
    Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J (2001) Structure of the 80S ribosome from Saccharomyces cerevisiae—tRNA-ribosome and subunit-subunit interactions. Cell 107(3):373–386PubMedCrossRefGoogle Scholar
  172. 172.
    de Koning B, Blombach F, Brouns SJ, van der Oost J (2010) Fidelity in archaeal information processing. Archaea 2010:960298. doi: 10.1155/2010/960298
  173. 173.
    Sasikumar AN, Perez WB, Kinzy TG (2012) The many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscip Rev RNA 3(4):543–555. doi: 10.1002/wrna.1118 PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Saito K, Kobayashi K, Wada M, Kikuno I, Takusagawa A, Mochizuki M, Uchiumi T, Ishitani R, Nureki O, Ito K (2010) Omnipotent role of archaeal elongation factor 1 alpha (EF1alpha in translational elongation and termination, and quality control of protein synthesis. Proc Natl Acad Sci USA 107(45):19242–19247. doi: 10.1073/pnas.1009599107 PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Kobayashi K, Kikuno I, Kuroha K, Saito K, Ito K, Ishitani R, Inada T, Nureki O (2010) Structural basis for mRNA surveillance by archaeal Pelota and GTP-bound EF1alpha complex. Proc Natl Acad Sci USA 107(41):17575–17579. doi: 10.1073/pnas.1009598107 PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Doma MK, Parker R (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440(7083):561–564. doi: 10.1038/nature04530 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Passos DO, Doma MK, Shoemaker CJ, Muhlrad D, Green R, Weissman J, Hollien J, Parker R (2009) Analysis of Dom34 and its function in no-go decay. Mol Biol Cell 20(13):3025–3032. doi: 10.1091/mbc.E09-01-0028 PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Kobayashi K, Saito K, Ishitani R, Ito K, Nureki O (2012) Structural basis for translation termination by archaeal RF1 and GTP-bound EF1alpha complex. Nucleic Acids Res 40(18):9319–9328. doi: 10.1093/nar/gks660 PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Janssen GM, Moller W (1988) Kinetic studies on the role of elongation factors 1 beta and 1 gamma in protein synthesis. J Biol Chem 263(4):1773–1778PubMedGoogle Scholar
  180. 180.
    Jeppesen MG, Ortiz P, Shepard W, Kinzy TG, Nyborg J, Andersen GR (2003) The crystal structure of the glutathione S-transferase-like domain of elongation factor 1Bgamma from Saccharomyces cerevisiae. J Biol Chem 278(47):47190–47198. doi: 10.1074/jbc.M306630200 PubMedCrossRefGoogle Scholar
  181. 181.
    Raimo G, Masullo M, Savino G, Scarano G, Ianniciello G, Parente A, Bocchini V (1996) Archaeal elongation factor 1 beta is a dimer. Primary structure, molecular and biochemical properties. Biochim Biophys Acta 1293(1):106–112PubMedCrossRefGoogle Scholar
  182. 182.
    Jorgensen R, Merrill AR, Andersen GR (2006) The life and death of translation elongation factor 2. Biochem Soc Trans 34(Pt 1):1–6. doi: 10.1042/BST20060001 PubMedCrossRefGoogle Scholar
  183. 183.
    Van Ness BG, Howard JB, Bodley JW (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J Biol Chem 255(22):10717–10720PubMedGoogle Scholar
  184. 184.
    Van Ness BG, Howard JB, Bodley JW (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J Biol Chem 255(22):10710–10716PubMedGoogle Scholar
  185. 185.
