Skip to main content
Log in

SWI/SNF-directed stem cell lineage specification: dynamic composition regulates specific stages of skeletal myogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

SWI/SNF chromatin-remodeling complexes are key regulators of the epigenetic modifications that determine whether stem cells maintain pluripotency or commit toward specific lineages through development and during postnatal life. Dynamic combinatorial assembly of multiple variants of SWI/SNF subunits is emerging as the major determinant of the functional versatility of SWI/SNF. Here, we summarize the current knowledge on the structural and functional properties of the alternative SWI/SNF complexes that direct stem cell fate toward skeletal muscle lineage and control distinct stages of skeletal myogenesis. In particular, we will refer to recent evidence pointing to the essential role of two SWI/SNF components not expressed in embryonic stem cells—the catalytic subunit BRM and the structural component BAF60C—whose induction in muscle progenitors coincides with the expansion of their transcriptional repertoire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kornberg R (1974) Chromatin structure: a repeating unit of histones and DNA. Science (New York)

  2. Cairns B (2009) The logic of chromatin architecture and remodelling at promoters. Nature. doi:10.1038/nature08450

    PubMed Central  Google Scholar 

  3. Stern M, Jensen R, Herskowitz I (1984) Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 178:853–868

    Article  CAS  PubMed  Google Scholar 

  4. Tamkun JW, Deuring R, Scott MP et al (1992) Brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68:561–572

    Article  CAS  PubMed  Google Scholar 

  5. Elfring L, Deuring R, McCallum C et al (1994) Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol Cell Biol

  6. Wang W, Xue Y, Zhou S et al (1996) Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev 10:2117–2130

    Article  CAS  PubMed  Google Scholar 

  7. Ho L, Crabtree G (2010) Chromatin remodelling during development. Nature. doi:10.1038/nature08911

    Google Scholar 

  8. Ho L, Ronan JL, Wu J et al (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci USA 106:5181–5186. doi:10.1073/pnas.0812889106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Puri P, Mercola M (2012) BAF60 A, B, and Cs of muscle determination and renewal. Genes Dev 26:2673–2683. doi:10.1101/gad.207415.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phelan ML, Sif S, Narlikar GJ, Kingston RE (1999) Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell 3:247–253

    Article  CAS  PubMed  Google Scholar 

  11. Lessard J, Crabtree G (2010) Chromatin regulatory mechanisms in pluripotency. Annu Rev Cell Dev Biol 26:503–532. doi:10.1146/annurev-cellbio-051809-102012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singhal N, Graumann J, Wu G et al (2010) Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 141:943–955. doi:10.1016/j.cell.2010.04.037

    Article  CAS  PubMed  Google Scholar 

  13. Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326. doi:10.1016/j.cell.2006.02.041

    Article  CAS  PubMed  Google Scholar 

  14. Azuara V, Perry P, Sauer S et al (2016) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–8. doi:10.1038/ncb1403

  15. Boyer L, Plath K, Zeitlinger J et al (2016) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–53. doi:10.1038/nature04733

  16. Saladi SV, de la Serna IL (2010) ATP dependent chromatin remodeling enzymes in embryonic stem cells. Stem Cell Rev 6:62–73. doi:10.1007/s12015-010-9120-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim J, Chu J, Shen X et al (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061. doi:10.1016/j.cell.2008.02.039

    Article  CAS  PubMed  Google Scholar 

  18. Ho L, Jothi R, Ronan JL et al (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci USA 106:5187–5191. doi:10.1073/pnas.0812888106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Albini S, Puri P (2010) SWI/SNF complexes, chromatin remodeling and skeletal myogenesis: it’s time to exchange! Exp Cell Res 316:30733080. doi:10.1016/j.yexcr.2010.05.023

    Article  Google Scholar 

  20. Hainer SJ, Gu W, Carone BR et al (2015) Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF. Genes Dev 29:362–378. doi:10.1101/gad.253534.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takeuchi JK, Bruneau BG (2009) Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459:708–711. doi:10.1038/nature08039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai W, Albini S, Wei K et al (2013) Coordinate nodal and BMP inhibition directs Baf60c-dependent cardiomyocyte commitment. Genes Dev 27:2332–2344. doi:10.1101/gad.225144.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lickert H, Takeuchi JK, Von Both I et al (2004) Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432:107–112. doi:10.1038/nature03071

