Skip to main content

Advertisement

Log in

The third dimension: new developments in cell culture models for colorectal research

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cellular models are important tools in various research areas related to colorectal biology and associated diseases. Herein, we review the most widely used cell lines and the different techniques to grow them, either as cell monolayer, polarized two-dimensional epithelia on membrane filters, or as three-dimensional spheres in scaffold-free or matrix-supported culture conditions. Moreover, recent developments, such as gut-on-chip devices or the ex vivo growth of biopsy-derived organoids, are also discussed. We provide an overview on the potential applications but also on the limitations for each of these techniques, while evaluating their contribution to provide more reliable cellular models for research, diagnostic testing, or pharmacological validation related to colon physiology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CF:

Cystic fibrosis

CFTR:

CF transmembrane conductance regulator

IBD:

Inflammatory bowel disease

ECM:

Extracellular matrix

TEER:

Transepithelial electrical resistance

TJ:

Tight junction

2D or 3D:

Two- or three-dimensional

References

  1. Zhang K, Hornef MW, Dupont A (2015) The intestinal epithelium as guardian of gut barrier integrity: the epithelium as a barrier to infection. Cell Microbiol 17:1561–1569. doi:10.1111/cmi.12501

    Article  CAS  PubMed  Google Scholar 

  2. Radtke F, Clevers H (2005) Self-renewal and cancer of the gut: two sides of a coin. Science 307:1904–1909. doi:10.1126/science.1104815

    Article  CAS  PubMed  Google Scholar 

  3. Sambuy Y, De Angelis I, Ranaldi G et al (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 21:1–26. doi:10.1007/s10565-005-0085-6

    Article  CAS  PubMed  Google Scholar 

  4. Liang GH, Weber CR (2014) Molecular aspects of tight junction barrier function. Curr Opin Pharmacol 19:84–89. doi:10.1016/j.coph.2014.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suzuki T (2013) Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci CMLS 70:631–659. doi:10.1007/s00018-012-1070-x

    Article  CAS  PubMed  Google Scholar 

  6. De Bosscher K, Hill CS, Nicolás FJ (2004) Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells. Biochem J 379:209–216. doi:10.1042/BJ20031886

    Article  PubMed  PubMed Central  Google Scholar 

  7. Forbes SA, Bindal N, Bamford S et al (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39:D945–D950. doi:10.1093/nar/gkq929

    Article  CAS  PubMed  Google Scholar 

  8. Vachon PH, Beaulieu JF (1992) Transient mosaic patterns of morphological and functional differentiation in the Caco-2 cell line. Gastroenterology 103:414–423

    Article  CAS  PubMed  Google Scholar 

  9. Vachon PH, Perreault N, Magny P, Beaulieu JF (1996) Uncoordinated, transient mosaic patterns of intestinal hydrolase expression in differentiating human enterocytes. J Cell Physiol 166:198–207. doi:10.1002/(SICI)1097-4652(199601)166:1<198:AID-JCP21>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  10. Kim HJ, Ingber DE (2013) Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol Quant Biosci Nano Macro 5:1130–1140. doi:10.1039/c3ib40126j

    CAS  Google Scholar 

  11. Meunier V, Bourrié M, Berger Y, Fabre G (1995) The human intestinal epithelial cell line Caco-2; pharmacological and pharmacokinetic applications. Cell Biol Toxicol 11:187–194

    Article  CAS  PubMed  Google Scholar 

  12. Peterson MD, Mooseker MS (1992) Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci 102(Pt 3):581–600

    CAS  PubMed  Google Scholar 

  13. des Rieux A, Fievez V, Théate I et al (2007) An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur J Pharm Sci Off J Eur Fed Pharm Sci 30:380–391. doi:10.1016/j.ejps.2006.12.006

    Google Scholar 

  14. Gullberg E, Leonard M, Karlsson J et al (2000) Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem Biophys Res Commun 279:808–813. doi:10.1006/bbrc.2000.4038

    Article  CAS  PubMed  Google Scholar 

  15. Kerneis S (1997) Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949–952. doi:10.1126/science.277.5328.949

    Article  CAS  PubMed  Google Scholar 

  16. Corr SC, Gahan CCGM, Hill C (2008) M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 52:2–12. doi:10.1111/j.1574-695X.2007.00359.x

    Article  CAS  PubMed  Google Scholar 

  17. Niedergang F, Kraehenbuhl JP (2000) Much ado about M cells. Trends Cell Biol 10:137–141

    Article  CAS  PubMed  Google Scholar 

  18. Brayden DJ, Jepson MA, Baird AW (2005) Keynote review: intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov Today 10:1145–1157. doi:10.1016/S1359-6446(05)03536-1