    Liu S, Milne GT, Kuremsky JG, Fink GR, Leppla SH (2004) Identification of the proteins required for biosynthesis of diphthamide, the target of bacterial ADP-ribosylating toxins on translation elongation factor 2. Mol Cell Biol 24(21):9487–9497. doi: 10.1128/MCB.24.21.9487-9497.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Dong M, Su X, Dzikovski B, Dando EE, Zhu X, Du J, Freed JH, Lin H (2014) Dph3 is an electron donor for Dph1-Dph2 in the first step of eukaryotic diphthamide biosynthesis. J Am Chem Soc 136(5):1754–1757. doi: 10.1021/ja4118957 PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Chen JY, Bodley JW (1988) Biosynthesis of diphthamide in Saccharomyces cerevisiae. Partial purification and characterization of a specific S-adenosylmethionine:elongation factor 2 methyltransferase. J Biol Chem 263(24):11692–11696PubMedGoogle Scholar
  188. 188.
    Lin Z, Su X, Chen W, Ci B, Zhang S, Lin H (2014) Dph7 catalyzes a previously unknown demethylation step in diphthamide biosynthesis. J Am Chem Soc 136(17):6179–6182. doi: 10.1021/ja5009272 PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Su X, Chen W, Lee W, Jiang H, Zhang S, Lin H (2012) YBR246W is required for the third step of diphthamide biosynthesis. J Am Chem Soc 134(2):773–776. doi: 10.1021/ja208870a PubMedCrossRefGoogle Scholar
  190. 190.
    de Crecy-Lagard V, Forouhar F, Brochier-Armanet C, Tong L, Hunt JF (2012) Comparative genomic analysis of the DUF71/COG2102 family predicts roles in diphthamide biosynthesis and B12 salvage. Biol Direct 7:32. doi: 10.1186/1745-6150-7-32 PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Su X, Lin Z, Chen W, Jiang H, Zhang S, Lin H (2012) Chemogenomic approach identified yeast YLR143W as diphthamide synthetase. Proc Natl Acad Sci USA 109(49):19983–19987. doi: 10.1073/pnas.1214346109 PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Uthman S, Bar C, Scheidt V, Liu S, ten Have S, Giorgini F, Stark MJ, Schaffrath R (2013) The amidation step of diphthamide biosynthesis in yeast requires DPH6, a gene identified through mining the DPH1-DPH5 interaction network. PLoS Genet 9(2):e1003334. doi: 10.1371/journal.pgen.1003334 PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Spahn CM, Gomez-Lorenzo MG, Grassucci RA, Jorgensen R, Andersen GR, Beckmann R, Penczek PA, Ballesta JP, Frank J (2004) Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J 23(5):1008–1019. doi: 10.1038/sj.emboj.7600102 PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Foley BT, Moehring JM, Moehring TJ (1995) Mutations in the elongation factor 2 gene which confer resistance to diphtheria toxin and Pseudomonas exotoxin A. Genetic and biochemical analyses. J Biol Chem 270(39):23218–23225PubMedCrossRefGoogle Scholar
  195. 195.
    Schultz DC, Vanderveer L, Berman DB, Hamilton TC, Wong AJ, Godwin AK (1996) Identification of two candidate tumor suppressor genes on chromosome 17p13.3. Cancer Res 56(9):1997–2002PubMedGoogle Scholar
  196. 196.
    Phan LD, Perentesis JP, Bodley JW (1993) Saccharomyces cerevisiae elongation factor 2. Mutagenesis of the histidine precursor of diphthamide yields a functional protein that is resistant to diphtheria toxin. J Biol Chem 268(12):8665–8668PubMedGoogle Scholar
  197. 197.
    Ryazanov AG (1987) Ca2+/calmodulin-dependent phosphorylation of elongation factor 2. FEBS Lett 214(2):331–334PubMedCrossRefGoogle Scholar
  198. 198.
    Donovan MG, Bodley JW (1991) Saccharomyces cerevisiae elongation factor 2 is phosphorylated by an endogenous kinase. FEBS Lett 291(2):303–306PubMedCrossRefGoogle Scholar
  199. 199.
    Thomas T, Cavicchioli R (2002) Cold adaptation of archaeal elongation factor 2 (EF-2) proteins. Curr Protein Pept Sci 3(2):223–230PubMedCrossRefGoogle Scholar
  200. 200.
