Skip to main content
Log in

Distribution of glucan-branching enzymes among prokaryotes

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Glucan-branching enzyme plays an essential role in the formation of branched polysaccharides, glycogen, and amylopectin. Only one type of branching enzyme, belonging to glycoside hydrolase family 13 (GH13), is found in eukaryotes, while two types of branching enzymes (GH13 and GH57) occur in prokaryotes (Bacteria and Archaea). Both of these types are the members of protein families containing the diverse specificities of amylolytic glycoside hydrolases. Although similarities are found in the catalytic mechanism between the two types of branching enzyme, they are highly distinct from each other in terms of amino acid sequence and tertiary structure. Branching enzymes are found in 29 out of 30 bacterial phyla and 1 out of 5 archaeal phyla, often along with glycogen synthase, suggesting the existence of α-glucan production and storage in a wide range of prokaryotes. Enormous variability is observed as to which type and how many copies of branching enzyme are present depending on the phylum and, in some cases, even among species of the same genus. Such a variation may have occurred through lateral transfer, duplication, and/or differential loss of genes coding for branching enzyme during the evolution of prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AGPase:

ADP-glucose pyrophosphorylase

BE:

Branching enzyme

CAZy:

Carbohydrate-active enZymes

CBM:

Carbohydrate-binding module

CSR:

Conserved sequence region

DBE:

Debranching enzyme

DP:

Degree of polymerization

GH:

Glycoside hydrolase

GS:

Glycogen synthase

GT:

Glycosyltransferase

LGT:

Lateral gene transfer

MGLP:

Methylglucose lipopolysaccharide

SBS:

Surface/secondary binding site

SS:

Starch synthase

References

  1. Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38:419–458. doi:10.1146/annurev.mi.38.100184.002223

    Article  CAS  PubMed  Google Scholar 

  2. Ball SG, Morell KM (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233. doi:10.1146/annurev.arplant.54.031902.134927

    Article  CAS  PubMed  Google Scholar 

  3. Fujita N (2014) Starch biosynthesis in rice endosperm. AGri Biosci Monogr 4:1–18. doi:10.5047/agbm.2014.00401.0001

    Article  Google Scholar 

  4. Tetlow IJ, Emes MJ (2014) A review of starch-branching enzymes and their role in amylopectin biosynthesis. IUBMB Life 66:546–558. doi:10.1002/iub.1297

    Article  CAS  PubMed  Google Scholar 

  5. Uitdehaag JC, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, Dijkstra BW (1999) X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family. Nat Struct Biol 6:432–436. doi:10.1038/8235

    Article  CAS  PubMed  Google Scholar 

  6. Palomo M, Pijning T, Booiman T, Dobruchowska JM, van der Vlist J, Kralj S, Planas A, Loos K, Kamerling JP, Dijkstra BW, van der Maarel MJ, Dijkhuizen L, Leemhuis H (2011) Thermus thermophilus glycoside hydrolase family 57 branching enzyme: crystal structure, mechanism of action, and products formed. J Biol Chem 286:3520–3530. doi:10.1074/jbc.M110.179515

    Article  CAS  PubMed  Google Scholar 

  7. Parton NJ, Keeling PJ (2005) Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J Phycol 41:1131–1141. doi:10.1111/j.1529-8817.2005.00135.x

    Article  Google Scholar 

  8. Deschamps P, Colleoni C, Nakamura Y, Suzuki E, Putaux JL, Buléon A, Haebel S, Ritte G, Steup M, Falcón LI, Moreira D, Löffelhardt W, Raj JN, Plancke C, d’Hulst C, Dauvillée D, Ball S (2008) Metabolic symbiosis and the birth of the plant kingdom. Mol Biol Evol 25:536–548. doi:10.1093/molbev/msm280

