Skip to main content
Log in

The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Tunneling nanotubes (TNTs) are long intercellular connecting structures providing a special transport route between two neighboring cells. To date TNTs have been reported in different cell types including immune cells such as T-, NK, dendritic cells, or macrophages. Here we report that mature, but not immature, B cells spontaneously form extensive TNT networks under conditions resembling the physiological environment. Live-cell fluorescence, structured illumination, and atomic force microscopic imaging provide new insights into the structure and dynamics of B cell TNTs. Importantly, the selective interaction of cell surface integrins with fibronectin or laminin extracellular matrix proteins proved to be essential for initiating TNT growth in B cells. These TNTs display diversity in length and thickness and contain not only F-actin, but their majority also contain microtubules, which were found, however, not essential for TNT formation. Furthermore, we demonstrate that Ca2+-dependent cortical actin dynamics exert a fundamental control over TNT growth-retraction equilibrium, suggesting that actin filaments form the TNT skeleton. Non-muscle myosin 2 motor activity was shown to provide a negative control limiting the uncontrolled outgrowth of membranous protrusions. Moreover, we also show that spontaneous growth of TNTs is either reduced or increased by B cell receptor- or LPS-mediated activation signals, respectively, thus supporting the critical role of cytoplasmic Ca2+ in regulation of TNT formation. Finally, we observed transport of various GM1/GM3 + vesicles, lysosomes, and mitochondria inside TNTs, as well as intercellular exchange of MHC-II and B7-2 (CD86) molecules which may represent novel pathways of intercellular communication and immunoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303(5660):1007–1010. doi:10.1126/science.1093133

    Article  CAS  PubMed  Google Scholar 

  2. Onfelt B, Nedvetzki S, Yanagi K, Davis DM (2004) Cutting edge: membrane nanotubes connect immune cells. J Immunol 173(3):1511–1513

    Article  PubMed  Google Scholar 

  3. Davis DM, Sowinski S (2008) Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 9(6):431–436. doi:10.1038/nrm2399

    Article  CAS  PubMed  Google Scholar 

  4. Gurke S, Barroso JF, Gerdes HH (2008) The art of cellular communication: tunneling nanotubes bridge the divide. Histochem Cell Biol 129(5):539–550. doi:10.1007/s00418-008-0412-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerdes HH, Carvalho RN (2008) Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 20(4):470–475. doi:10.1016/j.ceb.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  6. Onfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S, Hume AN, Seabra MC, Neil MA, French PM, Davis DM (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 177(12):8476–8483

    Article  PubMed  Google Scholar 

  7. Gerdes HH, Bukoreshtliev NV, Barroso JF (2007) Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 581(11):2194–2201. doi:10.1016/j.febslet.2007.03.071

    Article  CAS  PubMed  Google Scholar 

  8. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11(3):328–336. doi:10.1038/ncb1841

    Article  CAS  PubMed  Google Scholar 

  9. Smith IF, Shuai J, Parker I (2011) Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. Biophys J 100(8):L37–L39. doi:10.1016/j.bpj.2011.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He K, Luo W, Zhang Y, Liu F, Liu D, Xu L, Qin L, Xiong C, Lu Z, Fang X (2010) Intercellular transportation of quantum dots mediated by membrane nanotubes. ACS Nano 4(6):3015–3022. doi:10.1021/nn1002198

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Bukoreshtliev NV, Gerdes HH (2012) Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes. PLoS One 7(10):e47429. doi:10.1371/journal.pone.0047429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang X (1818) Gerdes HH (2012) Long-distance electrical coupling via tunneling nanotubes. Biochim Biophys Acta 8:2082–2086. doi:10.1016/j.bbamem.2011.09.002

    Google Scholar 

  13. Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH (2010) Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc Natl Acad Sci USA 107(40):17194–17199. doi:10.1073/pnas.1006785107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ranzinger J, Rustom A, Abel M, Leyh J, Kihm L, Witkowski M, Scheurich P, Zeier M, Schwenger V (2011) Nanotube action between human mesothelial cells reveals novel aspects of inflammatory responses. PLoS One 6(12):e29537. doi:10.1371/journal.pone.0029537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Austefjord MW, Gerdes HH, Wang X (2014) Tunneling nanotubes: diversity in morphology and structure. Commun Integr Biol 7(1):e27934. doi:10.4161/cib.27934

    Article  PubMed  PubMed Central  Google Scholar 

  16. Van den Broeke C, Radu M, Deruelle M, Nauwynck H, Hofmann C, Jaffer ZM, Chernoff J, Favoreel HW (2009) Alphaherpesvirus US3-mediated reorganization of the actin cytoskeleton is mediated by group A p21-activated kinases. Proc Natl Acad Sci USA 106(21):8707–8712. doi:10.1073/pnas.0900436106