    Thomas T, Cavicchioli R (2000) Effect of temperature on stability and activity of elongation factor 2 proteins from Antarctic and thermophilic methanogens. J Bacteriol 182(5):1328–1332PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Thomas T, Kumar N, Cavicchioli R (2001) Effects of ribosomes and intracellular solutes on activities and stabilities of elongation factor 2 proteins from psychrotolerant and thermophilic methanogens. J Bacteriol 183(6):1974–1982. doi: 10.1128/JB.183.6.1974-1982.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Rother M, Krzycki JA (2010) Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. Archaea 2010:453642. doi: 10.1155/2010/453642
  203. 203.
    Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296(5572):1459–1462. doi: 10.1126/science.1069588 PubMedCrossRefGoogle Scholar
  204. 204.
    Bock A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F (1991) Selenocysteine: the 21st amino acid. Mol Microbiol 5(3):515–520PubMedCrossRefGoogle Scholar
  205. 205.
    Krzycki JA (2013) The path of lysine to pyrrolysine. Curr Opin Chem Biol 17(4):619–625. doi: 10.1016/j.cbpa.2013.06.023 PubMedCrossRefGoogle Scholar
  206. 206.
    Zhang Y, Baranov PV, Atkins JF, Gladyshev VN (2005) Pyrrolysine and selenocysteine use dissimilar decoding strategies. J Biol Chem 280(21):20740–20751. doi: 10.1074/jbc.M501458200 PubMedCrossRefGoogle Scholar
  207. 207.
    Stock T, Rother M (2009) Selenoproteins in Archaea and Gram-positive bacteria. Biochim Biophys Acta 1790(11):1520–1532. doi: 10.1016/j.bbagen.2009.03.022 PubMedCrossRefGoogle Scholar
  208. 208.
    Zinoni F, Heider J, Bock A (1990) Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine. Proc Natl Acad Sci USA 87(12):4660–4664PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Driscoll DM, Copeland PR (2003) Mechanism and regulation of selenoprotein synthesis. Annu Rev Nutr 23:17–40. doi: 10.1146/annurev.nutr.23.011702.073318 PubMedCrossRefGoogle Scholar
  210. 210.
    Small-Howard AL, Berry MJ (2005) Unique features of selenocysteine incorporation function within the context of general eukaryotic translational processes. Biochem Soc Trans 33(Pt 6):1493–1497. doi: 10.1042/BST20051493 PubMedCrossRefGoogle Scholar
  211. 211.
    Chavatte L, Brown BA, Driscoll DM (2005) Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat Struct Mol Biol 12(5):408–416. doi: 10.1038/nsmb922 PubMedCrossRefGoogle Scholar
  212. 212.
    Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll DM (2000) A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J 19(2):306–314. doi: 10.1093/emboj/19.2.306 PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22(11):3565–3576PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Trobro S, Aqvist J (2007) A model for how ribosomal release factors induce peptidyl-tRNA cleavage in termination of protein synthesis. Mol Cell 27(5):758–766. doi: 10.1016/j.molcel.2007.06.032 PubMedCrossRefGoogle Scholar
  215. 215.
    Konecki DS, Aune KC, Tate W, Caskey CT (1977) Characterization of reticulocyte release factor. J Biol Chem 252(13):4514–4520PubMedGoogle Scholar
  216. 216.
    Dontsova M, Frolova L, Vassilieva J, Piendl W, Kisselev L, Garber M (2000) Translation termination factor aRF1 from the archaeon Methanococcus jannaschii is active with eukaryotic ribosomes. FEBS Lett 472(2–3):213–216PubMedCrossRefGoogle Scholar
  217. 217.
