Abstract
MicroRNAs (miRNAs) selectively localize to subcompartments of the neuron, such as dendrites, axons, and presynaptic terminals, where they regulate the local protein synthesis of their putative target genes. In addition to mature miRNAs, precursor miRNAs (pre-miRNAs) have also been shown to localize to somatodendritic and axonal compartments. miRNA-338 (miR-338) regulates the local expression of several nuclear-encoded mitochondrial mRNAs within axons of sympathetic neurons. Previous work has shown that precursor miR-338 (pre-miR-338) introduced into the axon can locally be processed into mature miR-338, where it can regulate local ATP synthesis. However, the mechanisms underlying the localization of pre-miRNAs to the axonal compartment remain unknown. In this study, we investigated the axonal localization of pre-miR-338. Using proteomic and biochemical approaches, we provide evidence for the localization of pre-miR-338 to distal neuronal compartments and identify several constituents of the pre-miR-338 ribonucleoprotein complex. Furthermore, we found that pre-miR-338 is associated with the mitochondria in axons of superior cervical ganglion (SCG) neurons. The maintenance of mitochondrial function within axons requires the precise spatiotemporal synthesis of nuclear-encoded mRNAs, some of which are regulated by miR-338. Therefore, the association of pre-miR-338 with axonal mitochondria could serve as a reservoir of mature, biologically active miRNAs, which could coordinate the intra-axonal expression of multiple nuclear-encoded mitochondrial mRNAs.







Abbreviations
- miR:
-
MicroRNA
- Pre-miRNA:
-
Precursor microRNA
- RBPs:
-
RNA-binding proteins
- SCG:
-
Superior cervical ganglion
- COXIV:
-
Cytochrome C oxidase IV
- ATP5G1:
-
ATP synthase 5 gamma 1
- LC/MS:
-
Liquid chromatography–tandem mass spectrometry
- ROS:
-
Reactive oxygen species
References
Lee Y, Jeon K, Lee J-T et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670
Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. doi:10.1038/nrm3838
Leung AKL, Sharp PA (2006) Function and localization of microRNAs in mammalian cells. Cold Spring Harb Symp Quant Biol 71:29–38. doi:10.1101/sqb.2006.71.049
Ashraf SI, Kunes S (2006) A trace of silence: memory and microRNA at the synapse. Curr Opin Neurobiol 16:535–539. doi:10.1016/j.conb.2006.08.007
Chiu H, Alqadah A, Chang C (2014) The role of microRNAs in regulating neuronal connectivity. Front Cell Neurosci. doi:10.3389/fncel.2013.00283
Iyer AN, Bellon A, Baudet M-L (2014) MicroRNAs in axon guidance. Front Cell Neurosci 8:78. doi:10.3389/fncel.2014.00078
Olde Loohuis NFM, Kos A, Martens GJM et al (2012) MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci. doi:10.1007/s00018-011-0788-1
Kaplan BB, Kar AN, Gioio AE, Aschrafi A (2013) MicroRNAs in the axon and presynaptic nerve terminal. Front Cell Neurosci 7:126. doi:10.3389/fncel.2013.00126
Yoo S, van Niekerk EA, Merianda TT, Twiss JL (2010) Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration. Exp Neurol 223:19–27. doi:10.1016/j.expneurol.2009.08.011
Gumy LF, Katrukha EA, Kapitein LC, Hoogenraad CC (2014) New insights into mRNA trafficking in axons. Dev Neurobiol. doi:10.1002/dneu.22121
Scott S, Gervasi N, Kaplan BB (2015) Subcellular compartmentalization of neuronal RNAs: an overview. Trends in Cell Mol Bio 10:1–36
Kim E, Jung H (2015) Local protein synthesis in neuronal axons: why and how we study. BMB Rep 48:139–146. doi:10.5483/BMBRep.48.3.010
Natera-Naranjo O, Aschrafi A, Gioio AE, Kaplan BB (2010) Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA. doi:10.1261/rna.1833310
Sasaki Y, Gross C, Xing L et al (2014) Identification of axon-enriched microRNAs localized to growth cones of cortical neurons. Dev Neurobiol 74:397–406. doi:10.1002/dneu.22113
Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106:650–661. doi:10.1111/j.1471-4159.2008.05413.x
Lugli G, Larson J, Demars MP, Smalheiser NR (2012) Primary microRNA precursor transcripts are localized at post-synaptic densities in adult mouse forebrain. J Neurochem 123:459–466. doi:10.1111/j.1471-4159.2012.07921.x
Kim HH, Kim P, Phay M, Yoo S (2015) Identification of precursor microRNAs within distal axons of sensory neuron. J Neurochem. doi:10.1111/jnc.13140
Hengst U, Cox LJ, Macosko EZ, Jaffrey SR (2006) Functional and selective RNA interference in developing axons and growth cones. J Neurosci 26:5727–5732. doi:10.1523/JNEUROSCI.5229-05.2006
Aschrafi A, Schwechter AD, Mameza MG et al (2008) MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci. doi:10.1523/JNEUROSCI.3338-08.2008
Bicker S, Khudayberdiev S, Weiß K et al (2013) The DEAH-box helicase DHX36 mediates dendritic localization of the neuronal precursor-microRNA-134. Genes Dev. doi:10.1101/gad.211243.112