    Article  CAS  PubMed  Google Scholar 

  9. Baecker PA, Greenberg E, Preiss J (1986) Biosynthesis of bacterial glycogen. Primary structure of Escherichia coli 1,4-α-d-glucan:1,4-α-d-glucan 6-α-d-(1,4-α-d-glucano)-transferase as deduced from the nucleotide sequence of the glg B gene. J Biol Chem 261:8738–8743

    CAS  PubMed  Google Scholar 

  10. Svensson B (1988) Regional distant sequence homology between amylases, α-glucosidases and transglucanosylases. FEBS Lett 230:72–76. doi:10.1016/0014-5793(88)80644-6

    Article  CAS  PubMed  Google Scholar 

  11. Romeo T, Kumar A, Preiss J (1988) Analysis of the Escherichia coli glycogen gene cluster suggests that catabolic enzymes are encoded among the biosynthetic genes. Gene 70:363–376. doi:10.1016/0378-1119(88)90208-9

    Article  CAS  PubMed  Google Scholar 

  12. Baba T, Kimura K, Mizuno K, Etoh H, Ishida Y, Shida O, Arai Y (1991) Sequence conservation of the catalytic regions of anylolytic enzymes in maize branching enzyme-I. Biochem Biophys Res Commun 181:87–94. doi:10.1016/S0006491X(05)81385-3

    Article  CAS  PubMed  Google Scholar 

  13. Takata H, Kuriki T, Okada S, Takesada Y, Iizuka M, Minamiura N, Imanaka T (1992) Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at α-(1->4)- and α-(1->6)-glucosidic linkages. J Biol Chem 267:18447–18452

    CAS  PubMed  Google Scholar 

  14. Takata H, Takaha T, Kuriki T, Okada S, Takagi M, Imanaka T (1994) Properties and active center of the thermostable branching enzyme from Bacillus stearothermophilus. Appl Environ Microbiol 60:3096–3104

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316. doi:10.1042/bj2800309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19:555–564. doi:10.1093/protein/gzl044

    Article  CAS  PubMed  Google Scholar 

  17. Fukusumi S, Kamizono A, Horinouchi S, Beppu T (1988) Cloning and nucleotide sequence of a heat-stable amylase gene from an anaerobic thermophile, Dictyoglomus thermophilum. Eur J Biochem 174:15–21. doi:10.1111/j.1432-1033.1988.tb14056.x

    Article  CAS  PubMed  Google Scholar 

  18. Laderman KA, Asada K, Uemori T, Mukai H, Taguchi Y, Kato I, Anfinsen CB (1993) α-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Cloning and sequencing of the gene and expression in Escherichia coli. J Biol Chem 268:24402–24407

    CAS  PubMed  Google Scholar 

  19. Laderman KA, Davis BR, Krutzsch HC, Lewis MS, Griko YV, Privalov PL, Anfinsen CB (1993) The purification and characterization of an extremely thermostable α-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 268:24394–24401

    CAS  PubMed  Google Scholar 

  20. Nakajima M, Imamura H, Shoun H, Horinouchi S, Wakagi T (2004) Transglycosylation activity of Dictyoglomus thermophilum amylase A. Biosci Biotechnol Biochem 68:2369–2373. doi:10.1271/bbb.68.2369

    Article  CAS  PubMed  Google Scholar 

  21. Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696. doi:10.1042/bj3160695

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zona R, Chang-Pi-Hin F, O’Donohue MJ, Janeček S (2004) Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur J Biochem 271:2863–2872. doi:10.1111/j.1432-1033.2004.04144.x

    Article  CAS  PubMed  Google Scholar 

  23. Murakami T, Kanai T, Takata H, Kuriki T, Imanaka T (2006) A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 188:5915–5924. doi:10.1128/JB.00390-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hilden I, Lo Leggio L, Larsen S, Poulsen P (2000) Characterization and crystallization of an active N-terminally truncated form of the Escherichia coli glycogen branching enzyme. Eur J Biochem 267:2150–2155. doi:10.1046/j.1432-1327.2000.01221.x