    Article  CAS  PubMed  Google Scholar 

  19. Lai YH, D’Souza MJ (2008) Microparticle transport in the human intestinal M cell model. J Drug Target 16:36–42. doi:10.1080/10611860701639848

    Article  CAS  PubMed  Google Scholar 

  20. Ahmed D, Eide PW, Eilertsen IA et al (2013) Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2:e71. doi:10.1038/oncsis.2013.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mouradov D, Sloggett C, Jorissen RN et al (2014) Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res 74:3238–3247. doi:10.1158/0008-5472.CAN-14-0013

    Article  CAS  PubMed  Google Scholar 

  22. Chaudhuri O, Koshy ST, Branco da Cunha C et al (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13:970–978. doi:10.1038/nmat4009

    Article  CAS  PubMed  Google Scholar 

  23. Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15:1243–1253. doi:10.15252/embr.201439246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tung JC, Barnes JM, Desai SR et al (2015) Tumor mechanics and metabolic dysfunction. Free Radic Biol Med 79:269–280. doi:10.1016/j.freeradbiomed.2014.11.020

    Article  CAS  PubMed  Google Scholar 

  25. Owen KA, Abshire MY, Tilghman RW et al (2011) FAK regulates intestinal epithelial cell survival and proliferation during mucosal wound healing. PLoS One 6:e23123. doi:10.1371/journal.pone.0023123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nukuda A, Sasaki C, Ishihara S et al (2015) Stiff substrates increase YAP-signaling-mediated matrix metalloproteinase-7 expression. Oncogenesis 4:e165. doi:10.1038/oncsis.2015.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dolznig H, Rupp C, Puri C et al (2011) Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction. Am J Pathol 179:487–501. doi:10.1016/j.ajpath.2011.03.015

    Article  PubMed  PubMed Central  Google Scholar 

  28. Goodwin TJ, Jessup JM, Wolf DA (1992) Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. Vitro Cell Dev Biol J Tissue Cult Assoc 28A:47–60

    Article  CAS  Google Scholar 

  29. Paduch R, Kandefer-Szerszeń M, Piersiak T (2010) The importance of release of proinflammatory cytokines, ROS, and NO in different stages of colon carcinoma growth and metastasis after treatment with cytotoxic drugs. Oncol Res 18:419–436

    Article  PubMed  CAS  Google Scholar 

  30. Straussman R, Morikawa T, Shee K et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504. doi:10.1038/nature11183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilson TR, Fridlyand J, Yan Y et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–509. doi:10.1038/nature11249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fath KR, Mamajiwalla SN, Burgess DR (1993) The cytoskeleton in development of epithelial cell polarity. J Cell Sci 1993:65–73. doi:10.1242/jcs.1993.Supplement_17.10

    Article  Google Scholar 

  33. Massey-Harroche D (2000) Epithelial cell polarity as reflected in enterocytes. Microsc Res Tech 49:353–362. doi:10.1002/(SICI)1097-0029(20000515)49:4<353:AID-JEMT4>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  34. Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749

    Article  CAS  PubMed  Google Scholar 

  35. Mellman I, Nelson WJ (2008) Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9:833–845. doi:10.1038/nrm2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nelson WJ (2003) Adaptation of core mechanisms to generate cell polarity. Nature 422:766–774. doi:10.1038/nature01602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Srinivasan B, Kolli AR, Esch MB et al (2015) TEER measurement techniques for in vitro barrier model systems. J Lab Autom 20:107–126. doi:10.1177/2211068214561025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Delie F, Rubas W (1997) A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model. Crit Rev Ther Drug Carrier Syst 14:221–286

    Article  CAS  PubMed  Google Scholar 

  39. Hirtz S, Gonska T, Seydewitz HH et al (2004) CFTR Cl channel function in native human colon correlates with the genotype and phenotype in cystic fibrosis. Gastroenterology 127:1085–1095

    Article  CAS  PubMed  Google Scholar 

  40. Mall M, Wissner A, Seydewitz HH et al (2000) Defective cholinergic Cl(−) secretion and detection of K(+) secretion in rectal biopsies from cystic fibrosis patients. Am J Physiol Gastrointest Liver Physiol 278:G617–G624

    CAS  PubMed  Google Scholar 

  41. Sousa M, Servidoni MF, Vinagre AM et al (2012) Measurements of CFTR-mediated Cl- secretion in human rectal biopsies constitute a robust biomarker for Cystic Fibrosis diagnosis and prognosis. PLoS One 7:e47708. doi:10.1371/journal.pone.0047708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Beekman JM, Sermet-Gaudelus I, de Boeck K et al (2014) CFTR functional measurements in human models for diagnosis, prognosis and personalized therapy. J Cyst Fibros 13:363–372. doi:10.1016/j.jcf.2014.05.007