    Scolnick E, Tompkins R, Caskey T, Nirenberg M (1968) Release factors differing in specificity for terminator codons. Proc Natl Acad Sci USA 61(2):768–774PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Freistroffer DV, Pavlov MY, MacDougall J, Buckingham RH, Ehrenberg M (1997) Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J 16(13):4126–4133. doi: 10.1093/emboj/16.13.4126 PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Grentzmann G, Brechemier-Baey D, Heurgue V, Mora L, Buckingham RH (1994) Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc Natl Acad Sci USA 91(13):5848–5852PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Eyler DE, Wehner KA, Green R (2013) Eukaryotic release factor 3 is required for multiple turnovers of peptide release catalysis by eukaryotic release factor 1. J Biol Chem 288(41):29530–29538. doi: 10.1074/jbc.M113.487090 PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Kapp LD, Lorsch JR (2004) The molecular mechanics of eukaryotic translation. Annu Rev Biochem 73:657–704. doi: 10.1146/annurev.biochem.73.030403.080419 PubMedCrossRefGoogle Scholar
  222. 222.
    Nürenberg E, Tampé R (2013) Tying up loose ends: ribosome recycling in eukaryotes and archaea. Trends Biochem Sci 38(2):64–74. doi: 10.1016/j.tibs.2012.11.003 PubMedCrossRefGoogle Scholar
  223. 223.
    Beznoskova P, Wagner S, Jansen ME, von der Haar T, Valasek LS (2015) Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res. doi: 10.1093/nar/gkv421 PubMedPubMedCentralGoogle Scholar
  224. 224.
    Janzen DM, Geballe AP (2004) The effect of eukaryotic release factor depletion on translation termination in human cell lines. Nucleic Acids Res 32(15):4491–4502. doi: 10.1093/nar/gkh791 PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Bidou L, Allamand V, Rousset JP, Namy O (2012) Sense from nonsense: therapies for premature stop codon diseases. Trends Mol Med 18(11):679–688. doi: 10.1016/j.molmed.2012.09.008 PubMedCrossRefGoogle Scholar
  226. 226.
    Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, Hentze MW, Hellen CU, Pestova TV (2010) The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell 37(2):196–210. doi: 10.1016/j.molcel.2009.12.034 PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Barthelme D, Dinkelaker S, Albers SV, Londei P, Ermler U, Tampe R (2011) Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proc Natl Acad Sci USA 108(8):3228–3233. doi: 10.1073/pnas.1015953108 PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Karimi R, Pavlov MY, Buckingham RH, Ehrenberg M (1999) Novel roles for classical factors at the interface between translation termination and initiation. Mol Cell 3(5):601–609PubMedCrossRefGoogle Scholar
  229. 229.
    Fujiwara T, Ito K, Yamami T, Nakamura Y (2004) Ribosome recycling factor disassembles the post-termination ribosomal complex independent of the ribosomal translocase activity of elongation factor G. Mol Microbiol 53(2):517–528. doi: 10.1111/j.1365-2958.2004.04156.x PubMedCrossRefGoogle Scholar
  230. 230.
    Becker T, Franckenberg S, Wickles S, Shoemaker CJ, Anger AM, Armache JP, Sieber H, Ungewickell C, Berninghausen O, Daberkow I, Karcher A, Thomm M, Hopfner KP, Green R, Beckmann R (2012) Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature 482(7386):501–506. doi: 10.1038/nature10829 PubMedCrossRefGoogle Scholar
  231. 231.
    Becker T, Armache JP, Jarasch A, Anger AM, Villa E, Sieber H, Motaal BA, Mielke T, Berninghausen O, Beckmann R (2011) Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome. Nat Struct Mol Biol 18(6):715–720. doi: 10.1038/nsmb.2057 PubMedCrossRefGoogle Scholar
  232. 232.
    Pisareva VP, Skabkin MA, Hellen CU, Pestova TV, Pisarev AV (2011) Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J 30(9):1804–1817. doi: 10.1038/emboj.2011.93 PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Chen ZQ, Dong J, Ishimura A, Daar I, Hinnebusch AG, Dean M (2006) The essential vertebrate ABCE1 protein interacts with eukaryotic initiation factors. J Biol Chem 281(11):7452–7457. doi: 10.1074/jbc.M510603200 PubMedCrossRefGoogle Scholar
  234. 234.