Aschrafi A, Kar AN, Natera-Naranjo O et al (2012) MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded mitochondrial mRNAs encoding subunits of the oxidative phosphorylation machinery. Cell Mol Life Sci. doi:10.1007/s00018-012-1064-8
Hillefors M, Gioio AE, Mameza MG, Kaplan BB (2007) Axon viability and mitochondrial function are dependent on local protein synthesis in sympathetic neurons. Cell Mol Neurobiol. doi:10.1007/s10571-007-9148-y
Berberich MJ, Kowalak JA, Makusky AJ, Martin D, Vullhorst A, Buonanno A, Markey SP (2011) Development of an on-bead digestion procedure for immunoprecipitated proteins. In: Ivanov AR, Lazarev AV (eds) Sample preparation in biological mass spectrometry. Springer, Netherlands, pp 109–124
Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 4(1):44–57
Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucl Acids Res 37(1):1–13
Zhang X, Zuo X, Yang B et al (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158:607–619. doi:10.1016/j.cell.2014.05.047
Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M et al (2009) A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 11:705–716. doi:10.1038/ncb1876
Kye M-J, Liu T, Levy SF, Xu NL, Groves BB, Bonneau R et al (2007) Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA 13:1224–1234. doi:10.1261/rna.480407
Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920. doi:10.1038/nrn2037
Tolino M, Köhrmann M, Kiebler MA (2012) RNA-binding proteins involved in RNA localization and their implications in neuronal diseases. Eur J Neurosci 35:1818–1836. doi:10.1111/j.1460-9568.2012.08160.x
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucl Acids Res 43:D447–D452. doi:10.1093/nar/gku1003
Campbell PD, Shen K, Sapio MR et al (2014) Unique function of Kinesin Kif5A in localization of mitochondria in axons. J Neurosci 34:14717–14732. doi:10.1523/JNEUROSCI.2770-14.2014
Matsumoto K, Wolffe AP (1998) Gene regulation by Y-box proteins: coupling control of transcription and translation. Trends Cell Biol 8:318–323
Barrey E, Saint-Auret G, Bonnamy B et al (2011) Pre-microRNA and mature microRNA in human mitochondria. PLoS One. doi:10.1371/journal.pone.0020220
Kar AN, Sun CY, Reichard K et al (2014) Dysregulation of the axonal trafficking of nuclear-encoded mitochondrial mRNA alters neuronal mitochondrial activity and mouse behavior. Dev Neurobiol. doi:10.1002/dneu.22141
Gehrke S, Wu Z, Klinkenberg M et al (2015) PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metab 21:95–108. doi:10.1016/j.cmet.2014.12.007
Huang L, Mollet S, Souquere S et al (2011) Mitochondria associate with P-bodies and modulate microRNA-mediated RNA interference. J Biol Chem 286:24219–24230. doi:10.1074/jbc.M111.240259
Das S, Ferlito M, Kent OA et al (2012) Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res 110:1596–1603. doi:10.1161/CIRCRESAHA.112.267732
Bandiera S, Matégot R, Girard M et al (2013) MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2013.06.013
Acknowledgments
The work was supported by the Division of Intramural Research Programs of the National Institute of Mental Health (MH002768). The authors would like to thank Mrs. Ching-Yu Sun, Ms. Miranda Tompkins, Dr. Noreen Gervasi, Mr. Shane Scott, and Ms. Anna-Leigh Brown for their scientific insights and engaging conversations, which contributed to the fruition of this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interests.
Electronic supplementary material
Below is the link to the electronic supplementary material.
18_2016_2270_MOESM1_ESM.pptx
Fig. S1. A schematic of the RNA affinity purification protocol to identify pre-miR-338 interacting proteins. Biotinylated pre-miR-338 was incubated with P4 rat brain cytosolic extracts. The formation of RNP granules/complexes was monitored by EMSA gel shift assay. After incubation, the RNA-protein complexes were isolated using streptavidin beads. The identity of the pre-miR-338 binding proteins was determined by mass spectrometry and validated by Western analyses (pptx 178 kb)
18_2016_2270_MOESM2_ESM.pdf
Fig. S2. Full blot images of Western analyses performed to confirm pre-miR-338 RNP identified via LC/MS. RNA affinity pulldowns were performed with the biotinylated pre-miR-338 oligomer and P4 brain cytosolic lysates or cytosolic extracts isolated from distal axons present in the side-compartments of Campenot cultures (see Fig. 6). Arrows indicate bands corresponding to protein of interest. Asterisks indicate non-specific protein band (pdf 150 kb)
18_2016_2270_MOESM3_ESM.xlsx
Table S1. Pre-miR-338 interacting protein list. Proteins identified by LC/MS to be enriched in pre-miR-338 pulldowns (XLSX 47 kb)
Rights and permissions
About this article
Cite this article
Vargas, J.N.S., Kar, A.N., Kowalak, J.A. et al. Axonal localization and mitochondrial association of precursor microRNA 338. Cell. Mol. Life Sci. 73, 4327–4340 (2016). https://doi.org/10.1007/s00018-016-2270-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-016-2270-6