    Article  CAS  PubMed  Google Scholar 

  24. Albini S, Coutinho P, Malecova B et al (2013) Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres. Cell Rep 3:661–670. doi:10.1016/j.celrep.2013.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao X, Tate P, Hu P et al (2008) ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci USA 105:6656–6661. doi:10.1073/pnas.0801802105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lessard J, Wu JI, Ranish JA et al (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:201–215. doi:10.1016/j.neuron.2007.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu JI, Lessard J, Olave IA et al (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56:94–108. doi:10.1016/j.neuron.2007.08.021

    Article  CAS  PubMed  Google Scholar 

  28. Yoo A, Staahl B, Chen L, Crabtree G (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature. doi:10.1038/nature08139

    PubMed  PubMed Central  Google Scholar 

  29. Schaniel C, Ang Y-SS, Ratnakumar K et al (2009) Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells 27:2979–2991. doi:10.1002/stem.223

    CAS  PubMed  Google Scholar 

  30. Ho L, Miller EL, Ronan JL et al (2011) esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nat Cell Biol 13:903–913. doi:10.1038/ncb2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Puri Sartorelli (2000) Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J Cell Physiol. doi:10.1002/1097-4652(200011)185

    PubMed  Google Scholar 

  32. Zammit PS, Golding JP, Nagata Y et al (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166:347–357. doi:10.1083/jcb.200312007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lassar AB, Davis RL, Wright WE et al (1991) Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66:305–315

    Article  CAS  PubMed  Google Scholar 

  34. Kathiriya IS, Nora EPP, Bruneau BG (2015) Investigating the transcriptional control of cardiovascular development. Circ Res 116:700–714. doi:10.1161/CIRCRESAHA.116.302832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Serna I, Ohkawa Y, Berkes C et al (2005) MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol Cell Biol 25:3997–4009. doi:10.1128/MCB.25.10.3997-4009.2005

    Article  PubMed  PubMed Central  Google Scholar 

  36. Berkes CA, Bergstrom DA, Penn BH et al (2004) Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol Cell 14:465–477

    Article  CAS  PubMed  Google Scholar 

  37. Simone C, Forcales SV, Hill DA et al (2004) p38 pathway targets SWI–SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet 36:738–743. doi:10.1038/ng1378

    Article  CAS  PubMed  Google Scholar 

  38. Forcales SV, Albini S, Giordani L et al (2012) Signal-dependent incorporation of MyoD–BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J 31:301–316. doi:10.1038/emboj.2011.391

    Article  CAS  PubMed  Google Scholar 

  39. Weintraub H, Tapscott SJ, Davis RL et al (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci USA 86:5434–5438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D’Aniello C, Fiorenzano A, Iaconis S et al (2013) The G-protein-coupled receptor APJ is expressed in the second heart field and regulates Cerberus-Baf60c axis in embryonic stem cell cardiomyogenesis. Cardiovasc Res 100:95–104. doi:10.1093/cvr/cvt166

    Article  PubMed  Google Scholar 

  41. Goljanek-Whysall K, Mok GF, Fahad Alrefaei A et al (2014) myomiR-dependent switching of BAF60 variant incorporation into Brg1 chromatin remodeling complexes during embryo myogenesis. Development 141:3378–3387. doi:10.1242/dev.108787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Joe AW, Yi L, Natarajan A et al (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163. doi:10.1038/ncb2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uezumi A, Ito T, Morikawa D et al (2011) Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 124:3654–3664. doi:10.1242/jcs.086629

    Article  CAS  PubMed  Google Scholar 

  44. Saccone V, Consalvi S, Giordani L et al (2014) HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes Dev 28:841–857. doi:10.1101/gad.234468.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Minetti GC, Colussi C, Adami R et al (2006) Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nat Med 12:1147–1150. doi:10.1038/nm1479

    Article  CAS  PubMed  Google Scholar 

  46. Consalvi S, Saccone V, Mozzetta C (2014) Histone deacetylase inhibitors: a potential epigenetic treatment for Duchenne muscular dystrophy. Epigenomics 6:547–560. doi:10.2217/epi.14.36