    Andersen DS, Leevers SJ (2007) The essential Drosophila ATP-binding cassette domain protein, pixie, binds the 40S ribosome in an ATP-dependent manner and is required for translation initiation. J Biol Chem 282(20):14752–14760. doi: 10.1074/jbc.M701361200 PubMedCrossRefGoogle Scholar
  235. 235.
    Strunk BS, Novak MN, Young CL, Karbstein K (2012) A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 150(1):111–121. doi: 10.1016/j.cell.2012.04.044 PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Bisbal C, Martinand C, Silhol M, Lebleu B, Salehzada T (1995) Cloning and characterization of a RNAse L inhibitor. A new component of the interferon-regulated 2-5A pathway. J Biol Chem 270(22):13308–13317PubMedCrossRefGoogle Scholar
  237. 237.
    Zimmerman C, Klein KC, Kiser PK, Singh AR, Firestein BL, Riba SC, Lingappa JR (2002) Identification of a host protein essential for assembly of immature HIV-1 capsids. Nature 415(6867):88–92. doi: 10.1038/415088a PubMedCrossRefGoogle Scholar
  238. 238.
    Karblane K, Gerassimenko J, Nigul L, Piirsoo A, Smialowska A, Vinkel K, Kylsten P, Ekwall K, Swoboda P, Truve E, Sarmiento C (2015) ABCE1 is a highly conserved RNA silencing suppressor. PLoS One 10(2):e0116702. doi: 10.1371/journal.pone.0116702 PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Reeve JN, Bailey KA, Li WT, Marc F, Sandman K, Soares DJ (2004) Archaeal histones: structures, stability and DNA binding. Biochem Soc Trans 32 (Pt 2):227–230. doi: 10.1042/bst0320227 PubMedCrossRefGoogle Scholar
  240. 240.
    Talbert PB, Henikoff S (2010) Histone variants–ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11(4):264–275. doi: 10.1038/nrm2861 PubMedCrossRefGoogle Scholar
  241. 241.
    Pereira SL, Reeve JN (1998) Histones and nucleosomes in Archaea and Eukarya: a comparative analysis. Extremophiles 2(3):141–148PubMedCrossRefGoogle Scholar
  242. 242.
    Sandman K, Reeve JN (2006) Archaeal histones and the origin of the histone fold. Curr Opin Microbiol 9(5):520–525. doi: 10.1016/j.mib.2006.08.003 PubMedCrossRefGoogle Scholar
  243. 243.
    Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45. doi: 10.1038/47412 PubMedCrossRefGoogle Scholar
  244. 244.
    Ammar R, Torti D, Tsui K, Gebbia M, Durbic T, Bader GD, Giaever G, Nislow C (2012) Chromatin is an ancient innovation conserved between Archaea and Eukarya. Elife 1:e00078. doi: 10.7554/eLife.00078 PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Dolfini D, Gatta R, Mantovani R (2012) NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 47(1):29–49. doi: 10.3109/10409238.2011.628970 PubMedCrossRefGoogle Scholar
  246. 246.
    Tozik I, Huang Q, Zwieb C, Eichler J (2002) Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii. Nucleic Acids Res 30(19):4166–4175PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Akopian D, Shen K, Zhang X, Shan SO (2013) Signal recognition particle: an essential protein-targeting machine. Annu Rev Biochem 82:693–721. doi: 10.1146/annurev-biochem-072711-164732 PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Rose RW, Pohlschroder M (2002) In vivo analysis of an essential archaeal signal recognition particle in its native host. J Bacteriol 184(12):3260–3267PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Yurist S, Dahan I, Eichler J (2007) SRP19 is a dispensable component of the signal recognition particle in Archaea. J Bacteriol 189(1):276–279. doi: 10.1128/JB.01410-06 PubMedCrossRefGoogle Scholar
  250. 250.