    Article  PubMed  Google Scholar 

  43. Botelho HM, Uliyakina I, Awatade NT et al (2015) Protein traffic disorders: an effective high-throughput fluorescence microscopy pipeline for drug discovery. Sci Rep 5:9038. doi:10.1038/srep09038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Duell BL, Cripps AW, Schembri MA, Ulett GC (2011) Epithelial cell coculture models for studying infectious diseases: benefits and limitations. J Biomed Biotechnol 2011:852419. doi:10.1155/2011/852419

    Article  PubMed  PubMed Central  Google Scholar 

  45. Benam KH, Dauth S, Hassell B et al (2015) Engineered in vitro disease models. Annu Rev Pathol Mech Dis 10:195–262. doi:10.1146/annurev-pathol-012414-040418

    Article  CAS  Google Scholar 

  46. Huh D, Kim HJ, Fraser JP et al (2013) Microfabrication of human organs-on-chips. Nat Protoc 8:2135–2157. doi:10.1038/nprot.2013.137

    Article  CAS  PubMed  Google Scholar 

  47. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754. doi:10.1016/j.tcb.2011.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174. doi:10.1039/c2lc40074j

    Article  CAS  PubMed  Google Scholar 

  49. Sung JH, Esch MB, Prot J-M et al (2013) Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 13:1201–1212. doi:10.1039/c3lc41017j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bellas E, Chen CS (2014) Forms, forces, and stem cell fate. Curr Opin Cell Biol 31:92–97. doi:10.1016/j.ceb.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  51. Gasparski AN, Beningo KA (2015) Mechanoreception at the cell membrane: more than the integrins. Arch Biochem Biophys 586:20–26. doi:10.1016/j.abb.2015.07.017

    Article  CAS  PubMed  Google Scholar 

  52. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15:802–812. doi:10.1038/nrm3896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jansen KA, Donato DM, Balcioglu HE et al (2015) A guide to mechanobiology: where biology and physics meet. Biochim Biophys Acta. doi:10.1016/j.bbamcr.2015.05.007

    Google Scholar 

  54. Kim HJ, Li H, Collins JJ, Ingber DE (2016) Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci 113:E7–E15. doi:10.1073/pnas.1522193112

    Article  CAS  PubMed  Google Scholar 

  55. Kim SH, Lee JW, Choi I et al (2013) A microfluidic device with 3-d hydrogel villi scaffold to simulate intestinal absorption. J Nanosci Nanotechnol 13:7220–7228

    Article  CAS  PubMed  Google Scholar 

  56. Hickman JA, Graeser R, de Hoogt R et al (2014) Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J 9:1115–1128. doi:10.1002/biot.201300492

    Article  CAS  PubMed  Google Scholar 

  57. Hay M, Thomas DW, Craighead JL et al (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32:40–51. doi:10.1038/nbt.2786

    Article  CAS  PubMed  Google Scholar 

  58. Hutchinson L, Kirk R (2011) High drug attrition rates—where are we going wrong? Nat Rev Clin Oncol 8:189–190. doi:10.1038/nrclinonc.2011.34

    Article  PubMed  Google Scholar 

  59. Longati P, Jia X, Eimer J et al (2013) 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 13:95. doi:10.1186/1471-2407-13-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thoma CR, Zimmermann M, Agarkova I et al (2014) 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev 69–70:29–41. doi:10.1016/j.addr.2014.03.001

    Article  PubMed  CAS  Google Scholar 

  61. Achilli T-M, Meyer J, Morgan JR (2012) Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 12:1347–1360. doi:10.1517/14712598.2012.707181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Burdett E, Kasper FK, Mikos AG, Ludwig JA (2010) Engineering tumors: a tissue engineering perspective in cancer biology. Tissue Eng Part B Rev 16:351–359. doi:10.1089/ten.TEB.2009.0676

    Article  PubMed  Google Scholar 

  63. Knight E, Przyborski S (2014) Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 227:746–756. doi:10.1111/joa.12257

    Article  PubMed  Google Scholar 

  64. Wang C, Tang Z, Zhao Y et al (2014) Three-dimensional in vitro cancer models: a short review. Biofabrication 6:022001. doi:10.1088/1758-5082/6/2/022001

    Article  PubMed  Google Scholar 

  65. Vermeulen L, Todaro M, de Sousa Mello F et al (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA 105:13427–13432. doi:10.1073/pnas.0805706105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fan X, Ouyang N, Teng H, Yao H (2011) Isolation and characterization of spheroid cells from the HT29 colon cancer cell line. Int J Colorectal Dis 26:1279–1285. doi:10.1007/s00384-011-1248-y