    Article  CAS  PubMed  Google Scholar 

  47. Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010. doi:10.1016/j.cell.2007.03.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Troy A, Cadwallader AB, Fedorov Y et al (2012) Coordination of satellite cell activation and self-renewal by Par-complex-dependent asymmetric activation of p38α/β MAPK. Cell Stem Cell 11:541–553. doi:10.1016/j.stem.2012.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jones NC, Tyner KJ, Nibarger L et al (2005) The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169:105–116. doi:10.1083/jcb.200408066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Price FD, von Maltzahn J, Bentzinger CF et al (2014) Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat Med 20:1174–1181. doi:10.1038/nm.3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tierney MT, Aydogdu T, Sala D et al (2014) STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med 20:1182–1186. doi:10.1038/nm.3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Padilla-Benavides T, Nasipak BT, Imbalzano AN (2015) Brg1 controls the expression of Pax7 to promote viability and proliferation of mouse primary myoblasts. J Cell Physiol 230:2990–2997. doi:10.1002/jcp.25031

    Article  CAS  PubMed  Google Scholar 

  53. Kadam S, Emerson BM (2003) Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol Cell 11:377–389. doi:10.1016/S1097-2765(03)00034-0

    Article  CAS  PubMed  Google Scholar 

  54. Bjornson CRR, Cheung TH, Liu L et al (2012) Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30:232–242. doi:10.1002/stem.773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mourikis P, Gopalakrishnan S, Sambasivan R, Tajbakhsh S (2012) Cell-autonomous notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development 139:4536–4548. doi:10.1242/dev.084756

    Article  CAS  PubMed  Google Scholar 

  56. Mourikis P, Sambasivan R, Castel D et al (2012) A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30:243–252. doi:10.1002/stem.775

    Article  CAS  PubMed  Google Scholar 

  57. Albini S, Coutinho Toto P, Dall’Agnese A et al (2015) Brahma is required for cell cycle arrest and late muscle gene expression during skeletal myogenesis. EMBO Rep 16:1037–1050. doi:10.15252/embr.201540159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu M, Wu R, Yang F et al (2013) Identification of FN1BP1 as a novel cell cycle regulator through modulating G1 checkpoint in human hepatocarcinoma Hep3B cells. PLoS One 8:e57574. doi:10.1371/journal.pone.0057574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Juan AH, Derfoul A, Feng X et al (2011) Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. Genes Dev 25:789–794. doi:10.1101/gad.2027911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Palacios D, Mozzetta C, Consalvi S et al (2010) TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 7:455–469. doi:10.1016/j.stem.2010.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Serra C, Palacios D, Mozzetta C et al (2007) Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol Cell 28:200–213. doi:10.1016/j.molcel.2007.08.021

    Article  CAS  PubMed  Google Scholar 

  62. Rampalli S, Li L, Mak E et al (2007) p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation. Nat Struct Mol Biol 14:1150–1156. doi:10.1038/nsmb1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McKinnell IW, Ishibashi J, Le Grand F et al (2008) Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Biol 10:77–84. doi:10.1038/ncb1671

    Article  CAS  PubMed  Google Scholar 

  64. Kawabe Y-I, Wang YX, McKinnell IW et al (2012) Carm1 regulates Pax7 transcriptional activity through MLL1/2 recruitment during asymmetric satellite stem cell divisions. Cell Stem Cell 11:333–345. doi:10.1016/j.stem.2012.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu L, Cheung TH, Charville GW et al (2013) Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep 4:189–204. doi:10.1016/j.celrep.2013.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dilworth F, Blais A (2011) Epigenetic regulation of satellite cell activation during muscle regeneration. Stem Cell Res Therapy 2:18. doi:10.1186/scrt59

    Article  CAS  Google Scholar 

  67. Sousa-Victor P, Gutarra S, García-Prat L et al (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506:316–321. doi:10.1038/nature13013

    Article  CAS  PubMed  Google Scholar 

  68. Sacco A, Puri PL (2015) Regulation of muscle satellite cell function in tissue homeostasis and aging. Cell Stem Cell 16:585–587. doi:10.1016/j.stem.2015.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bultman S, Gebuhr T, Yee D et al (2000) A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell. doi:10.1016/S1097-2765(00)00127-1