    Article  CAS  PubMed  Google Scholar 

  25. Abad MC, Binderup K, Rios-Steiner J, Arni RK, Preiss J, Geiger JH (2002) The X-ray crystallographic structure of Escherichia coli branching enzyme. J Biol Chem 277:42164–42170. doi:10.1074/jbc.M205746400

    Article  CAS  PubMed  Google Scholar 

  26. Pal K, Kumar S, Sharma S, Garg SK, Alam MS, Xu HE, Agrawal P, Swaminathan K (2010) Crystal structure of full-length Mycobacterium tuberculosis H37Rv glycogen branching enzyme: insights of N-terminal beta-sandwich in substrate specificity and enzymatic activity. J Biol Chem 285:20897–20903. doi:10.1074/jbc.M110.121707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Machovič M, Janeček Š (2008) Domain evolution in the GH13 pullulanase subfamily with focus on the carbohydrate-binding module family 48. Biologia 63:1057–1068. doi:10.2478/s11756-008-0164-4

    Google Scholar 

  28. MacGregor EA, Janeček S, Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1546:1–20. doi:10.1016/S0167-4838(00)00302-2

    Article  CAS  PubMed  Google Scholar 

  29. Svensson B (1994) Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol Biol 25:141–157. doi:10.1007/BF00023233

    Article  CAS  PubMed  Google Scholar 

  30. Kuriki T, Guan H, Sivak M, Preiss J (1996) Analysis of the active center of branching enzyme II from maize endosperm. J Protein Chem 15:305–313. doi:10.1007/BF01887119

    Article  CAS  PubMed  Google Scholar 

  31. Janeček Š (2002) How many conserved sequence regions are there in the α-amylase family? Biol Bratisl 57:29–41

    Google Scholar 

  32. Blesák K, Janeček S (2012) Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57. Extremophiles 16:497–506. doi:10.1007/s00792-012-0449-9

    Article  PubMed  Google Scholar 

  33. Santos CR, Tonoli CC, Trindade DM, Betzel C, Takata H, Kuriki T, Kanai T, Imanaka T, Arni RK, Murakami MT (2011) Structural basis for branching-enzyme activity of glycoside hydrolase family 57: structure and stability studies of a novel branching enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Proteins 79:547–557. doi:10.1002/prot.22902

    Article  CAS  PubMed  Google Scholar 

  34. Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11:593–600. doi:10.1016/S0959-440X(00)00253-0

    Article  CAS  PubMed  Google Scholar 

  35. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555. doi:10.1146/annurev.biochem.76.061005.092322

    Article  CAS  PubMed  Google Scholar 

  36. Buschiazzo A, Ugalde JE, Guerin ME, Shepard W, Ugalde RA, Alzari PM (2004) Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. EMBO J 23:3196–3205. doi:10.1038/sj.emboj.7600324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Horcajada C, Guinovart JJ, Fita I, Ferrer JC (2006) Crystal structure of an archaeal glycogen synthase: insights into oligomerization and substrate binding of eukaryotic glycogen synthases. J Biol Chem 281:2923–2931. doi:10.1074/jbc.M507394200

    Article  CAS  PubMed  Google Scholar 

  38. Feng L, Fawaz R, Hovde S, Gilbert L, Choi J, Geiger JH (2015) Crystal Structures of Escherichia coli branching enzyme bound to linear oligosaccharides. Biochemistry 54:6407–6418. doi:10.1021/acs.biochem.5b00228

    Google Scholar 

  39. Cuyvers S, Dornez E, Delcour JA, Courtin CM (2012) Occurrence and functional significance of secondary carbohydrate binding sites in glycoside hydrolases. Crit Rev Biotechnol 32:93–107. doi:10.3109/07388551.2011.561537

    Article  CAS  PubMed  Google Scholar 

  40. Cockburn D, Wilkens C, Ruzanski C, Andersen S, Nielsen JW, Smith AM, Field RA, Willemoës M, Hachem MA, Svensson B (2014) Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77—a mini-review. Biologia 69:705–712. doi:10.2478/s11756-014-0373-9