    Article  PubMed  Google Scholar 

  67. Fang DD, Kim YJ, Lee CN et al (2010) Expansion of CD133+ colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. Br J Cancer 102:1265–1275. doi:10.1038/sj.bjc.6605610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ashley N, Jones M, Ouaret D et al (2014) Rapidly derived colorectal cancer cultures recapitulate parental cancer characteristics and enable personalized therapeutic assays. J Pathol 234:34–45. doi:10.1002/path.4371

    Article  CAS  PubMed  Google Scholar 

  69. Hirschhaeuser F, Menne H, Dittfeld C et al (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148:3–15. doi:10.1016/j.jbiotec.2010.01.012

    Article  CAS  PubMed  Google Scholar 

  70. Ham SL, Atefi E, Fyffe D, Tavana H (2015) Robotic production of cancer cell spheroids with an aqueous two-phase system for drug testing. J Vis Exp JoVE. doi:10.3791/52754

    PubMed  Google Scholar 

  71. Leung BM, Lesher-Perez SC, Matsuoka T et al (2015) Media additives to promote spheroid circularity and compactness in hanging drop platform. Biomater Sci 3:336–344. doi:10.1039/c4bm00319e

    Article  CAS  PubMed  Google Scholar 

  72. Friedrich J, Eder W, Castaneda J et al (2007) A reliable tool to determine cell viability in complex 3-D culture: the acid phosphatase assay. J Biomol Screen 12:925–937. doi:10.1177/1087057107306839

    Article  CAS  PubMed  Google Scholar 

  73. Howes AL, Chiang GG, Lang ES et al (2007) The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol Cancer Ther 6:2505–2514. doi:10.1158/1535-7163.MCT-06-0698

    Article  CAS  PubMed  Google Scholar 

  74. Wenzel C, Riefke B, Gründemann S et al (2014) 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res 323:131–143. doi:10.1016/j.yexcr.2014.01.017

    Article  CAS  PubMed  Google Scholar 

  75. Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12:207–218. doi:10.1089/adt.2014.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663. doi:10.1002/bit.22361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. O’Keane JC, Kupchik HZ, Schroy PC et al (1990) A three-dimensional system for long-term culture of human colorectal adenomas. Am J Pathol 137:1539–1547

    PubMed  PubMed Central  Google Scholar 

  78. Buhrmann C, Shayan P, Kraehe P et al (2015) Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem Pharmacol 98:51–68. doi:10.1016/j.bcp.2015.08.105

    Article  CAS  PubMed  Google Scholar 

  79. Shakibaei M, Kraehe P, Popper B et al (2015) Curcumin potentiates antitumor activity of 5-fluorouracil in a 3D alginate tumor microenvironment of colorectal cancer. BMC Cancer 15:250. doi:10.1186/s12885-015-1291-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  CAS  PubMed  Google Scholar 

  81. Bissell MJ, Kenny PA, Radisky DC (2005) Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harb Symp Quant Biol 70:343–356. doi:10.1101/sqb.2005.70.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17:320–329. doi:10.1038/nm.2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bellis AD, Bernabé BP, Weiss MS et al (2013) Dynamic transcription factor activity profiling in 2D and 3D cell cultures. Biotechnol Bioeng 110:563–572. doi:10.1002/bit.24718

    Article  CAS  PubMed  Google Scholar 

  84. Correia AL, Bissell MJ (2012) The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat 15:39–49. doi:10.1016/j.drup.2012.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rubashkin MG, Ou G, Weaver VM (2014) Deconstructing signaling in three dimensions. Biochemistry (Mosc) 53:2078–2090. doi:10.1021/bi401710d

    Article  CAS  Google Scholar 

  86. Magdeldin T, López-Dávila V, Villemant C et al (2014) The efficacy of cetuximab in a tissue-engineered three-dimensional in vitro model of colorectal cancer. J Tissue Eng 5:2041731414544183. doi:10.1177/2041731414544183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Nyga A, Loizidou M, Emberton M, Cheema U (2013) A novel tissue engineered three-dimensional in vitro colorectal cancer model. Acta Biomater 9:7917–7926. doi:10.1016/j.actbio.2013.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Del Buono R, Pignatelli M, Bodmer WF, Wright NA (1991) The role of the arginine-glycine-aspartic acid-directed cellular binding to type I collagen and rat mesenchymal cells in colorectal tumour differentiation. Differ Res Biol Divers 46:97–103

    Article  Google Scholar 

  89. Yamamoto (1998) Overexpression of MT1-MMP is insufficient to increase experimental liver metastasis of human colon cancer cells. Int J Mol Med 22:757–761. doi:10.3892/ijmm_00000082