    Bhuiyan SH, Gowda K, Hotokezaka H, Zwieb C (2000) Assembly of archaeal signal recognition particle from recombinant components. Nucleic Acids Res 28(6):1365–1373PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Moll R, Schmidtke S, Schafer G (1999) Domain structure, GTP-hydrolyzing activity and 7S RNA binding of Acidianus ambivalens ffh-homologous protein suggest an SRP-like complex in archaea. Eur J Biochem 259(1–2):441–448PubMedCrossRefGoogle Scholar
  252. 252.
    Muers M (2013) Chromatin: evolutionary insights into nucleosomes. Nat Rev Genet 14(2):78. doi: 10.1038/nrg3412 PubMedGoogle Scholar
  253. 253.
    Large AT, Lund PA (2009) Archaeal chaperonins. Front Biosci (Landmark Ed) 14:1304–1324CrossRefGoogle Scholar
  254. 254.
    Douglas NR, Reissmann S, Zhang J, Chen B, Jakana J, Kumar R, Chiu W, Frydman J (2011) Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell 144(2):240–252. doi: 10.1016/j.cell.2010.12.017 PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Zhang J, Ma B, DiMaio F, Douglas NR, Joachimiak LA, Baker D, Frydman J, Levitt M, Chiu W (2011) Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure. Structure 19(5):633–639. doi: 10.1016/j.str.2011.03.005 PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Laksanalamai P, Whitehead TA, Robb FT (2004) Minimal protein-folding systems in hyperthermophilic archaea. Nat Rev Microbiol 2(4):315–324. doi: 10.1038/nrmicro866 PubMedCrossRefGoogle Scholar
  257. 257.
    Macario AJ, de Macario EC (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353(14):1489–1501. doi: 10.1056/NEJMra050111 PubMedCrossRefGoogle Scholar
  258. 258.
    Bouhouche A, Benomar A, Bouslam N, Chkili T, Yahyaoui M (2006) Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J Med Genet 43(5):441–443. doi: 10.1136/jmg.2005.039230 PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Min W, Angileri F, Luo H, Lauria A, Shanmugasundaram M, Almerico AM, Cappello F, de Macario EC, Lednev IK, Macario AJ, Robb FT (2014) A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model. Sci Rep 4:6688. doi: 10.1038/srep06688 PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Hirai K, Maeda H, Omori K, Yamamoto T, Kokeguchi S, Takashiba S (2013) Serum antibody response to group II chaperonin from Methanobrevibacter oralis and human chaperonin CCT. Pathog Dis 68(1):12–19. doi: 10.1111/2049-632X.12041 PubMedCrossRefGoogle Scholar
  261. 261.
    Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439. doi: 10.1146/annurev.genet.30.1.405 PubMedCrossRefGoogle Scholar
  262. 262.
    Fort P, Kajava AV, Delsuc F, Coux O (2015) Evolution of proteasome regulators in eukaryotes. Genome Biol Evol 7(5):1363–1379. doi: 10.1093/gbe/evv068 PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Benaroudj N, Goldberg AL (2000) PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat Cell Biol 2(11):833–839. doi: 10.1038/35041081 PubMedCrossRefGoogle Scholar
  264. 264.
    Wilson HL, Ou MS, Aldrich HC, Maupin-Furlow J (2000) Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome. J Bacteriol 182(6):1680–1692PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Panfair D, Ramamurthy A, Kusmierczyk AR (2015) Alpha-ring Independent Assembly of the 20S Proteasome. Sci Rep 5:13130. doi: 10.1038/srep13130 PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Wang C, Xi J, Begley TP, Nicholson LK (2001) Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nat Struct Biol 8(1):47–51. doi: 10.1038/83041 PubMedCrossRefGoogle Scholar
  267. 267.
    Humbard MA, Miranda HV, Lim JM, Krause DJ, Pritz JR, Zhou G, Chen S, Wells L, Maupin-Furlow JA (2010) Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463 (7277):54–60. doi: 10.1038/nature08659 PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Rudolph MJ, Wuebbens MM, Rajagopalan KV, Schindelin H (2001) Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Struct Biol 8(1):42–46. doi: 10.1038/83034 PubMedCrossRefGoogle Scholar
  269. 269.