    Article  CAS  Google Scholar 

  41. Noguchi J, Chaen K, Vu NT, Akasaka T, Shimada H, Nakashima T, Nishi A, Satoh H, Omori T, Kakuta Y, Kimura M (2011) Crystal structure of the branching enzyme I (BEI) from Oryza sativa L with implications for catalysis and substrate binding. Glycobiology 21:1108–1116. doi:10.1093/glycob/cwr049

    Article  CAS  PubMed  Google Scholar 

  42. Chaen K, Noguchi J, Omori T, Kakuta Y, Kimura M (2012) Crystal structure of the rice branching enzyme I (BEI) in complex with maltopentaose. Biochem Biophys Res Commun 424:508–511. doi:10.1016/J.BBRC.2012.06.145

    Article  CAS  PubMed  Google Scholar 

  43. Froese DS, Michaeli A, McCorvie TJ, Krojer T, Sasi M, Melaev E, Goldblum A, Zatsepin M, Lossos A, Álvarez R, Escribá PV, Minassian BA, von Delft F, Kakhlon O, Yue WW (2015) Structural basis of glycogen branching enzyme deficiency and pharmacologic rescue by rational peptide design. Hum Mol Genet 24:5667–5676. doi:10.1093/hmg/ddv280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sawada T, Nakagami T, Utsumi Y, Ohdan T, Suzuki E, Nakamura Y (2013) Characterization of starch branching enzymes from various sources. J Appl Glycosci 60:69–78. doi:10.5458/jag.jag.JAG-2012_011

    CAS  Google Scholar 

  45. Sawada T, Nakamura Y, Ohdan T, Saitoh A, Francisco PB Jr, Suzuki E, Fujita N, Shimonaga T, Fujiwara S, Tsuzuki M, Colleoni C, Ball S (2014) Diversity of reaction characteristics of glucan branching enzymes and the fine structure of α-glucan from various sources. Arch Biochem Biophys 564:9–21. doi:10.1016/j.abb.2014.07.032

    Article  Google Scholar 

  46. Zevenhuizen LPTM (1964) Branching enzyme of Arthrobacter globiformis. Biochim Biophys Acta 81:608–611. doi:10.1016/0926-6569(64)90150-6

    CAS  PubMed  Google Scholar 

  47. Rumbak E, Rawlings DE, Lindsey GG, Woods DR (1991) Characterization of the Butyrivibrio fibrisolvens glgB gene, which encodes a glycogen-branching enzyme with starch-clearing activity. J Bacteriol 173:6732–6741

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Palomo M, Kralj S, van der Maarel MJ, Dijkhuizen L (2009) The unique branching patterns of Deinococcus glycogen branching enzymes are determined by their N-terminal domains. Appl Environ Microbiol 75:1355–1364. doi:10.1128/AEM.02141-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thiemann V, Saake B, Vollstedt A, Schäfer T, Puls J, Bertoldo C, Freudl R, Antranikian G (2006) Heterologous expression and characterization of a novel branching enzyme from the thermoalkaliphilic anaerobic bacterium Anaerobranca gottschalkii. Appl Microbiol Biotechnol 72:60–71. doi:10.1007/s00253-005-0248-7

    Article  CAS  PubMed  Google Scholar 

  50. Jo HJ, Park S, Jeong HG, Kim JW, Park JT (2015) Vibrio vulnificus glycogen branching enzyme preferentially transfers very short chains: N1 domain determines the chain length transferred. FEBS Lett 589:1089–1094. doi:10.1016/j.febslet.2015.03.011

    Article  CAS  PubMed  Google Scholar 

  51. Kim EJ, Ryu SI, Bae HA, Huong NT, Lee SB (2008) Biochemical characterisation of a glycogen branching enzyme from Streptococcus mutans: enzymatic modification of starch. Food Chem 110:979–984. doi:10.1016/j.foodchem.2008.03.025