    Google Scholar 

  90. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45. doi:10.1038/nrm1004

    Article  CAS  PubMed  Google Scholar 

  91. Kassim YL, Tawil EAL, Lecerf D, Couteau J, Simon T, Buquet C, Vannier JP, Demange E (2014) Biomimetic three dimensional cell culturing: colorectal cancer micro-tissue engineering. J Clin Exp Oncol 3:2. doi:10.4172/2324-9110.1000123

    Google Scholar 

  92. Sung JH, Yu J, Luo D et al (2011) Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11:389–392. doi:10.1039/C0LC00273A

    Article  CAS  PubMed  Google Scholar 

  93. Wang Y, Ahmad AA, Sims CE et al (2014) In vitro generation of colonic epithelium from primary cells guided by microstructures. Lab Chip 14:1622–1631. doi:10.1039/c3lc51353j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Benton G, Arnaoutova I, George J et al (2014) Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 79–80:3–18. doi:10.1016/j.addr.2014.06.005

    Article  PubMed  CAS  Google Scholar 

  95. Benton G, George J, Kleinman HK, Arnaoutova IP (2009) Advancing science and technology via 3D culture on basement membrane matrix. J Cell Physiol 221:18–25. doi:10.1002/jcp.21832

    Article  CAS  PubMed  Google Scholar 

  96. Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890. doi:10.1002/pmic.200900758

    Article  CAS  PubMed  Google Scholar 

  97. Hoffman MP, Kibbey MC, Letterio JJ, Kleinman HK (1996) Role of laminin-1 and TGF-beta 3 in acinar differentiation of a human submandibular gland cell line (HSG). J Cell Sci 109(Pt 8):2013–2021

    CAS  PubMed  Google Scholar 

  98. Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137:231–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1598

    Article  CAS  PubMed  Google Scholar 

  100. Ludwig K, Tse ES, Wang JY (2013) Colon cancer cells adopt an invasive phenotype without mesenchymal transition in 3-D but not 2-D culture upon combined stimulation with EGF and crypt growth factors. BMC Cancer 13:221. doi:10.1186/1471-2407-13-221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pereira B, Sousa S, Barros R et al (2013) CDX2 regulation by the RNA-binding protein MEX3A: impact on intestinal differentiation and stemness. Nucleic Acids Res 41:3986–3999. doi:10.1093/nar/gkt087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Datta A, Bryant DM, Mostov KE (2011) Molecular regulation of lumen morphogenesis. Curr Biol CB 21:R126–R136. doi:10.1016/j.cub.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  103. Yeung TM, Gandhi SC, Wilding JL et al (2010) Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA 107:3722–3727. doi:10.1073/pnas.0915135107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Luca AC, Mersch S, Deenen R et al (2013) Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One 8:e59689. doi:10.1371/journal.pone.0059689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guruswamy S, Swamy MV, Choi C-I et al (2008) S-Adenosyl l-methionine inhibits azoxymethane-induced colonic aberrant crypt foci in F344 rats and suppresses human colon cancer Caco-2 cell growth in 3D culture. Int J Cancer J Int Cancer 122:25–30. doi:10.1002/ijc.23031

    Article  CAS  Google Scholar 

  106. Mah AT, Van Landeghem L, Gavin HE et al (2014) Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1. Endocrinology 155:3302–3314. doi:10.1210/en.2014-1112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Pereira C, Araújo F, Barrias CC et al (2015) Dissecting stromal-epithelial interactions in a 3D in vitro cellularized intestinal model for permeability studies. Biomaterials 56:36–45. doi:10.1016/j.biomaterials.2015.03.054

    Article  CAS  PubMed  Google Scholar 

  108. Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712. doi:10.1126/science.1064829

    Article  CAS  PubMed  Google Scholar 

  109. Totonelli G, Maghsoudlou P, Garriboli M et al (2012) A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 33:3401–3410. doi:10.1016/j.biomaterials.2012.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Genovese L, Zawada L, Tosoni A et al (2014) Cellular localization, invasion, and turnover are differently influenced by healthy and tumor-derived extracellular matrix. Tissue Eng Part A 20:2005–2018. doi:10.1089/ten.TEA.2013.0588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lowe SB, Tan VTG, Soeriyadi AH et al (2014) Synthesis and high-throughput processing of polymeric hydrogels for 3D cell culture. Bioconjug Chem 25:1581–1601. doi:10.1021/bc500310v

    Article  CAS  PubMed  Google Scholar 

  112. Trappmann B, Chen CS (2013) How cells sense extracellular matrix stiffness: a material’s perspective. Curr Opin Biotechnol 24:948–953. doi:10.1016/j.copbio.2013.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Worthington P, Pochan DJ, Langhans SA (2015) Peptide hydrogels—versatile matrices for 3D cell culture in cancer medicine. Front Oncol 5:92. doi:10.3389/fonc.2015.00092

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 14:61–86. doi:10.1089/teb.2007.0150