    Maupin-Furlow JA (2014) Prokaryotic ubiquitin-like protein modification. Annu Rev Microbiol 68:155–175. doi: 10.1146/annurev-micro-091313-103447 PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Miranda HV, Antelmann H, Hepowit N, Chavarria NE, Krause DJ, Pritz JR, Basell K, Becher D, Humbard MA, Brocchieri L, Maupin-Furlow JA (2014) Archaeal ubiquitin-like SAMP3 is isopeptide-linked to proteins via a UbaA-dependent mechanism. Molecular & cellular proteomics: MCP 13(1):220–239. doi: 10.1074/mcp.M113.029652 CrossRefGoogle Scholar
  271. 271.
    Miranda HV, Nembhard N, Su D, Hepowit N, Krause DJ, Pritz JR, Phillips C, Soll D, Maupin-Furlow JA (2011) E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea. Proc Natl Acad Sci USA 108(11):4417–4422. doi: 10.1073/pnas.1018151108 PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Anjum RS, Bray SM, Blackwood JK, Kilkenny ML, Coelho MA, Foster BM, Li S, Howard JA, Pellegrini L, Albers SV, Deery MJ, Robinson NP (2015) Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius. Nature communications 6:8163. doi: 10.1038/ncomms9163 PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Liu Y, Long F, Wang L, Soll D, Whitman WB (2014) The putative tRNA 2-thiouridine synthetase Ncs6 is an essential sulfur carrier in Methanococcus maripaludis. FEBS Lett 588(6):873–877. doi: 10.1016/j.febslet.2014.01.065 PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Otero G, Fellows J, Li Y, de Bizemont T, Dirac AM, Gustafsson CM, Erdjument-Bromage H, Tempst P, Svejstrup JQ (1999) Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 3(1):109–118PubMedCrossRefGoogle Scholar
  275. 275.
    Svejstrup JQ (2007) Elongator complex: how many roles does it play? Curr Opin Cell Biol 19(3):331–336. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  276. 276.
    Paraskevopoulou C, Fairhurst SA, Lowe DJ, Brick P, Onesti S (2006) The elongator subunit Elp3 contains a Fe4S4 cluster and binds S-adenosylmethionine. Mol Microbiol 59(3):795–806. doi: 10.1111/j.1365-2958.2005.04989.x PubMedCrossRefGoogle Scholar
  277. 277.
    Selvadurai K, Wang P, Seimetz J, Huang RH (2014) Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism. Nat Chem Biol 10(10):810–812. doi: 10.1038/nchembio.1610 PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Simpson CL, Lemmens R, Miskiewicz K, Broom WJ, Hansen VK, van Vught PW, Landers JE, Sapp P, Van Den Bosch L, Knight J, Neale BM, Turner MR, Veldink JH, Ophoff RA, Tripathi VB, Beleza A, Shah MN, Proitsi P, Van Hoecke A, Carmeliet P, Horvitz HR, Leigh PN, Shaw CE, van den Berg LH, Sham PC, Powell JF, Verstreken P, Brown RH Jr, Robberecht W, Al-Chalabi A (2009) Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum Mol Genet 18(3):472–481. doi: 10.1093/hmg/ddn375 PubMedCrossRefGoogle Scholar
  279. 279.
    Leigh JA, Albers SV, Atomi H, Allers T (2011) Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 35(4):577–608. doi: 10.1111/j.1574-6976.2011.00265.x PubMedCrossRefGoogle Scholar
  280. 280.
    Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teacher 35(3):125–129. doi: 10.2307/4444260 CrossRefGoogle Scholar
  281. 281.
    Varki A (2012) Nothing in medicine makes sense, except in the light of evolution. J Mol Med (Berl) 90(5):481–494. doi: 10.1007/s00109-012-0900-5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of GeorgiaAthensUSA

Personalised recommendations