    Article  CAS  PubMed  Google Scholar 

  52. Yoon SA, Ryu SI, Lee SB, Moon TW (2008) Purification and characterization of branching specificity of a novel extracellular amylolytic enzyme from marine hyperthermophilic Rhodothermus marinus. J Microbiol Biotechnol 18:457–464

    CAS  PubMed  Google Scholar 

  53. Roussel X, Lancelon-Pin C, Viksø-Nielsen A, Rolland-Sabaté A, Grimaud F, Potocki-Véronèse G, Buléon A, Putaux JL, D’Hulst C (2013) Characterization of substrate and product specificity of the purified recombinant glycogen branching enzyme of Rhodothermus obamensis. Biochim Biophys Acta 1830:2167–2177. doi:10.1016/j.bbagen.2012.09.022

    Article  CAS  PubMed  Google Scholar 

  54. Hayashi M, Suzuki R, Colleoni C, Ball SG, Fujita N, Suzuki E (2015) Crystallization and crystallographic analysis of branching enzymes from Cyanothece sp. ATCC 51142. Acta Crystallogr F Struct Biol Commun 71:1109–1113. doi:10.1107/S2053230X1501198X

    Article  CAS  PubMed  Google Scholar 

  55. Binderup K, Mikkelsen R, Preiss J (2000) Limited proteolysis of branching enzyme from Escherichia coli. Arch Biochem Biophys 377:366–371. doi:10.1006/abbi.2000.1815

    Article  CAS  PubMed  Google Scholar 

  56. Suzuki R, Koide K, Hayashi M, Suzuki T, Sawada T, Ohdan T, Takahashi H, Nakamura Y, Fujita N, Suzuki E (2015) Functional characterization of three (GH13) branching enzymes involved in cyanobacterial starch biosynthesis from Cyanobacterium sp. NBRC 102756. Biochim Biophys Acta 1854:476–484. doi:10.1016/j.bbapap.2015.02.012

    Article  CAS  PubMed  Google Scholar 

  57. Takata H, Ohdan K, Takaha T, Kuriki T, Okada S (2003) Properties of branching enzyme from hyperthermophilic bacterium, Aquifex aeolicus, and its potential for production of highly-branched cyclic dextrin. J Appl Glycosci 50:15–20. doi:10.5458/jag.50.15

    Article  CAS  Google Scholar 

  58. van der Maarel MJEC, Vos A, Sanders P, Dijkhuizen L (2003) Properties of the glucan branching enzyme of the hyperthermophilic bacterium Aquifex aeolicus. Biocatal Biotransform 21:199–207. doi:10.1080/10292920310001618528

    Article  Google Scholar 

  59. Nakamura Y, Utsumi Y, Sawada T, Aihara S, Utsumi C, Yoshida M, Kitamura S (2010) Characterization of the reactions of starch branching enzymes from rice endosperm. Plant Cell Physiol 51:776–794. doi:10.1093/pcp/pcq035

    Article  CAS  PubMed  Google Scholar 

  60. Lu KJ, Streb S, Meier F, Pfister B, Zeeman SC (2015) Molecular genetic analysis of glucan branching enzymes from plants and bacteria in Arabidopsis reveals marked differences in their functions and capacity to mediate starch granule formation. Plant Physiol 169:1638–1655. doi:10.1104/pp.15.00792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Devillers CH, Piper ME, Ballicora MA, Preiss J (2003) Characterization of the branching patterns of glycogen branching enzyme truncated on the N-terminus. Arch Biochem Biophys 418:34–38. doi:10.1016/S0003-9861(03)00341-2

    Article  CAS  PubMed  Google Scholar 

  62. Kuriki T, Stewart DC, Preiss J (1997) Construction of chimeric enzymes out of maize endosperm branching enzymes I and II: activity and properties. J Biol Chem 272:28999–29004. doi:10.1074/jbc.272.4648999