    Article  CAS  PubMed  Google Scholar 

  115. Barker N (2014) Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 15:19–33. doi:10.1038/nrm3721

    Article  CAS  PubMed  Google Scholar 

  116. Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007. doi:10.1038/nature06196

    Article  CAS  PubMed  Google Scholar 

  117. Jung P, Sato T, Merlos-Suárez A et al (2011) Isolation and in vitro expansion of human colonic stem cells. Nat Med 17:1225–1227. doi:10.1038/nm.2470

    Article  CAS  PubMed  Google Scholar 

  118. Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265. doi:10.1038/nature07935

    Article  CAS  PubMed  Google Scholar 

  119. Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340:1190–1194. doi:10.1126/science.1234852

    Article  CAS  PubMed  Google Scholar 

  120. Dekkers JF, Wiegerinck CL, de Jonge HR et al (2013) A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 19:939–945. doi:10.1038/nm.3201

    Article  CAS  PubMed  Google Scholar 

  121. Finkbeiner SR, Hill DR, Altheim CH et al (2015) Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo. Stem Cell Rep 4:1140–1155. doi:10.1016/j.stemcr.2015.04.010

    Article  CAS  Google Scholar 

  122. Foulke-Abel J, In J, Yin J et al (2016) Human enteroids as a model of upper small intestinal ion transport physiology and pathophysiology. Gastroenterology. doi:10.1053/j.gastro.2015.11.047 (in press)

    PubMed  Google Scholar 

  123. Onuma K, Ochiai M, Orihashi K et al (2013) Genetic reconstitution of tumorigenesis in primary intestinal cells. Proc Natl Acad Sci 110:11127–11132. doi:10.1073/pnas.1221926110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Walker NM, Liu J, Stein SR et al (2015) Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium. Am J Physiol Gastrointest Liver Physiol 310:G70–G80. doi:10.1152/ajpgi.00236.2015

    Article  PubMed  Google Scholar 

  125. Drost J, van Jaarsveld RH, Ponsioen B et al (2015) Sequential cancer mutations in cultured human intestinal stem cells. Nature 521:43–47. doi:10.1038/nature14415

    Article  CAS  PubMed  Google Scholar 

  126. Fujii M, Matano M, Nanki K, Sato T (2015) Efficient genetic engineering of human intestinal organoids using electroporation. Nat Protoc 10:1474–1485. doi:10.1038/nprot.2015.088

    Article  CAS  PubMed  Google Scholar 

  127. Sato T, Stange DE, Ferrante M et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141:1762–1772. doi:10.1053/j.gastro.2011.07.050

    Article  CAS  PubMed  Google Scholar 

  128. Schwank G, Koo B-K, Sasselli V et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658. doi:10.1016/j.stem.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  129. Caponigro G, Sellers WR (2011) Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov 10:179–187. doi:10.1038/nrd3385

    Article  CAS  PubMed  Google Scholar 

  130. Sachs N, Clevers H (2014) Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev 24:68–73. doi:10.1016/j.gde.2013.11.012

    Article  CAS  PubMed  Google Scholar 

  131. van de Wetering M, Francies HE, Francis JM et al (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:933–945. doi:10.1016/j.cell.2015.03.053

    Article  PubMed  CAS  Google Scholar 

  132. Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109. doi:10.1038/nature09691

    Article  PubMed  CAS  Google Scholar 

  133. Zachos NC, Kovbasnjuk O, Foulke-Abel J et al (2016) Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J Biol Chem. doi:10.1074/jbc.R114.635995 (in press)

    PubMed  Google Scholar 

  134. Stange DE, Clevers H (2013) Concise review: the Yin and Yang of intestinal (cancer) stem cells and their progenitors: intestinal (Cancer) stem cells and their progenitors. Stem Cells 31:2287–2295. doi:10.1002/stem.1475

    Article  CAS  PubMed  Google Scholar 

  135. Kuo W-T, Lee T-C, Yang H-Y et al (2015) LPS receptor subunits have antagonistic roles in epithelial apoptosis and colonic carcinogenesis. Cell Death Differ 22:1590–1604. doi:10.1038/cdd.2014.240

    Article  CAS  PubMed  Google Scholar 

  136. Abbott Chalew TE, Schwab KJ (2013) Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells. Cell Biol Toxicol 29:101–116. doi:10.1007/s10565-013-9241-6

    Article  CAS  PubMed  Google Scholar 

  137. Freeman TJ, Smith JJ, Chen X et al (2012) Smad4-mediated signaling inhibits intestinal neoplasia by Inhibiting expression of β-catenin. Gastroenterology 142(562–571):e2. doi:10.1053/j.gastro.2011.11.026