    PubMed  Google Scholar 

  70. Reyes J, Barra J, Muchardt C et al (1998) Altered control of cellular proliferation in the absence of mammalian brahma (SNF2α). EMBO J 17:6979–6991. doi:10.1093/emboj/17.23.6979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gerber A, Klesert T, Bergstrom D, Tapscott S Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis. Genes Dev 11:436–50

  72. Mallappa C, Nasipak B, Etheridge L et al (2010) Myogenic microRNA expression requires ATP-dependent chromatin remodeling enzyme function. Mol Cell Biol. doi:10.1128/MCB.00214-10

    PubMed  PubMed Central  Google Scholar 

  73. Ohkawa Y, Yoshimura S, Higashi C et al (2007) Myogenin and the SWI/SNF ATPase Brg1 maintain myogenic gene expression at different stages of skeletal myogenesis. J Biol Chem. doi:10.1074/jbc.M608898200

    Google Scholar 

  74. Schneider JW, Gu W, Zhu L et al (1994) Reversal of terminal differentiation mediated by p107 in Rb−/− muscle cells. Science 264:1467–1471

    Article  CAS  PubMed  Google Scholar 

  75. Novitch BG, Spicer DB, Kim PS et al (1999) pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr Biol

  76. Sellers W, Novitch B, Miyake S et al Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev 12:95–106

  77. Puri PL, Iezzi S, Stiegler P et al (2001) Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol Cell 8:885–897

    Article  CAS  PubMed  Google Scholar 

  78. Strobeck M, Knudsen K, Fribourg A et al BRG-1 is required for RB-mediated cell cycle arrest. Proc Natl Acad Sci USA 97:7748–7753

  79. Zhang H, Gavin M, Dahiya A et al Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101:79–89. doi:10.1016/S0092-8674(00)80625-X

  80. Zhang M, Chen M, Kim J-R et al (2011) SWI/SNF complexes containing brahma or brahma-related gene 1 play distinct roles in smooth muscle development. Mol Cell Biol 31:2618–2631. doi:10.1128/MCB.01338-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Joliot V, Ait-Mohamed O, Battisti V et al (2014) The SWI/SNF subunit/tumor suppressor BAF47/INI1 is essential in cell cycle arrest upon skeletal muscle terminal differentiation. PLoS One 9:e108858. doi:10.1371/journal.pone.0108858

    Article  PubMed  PubMed Central  Google Scholar 

  82. Blais A, van Oevelen C, Margueron R et al (2007) Retinoblastoma tumor suppressor protein–dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. J Cell Biol. doi:10.1083/jcb.200705051

    PubMed  PubMed Central  Google Scholar 

  83. Caretti G, Di Padova M, Micales B et al (2004) The polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 18:2627–2638. doi:10.1101/gad.1241904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ruijtenberg S, van den Heuvel S (2015) G1/S inhibitors and the SWI/SNF complex control cell-cycle exit during muscle differentiation. Cell. doi:10.1016/j.cell.2015.06.013

    PubMed  Google Scholar 

  85. Wu JI (2012) Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer. Acta Biochim Biophys Sin (Shanghai) 44:54–69. doi:10.1093/abbs/gmr099

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PLP is an Associate Professor in the Sanford Children’s Health Research Center at the Sanford-Burnham Medical Research Institute (SBMRI) and acknowledges support from the NIH (R01AR056712, R01AR052779, and P30AR061303), from MDA, EPIGEN, FILAS and from the European Community’s Seventh Framework Program in the project FP7-Health—2009 ENDOSTEM 241440. SA was supported by CIRM training fellowship (TG2-01162). PCT is supported by NIH diversity supplement to 5 R01 AR052779. PLP dedicates this work to the memory of Dr Piccinelli, president of Fondazione Sovena, which has been supporting research in Puri’s lab.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pier Lorenzo Puri or Sonia Albini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toto, P.C., Puri, P.L. & Albini, S. SWI/SNF-directed stem cell lineage specification: dynamic composition regulates specific stages of skeletal myogenesis. Cell. Mol. Life Sci. 73, 3887–3896 (2016). https://doi.org/10.1007/s00018-016-2273-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2273-3

Keywords

Navigation