    Article  CAS  PubMed  Google Scholar 

  63. Seibold GM, Breitinger KJ, Kempkes R, Both L, Krämer M, Dempf S, Eikmanns BJ (2011) The glgB-encoded glycogen branching enzyme is essential for glycogen accumulation in Corynebacterium glutamicum. Microbiology 157:3243–3251. doi:10.1099/mic.0.051565-0

    Article  CAS  PubMed  Google Scholar 

  64. Bruton CJ, Plaskitt KA, Chater KF (1995) Tissue-specific glycogen branching isoenzymes in a multicellular prokaryote, Streptomyces coelicolor A3(2). Mol Microbiol 18:89–99. doi:10.1111/j.1365-2958.1995.mmi_18010089.x

    Article  CAS  PubMed  Google Scholar 

  65. Yeo M, Chater K (2005) The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor. Microbiology 151:855–861. doi:10.1099/mic.0.27428-0

    Article  PubMed  Google Scholar 

  66. Sambou T, Dinadayala P, Stadthagen G, Barilone N, Bordat Y, Constant P, Levillain F, Neyrolles O, Gicquel B, Lemassu A, Daffé M, Jackson M (2008) Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol Microbiol 70:764–774. doi:10.1111/j.1365-2958.2008.06445.x

    Article  Google Scholar 

  67. Kalscheuer R, Syson K, Veeraraghavan U, Weinrick B, Biermann KE, Liu Z, Sacchettini JC, Besra G, Bornemann S, Jacobs WR Jr (2010) Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an α-glucan pathway. Nat Chem Biol 6:376–384. doi:10.1038/nchembio.340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Badalamenti JP, Torres CI, Krajmalnik-Brown R (2014) Coupling dark metabolism to electricity generation using photosynthetic cocultures. Biotechnol Bioeng 111:223–231. doi:10.1002/bit.25011

    Article  CAS  PubMed  Google Scholar 

  69. Colleoni C, Suzuki E (2012) Storage polysaccharide metabolism in Cyanobacteria. In: Tetlow IJ (ed) Essential reviews in experimental biology, vol 5., The synthesis and breakdown of starch. The Society for Experimental Biology, London, pp 217–253

    Google Scholar 

  70. Suzuki E, Onoda M, Colleoni C, Ball S, Fujita N, Nakamura Y (2013) Physicochemical variation of cyanobacterial starch, the insoluble α-glucans in cyanobacteria. Plant Cell Physiol 54:465–473. doi:10.1093/pcp/pcs190

    Article  CAS  PubMed  Google Scholar 

  71. Suzuki E, Suzuki R (2013) Variation of storage polysaccharides in phototrophic microorganisms. J Appl Glycosci 60:21–27. doi:10.5458/jag.jag.JAG-2012_016

    Article  Google Scholar 

  72. Hussain H, Mant A, Seale R, Zeeman S, Hinchliffe E, Edwards A, Hylton C, Bornemann S, Smith AM, Martin C, Bustos R (2003) Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell 15:133–149. doi:10.1105/tpc.006635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ballschmiter M, Fütterer O, Liebl W (2006) Identification and characterization of a novel intracellular alkaline alpha-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 72:22064211. doi:10.1128/AEM.72.3.22064211.2006

    Article  Google Scholar 

  74. Dickmanns A, Ballschmiter M, Liebl W, Ficner R (2006) Structure of the novel alpha-amylase AmyC from Thermotoga maritima. Acta Crystallogr D Biol Crystallogr 64:264–270. doi:10.1107/S0907444905041363

    Google Scholar 

  75. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Fujii C, Garland S, Hatch B, Horst K, Roberts K, Watthey L, Weidman J, Smith HO, Venter JC (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375–388. doi:10.1126/science.281.5375.375

    Article  CAS  PubMed  Google Scholar 

  76. König H, Skorko R, Zillig W, Reiter WD (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch Microbiol 132:297–303