    PubMed  Google Scholar 

  138. Hirsch D, Barker N, McNeil N et al (2014) LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis 35:849–858. doi:10.1093/carcin/bgt377

    Article  CAS  PubMed  Google Scholar 

  139. Elimrani I, Dionne S, Saragosti D et al (2015) Acetylcarnitine potentiates the anticarcinogenic effects of butyrate on SW480 colon cancer cells. Int J Oncol. doi:10.3892/ijo.2015.3029

    PubMed  Google Scholar 

  140. Matsuda Y, Miura K, Yamane J et al (2016) SERPINI1 regulates the epithelial-mesenchymal transition in an orthotopic implantation model of colorectal cancer. Cancer Sci. doi:10.1111/cas.12909

    Google Scholar 

  141. Barrett KE (1993) Positive and negative regulation of chloride secretion in T84 cells. Am J Physiol 265:C859–C868

    CAS  PubMed  Google Scholar 

  142. Dharmsathaphorn K, McRoberts JA, Mandel KG et al (1984) A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol 246:G204–G208

    CAS  PubMed  Google Scholar 

  143. Lee WY, Chin AC, Voss S, Parkos CA (2006) In vitro neutrophil transepithelial migration. Methods Mol Biol Clifton NJ 341:205–215. doi:10.1385/1-59745-113-4:205

    Google Scholar 

  144. McCool DJ, Marcon MA, Forstner JF, Forstner GG (1990) The T84 human colonic adenocarcinoma cell line produces mucin in culture and releases it in response to various secretagogues. Biochem J 267:491–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nataro JP, Hicks S, Phillips AD et al (1996) T84 cells in culture as a model for enteroaggregative Escherichia coli pathogenesis. Infect Immun 64:4761–4768

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Bu X-D, Li N, Tian X-Q, Huang P-L (2011) Caco-2 and LS174T cell lines provide different models for studying mucin expression in colon cancer. Tissue Cell 43:201–206. doi:10.1016/j.tice.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  147. Mologni L, Brussolo S, Ceccon M, Gambacorti-Passerini C (2012) Synergistic effects of combined Wnt/KRAS inhibition in colorectal cancer cells. PLoS One 7:e51449. doi:10.1371/journal.pone.0051449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. van Klinken BJ, Oussoren E, Weenink JJ et al (1996) The human intestinal cell lines Caco-2 and LS174T as models to study cell-type specific mucin expression. Glycoconj J 13:757–768

    Article  PubMed  Google Scholar 

  149. Basu I, Mitra R, Saha PK et al (1999) Morphological and cytoskeletal changes caused by non-membrane damaging cytotoxin of Vibrio cholerae on int 407 and HeLa cells. FEMS Microbiol Lett 179:255–263

    Article  CAS  PubMed  Google Scholar 

  150. Canonico B, Campana R, Luchetti F et al (2014) Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells. Apoptosis Int J Program Cell Death 19:1225–1242. doi:10.1007/s10495-014-1005-0

    Article  CAS  Google Scholar 

  151. Henle G, Deinhardt F (1957) The establishment of strains of human cells in tissue culture. J Immunol Baltim Md 1950 79:54–59

    CAS  Google Scholar 

  152. Lacroix M (2008) Persistent use of “false” cell lines. Int J Cancer 122:1–4. doi:10.1002/ijc.23233

    Article  CAS  PubMed  Google Scholar 

  153. Sarem F, Sarem-Damerdji LO, Nicolas JP (1996) Comparison of the adherence of three Lactobacillus strains to Caco-2 and Int-407 human intestinal cell lines. Lett Appl Microbiol 22:439–442

    Article  CAS  PubMed  Google Scholar 

  154. Antunes F, Andrade F, Araújo F et al (2013) Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur J Pharm Biopharm 83:427–435. doi:10.1016/j.ejpb.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  155. Béduneau A, Tempesta C, Fimbel S et al (2014) A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Eur J Pharm Biopharm 87:290–298. doi:10.1016/j.ejpb.2014.03.017

    Article  PubMed  CAS  Google Scholar 

  156. Chen X-M, Elisia I, Kitts DD (2010) Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design. J Pharmacol Toxicol Methods 61:334–342. doi:10.1016/j.vascn.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  157. Hilgendorf C, Spahn-Langguth H, Regårdh CG et al (2000) Caco-2 versus caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J Pharm Sci 89:63–75. doi:10.1002/(SICI)1520-6017(200001)89:1<63:AID-JPS7>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  158. Johansson MEV, Ambort D, Pelaseyed T et al (2011) Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci 68:3635–3641. doi:10.1007/s00018-011-0822-3

    Article  CAS  PubMed  Google Scholar 

  159. Navabi N, McGuckin MA, Lindén SK (2013) Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation. PLoS One 8:e68761. doi:10.1371/journal.pone.0068761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pontier C, Pachot J, Botham R et al (2001) HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: role of the mucus layer. J Pharm Sci 90:1608–1619