    Article  Google Scholar 

  77. König H, Nusser E, Stetter KO (1985) Glycogen in Methanolobus and Methanococcus. FEMS Microbiol Lett 28:265–269

    Article  Google Scholar 

  78. Maitra PK, Bhosale SB, Kshirsagar DC, Yeole TY, Shanbhag AN (2001) Metabolite and enzyme profiles of glycogen metabolism in Methanococcoides methylutens. FEMS Microbiol Lett 198:23–29. doi:10.1111/j.1574-6968.2001.tb10614.x

    Article  CAS  PubMed  Google Scholar 

  79. Campbell JA, Davies GJ, Bulone V, Henrissat B (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326:929–939. doi:10.1042/bj3260929u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tzvetkov M, Klopprogge C, Zelder O, Liebl W (2003) Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology 149:1659–1673. doi:10.1099/mic.0.26405-0

    Article  CAS  PubMed  Google Scholar 

  81. Asención Diez MD, Peirú S, Demonte AM, Gramajo H, Iglesias AA (2012) Characterization of recombinant UDP- and ADP-glucose pyrophosphorylases and glycogen synthase to elucidate glucose-1-phosphate partitioning into oligo- and polysaccharides in Streptomyces coelicolor. J Bacteriol 194:1485–1493. doi:10.1128/JB.06377-11

    Article  PubMed  PubMed Central  Google Scholar 

  82. Asención Diez MD, Demonte AM, Syson K, Arias DG, Gorelik A, Guerrero SA, Bornemann S, Iglesias AA (2015) Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim Biophys Acta 1850:13–21. doi:10.1016/j.bbagen.2014.09.023

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jackson M, Brennan PJ (2009) Polymethylated polysaccharides from Mycobacterium species revisited. J Biol Chem 284:1949–1953. doi:10.1074/jbc.R800047200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mendes V, Maranha A, Alarico S, Empadinhas N (2012) Biosynthesis of mycobacterial methylglucose lipopolysaccharides. Nat Prod Rep 29:834–844. doi:10.1039/C2NP20014G

    Article  CAS  PubMed  Google Scholar 

  85. Maranha A, Moynihan PJ, Miranda V, Lourenço EC, Nunes-Costa D, Fraga JS, Pereira PJB, Macedo-Ribeiro S, Ventura MR, Clarke AJ, Empadinhas N (2015) Octanoylation of early intermediates of mycobacterial methylglucose lipopolysaccharides. Sci Rep 5:13610. doi:10.1038/srep13610

    Article  PubMed  PubMed Central  Google Scholar 

  86. Stadthagen G, Sambou T, Guerin M, Barilone N, Boudou F, Korduláková J, Charles P, Alzari PM, Lemassu A, Daffé M, Puzo G, Gicquel B, Rivière M, Jackson M (2007) Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis. J Biol Chem 282:27270–27276. doi:10.1074/jbc.M702676400

    Article  CAS  PubMed  Google Scholar 

  87. Elbein AD, Pastuszak I, Tackett AJ, Wilson T, Pan YT (2010) Last step in the conversion of trehalose to glycogen. A mycobacterial enzyme that transfers maltose from maltose 1-phosphate to glycogen. J Biol Chem 285:9803–9812. doi:10.1074/jbc.M109.033944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chandra G, Chater KF, Bornemann S (2011) Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157:1565–1572. doi:10.1099/mic.0.044263-0

    Article  CAS  PubMed  Google Scholar 

  89. The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC. https://www.pymol.org/

  90. Felsenstein J (1989) PHYLIP—Phylogeny inference package (version 3.2). Cladistics 5:164–166. http://evolution.genetics.washington.edu/phylip.html

Download references

Acknowledgments

Studies in the authors’ laboratory were supported by JSPS KAKENHI Grant Numbers 25440193 to E.S. and 15K18685 to R.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, E., Suzuki, R. Distribution of glucan-branching enzymes among prokaryotes. Cell. Mol. Life Sci. 73, 2643–2660 (2016). https://doi.org/10.1007/s00018-016-2243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2243-9

Keywords

Navigation