    Article  CAS  PubMed  Google Scholar 

  161. Walter E, Janich S, Roessler BJ et al (1996) HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans. J Pharm Sci 85:1070–1076. doi:10.1021/js960110x

    Article  CAS  PubMed  Google Scholar 

  162. Lesuffleur T, Porchet N, Aubert JP et al (1993) Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J Cell Sci 106(Pt 3):771–783

    CAS  PubMed  Google Scholar 

  163. Alcarraz-Vizán G, Sánchez-Tena S, Moyer MP, Cascante M (2014) Validation of NCM460 cell model as control in antitumor strategies targeting colon adenocarcinoma metabolic reprogramming: trichostatin A as a case study. Biochim Biophys Acta BBA Gen Subj 1840:1634–1639. doi:10.1016/j.bbagen.2013.12.024

    Article  CAS  Google Scholar 

  164. Henriques A, Barros P, Moyer MP et al (2015) Expression of tumour-related Rac1b antagonizes B-Raf-induced senescence in colorectal cells. Cancer Lett 369:368–375. doi:10.1016/j.canlet.2015.08.027

    Article  CAS  PubMed  Google Scholar 

  165. Lea MA, Ibeh C, Shah N, Moyer MP (2007) Induction of differentiation of colon cancer cells by combined inhibition of kinases and histone deacetylase. Anticancer Res 27:741–748

    CAS  PubMed  Google Scholar 

  166. Liu Z, Kang L, Li C et al (2014) Knockout of MIMP protein in lactobacillus plantarum lost its regulation of intestinal permeability on NCM460 epithelial cells through the zonulin pathway. BMC Gastroenterol 14:171. doi:10.1186/1471-230X-14-171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Liu Z, Shen T, Chen H et al (2011) Functional characterization of MIMP for its adhesion to the intestinal epithelium. Front Biosci Landmark Ed 16:2106–2127

    Article  CAS  PubMed  Google Scholar 

  168. Matos P, Kotelevets L, Goncalves V et al (2013) Ibuprofen inhibits colitis-induced overexpression of tumor-related Rac1b. Neoplasia 15:102–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Minoo P, Moyer MP, Jass JR (2007) Role of BRAF-V600E in the serrated pathway of colorectal tumourigenesis. J Pathol 212:124–133. doi:10.1002/path.2160

    Article  CAS  PubMed  Google Scholar 

  170. Moyer MP, Manzano LA, Merriman RL et al (1996) NCM460, a normal human colon mucosal epithelial cell line. In Vitro Cell Dev Biol Anim 32:315–317

    Article  CAS  PubMed  Google Scholar 

  171. Sahi J, Nataraja SG, Layden TJ et al (1998) Cl- transport in an immortalized human epithelial cell line (NCM460) derived from the normal transverse colon. Am J Physiol 275:C1048–C1057

    CAS  PubMed  Google Scholar 

  172. Schäfer H, Struck B, Feldmann E-M et al (2013) TGF-β1-dependent L1CAM expression has an essential role in macrophage-induced apoptosis resistance and cell migration of human intestinal epithelial cells. Oncogene 32:180–189. doi:10.1038/onc.2012.44

    Article  PubMed  CAS  Google Scholar 

  173. Zhao D, Keates AC, Kuhnt-Moore S et al (2001) Signal transduction pathways mediating neurotensin-stimulated interleukin-8 expression in human colonocytes. J Biol Chem 276:44464–44471. doi:10.1074/jbc.M104942200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratories is supported by Fundação para a Ciência e Tecnologia (FCT) through center Grant UID/MULTI/04046/2013 (to BioISI), by research grants from FCT, Portugal (PTDC/BIM-MEC/2131/2014), CFF-Cystic Fibrosis Foundation, USA (AMARAL15XX0, AMARAL15XX1), Gilead GÉNESE-Portugal Programme (PGG/008/2015); CF Trust, UK (SRC 003) to MDA, and from Portuguese association for inflammatory bowel disease (GEDII 2013), Portuguese association Maratona da Saúde (Cancro 2014), Portugal to PJ. J.F.P. was supported by fellowships BRJ-DGH 2012_oncologia from Instituto Nacional de Saúde Doutor Ricardo Jorge (Lisbon, Portugal) and BD/109162/2015 from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jordan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, J.F.S., Awatade, N.T., Loureiro, C.A. et al. The third dimension: new developments in cell culture models for colorectal research. Cell. Mol. Life Sci. 73, 3971–3989 (2016). https://doi.org/10.1007/s00018-016-2258-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2258-2

Keywords

Navigation