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chinnery HR, Pearlman E, McMenamin PG (2008) Cutting edge: membrane nanotubes in vivo: a feature of MHC class II + cells in the mouse cornea. J Immunol 180(9):5779–5783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seyed-Razavi Y, Hickey MJ, Kuffova L, McMenamin PG, Chinnery HR (2013) Membrane nanotubes in myeloid cells in the adult mouse cornea represent a novel mode of immune cell interaction. Immunol Cell Biol 91(1):89–95. doi:10.1038/icb.2012.52

    Article  CAS  PubMed  Google Scholar 

  19. Teddy JM, Kulesa PM (2004) In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development 131(24):6141–6151. doi:10.1242/dev.01534

    Article  CAS  PubMed  Google Scholar 

  20. Caneparo L, Pantazis P, Dempsey W, Fraser SE (2011) Intercellular bridges in vertebrate gastrulation. PLoS One 6(5):e20230. doi:10.1371/journal.pone.0020230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pyrgaki C, Trainor P, Hadjantonakis AK, Niswander L (2010) Dynamic imaging of mammalian neural tube closure. Dev Biol 344(2):941–947. doi:10.1016/j.ydbio.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  22. Derenyi I, Julicher F, Prost J (2002) Formation and interaction of membrane tubes. Phys Rev Lett 88(23):238101

    Article  PubMed  Google Scholar 

  23. Derényi I et al (2007) Membrane Nanotubes. Lecture Notes Physics, 711. In: Controlled Nanoscale Motion: Nobel Symposium, vol. 131, pp 141–159

  24. Cuvelier D, Derenyi I, Bassereau P, Nassoy P (2005) Coalescence of membrane tethers: experiments, theory, and applications. Biophys J 88(4):2714–2726. doi:10.1529/biophysj.104.056473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B (2005) Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 24(8):1537–1545. doi:10.1038/sj.emboj.7600631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Veranic P, Lokar M, Schutz GJ, Weghuber J, Wieser S, Hagerstrand H, Kralj-Iglic V, Iglic A (2008) Different types of cell-to-cell connections mediated by nanotubular structures. Biophys J 95(9):4416–4425. doi:10.1529/biophysj.108.131375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lokar M, Kabaso D, Resnik N, Sepcic K, Kralj-Iglic V, Veranic P, Zorec R, Iglic A (2012) The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes. Int J Nanomed 7:1891–1902. doi:10.2147/IJN.S28723

    CAS  Google Scholar 

  28. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593. doi:10.1038/nri2567

    Article  CAS  PubMed  Google Scholar 

  29. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, Buzas EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci CMLS 68(16):2667–2688. doi:10.1007/s00018-011-0689-3

    Article  CAS  PubMed  Google Scholar 

  30. Osteikoetxea X, Nemeth A, Sodar BW, Vukman KV, Buzas EI (2016) Extracellular vesicles in cardiovascular diseases, are they Jedi or Sith? J Physiol. doi:10.1113/JP271336

    PubMed  Google Scholar 

  31. Davis DM (2009) Mechanisms and functions for the duration of intercellular contacts made by lymphocytes. Nat Rev Immunol 9(8):543–555. doi:10.1038/nri2602

    Article  CAS  PubMed  Google Scholar 

  32. Marzo L, Gousset K, Zurzolo C (2012) Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol 3:72. doi:10.3389/fphys.2012.00072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rainy N, Chetrit D, Rouger V, Vernitsky H, Rechavi O, Marguet D, Goldstein I, Ehrlich M, Kloog Y (2013) H-Ras transfers from B to T cells via tunneling nanotubes. Cell Death Dis 4:e726. doi:10.1038/cddis.2013.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Polak R, de Rooij B, Pieters R, den Boer ML (2015) B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment. Blood 126(21):2404–2414. doi:10.1182/blood-2015-03-634238

    Article  CAS  PubMed  Google Scholar 

  35. Maus M, Medgyesi D, Kiss E, Schneider AE, Enyedi A, Szilagyi N, Matko J, Sarmay G (2013) B cell receptor-induced Ca2+ mobilization mediates F-actin rearrangements and is indispensable for adhesion and spreading of B lymphocytes. J Leukoc Biol 93(4):537–547. doi:10.1189/jlb.0312169

    Article  CAS  PubMed  Google Scholar 

  36. Maloney DG, Kaminski MS, Burowski D, Haimovich J, Levy R (1985) Monoclonal anti-idiotype antibodies against the murine B cell lymphoma 38C13: characterization and use as probes for the biology of the tumor in vivo and in vitro. Hybridoma 4(3):191–209

    Article  CAS  PubMed  Google Scholar 

  37. Hathcock KS, Laszlo G, Dickler HB, Bradshaw J, Linsley P, Hodes RJ (1993) Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science 262(5135):905–907

    Article  CAS  PubMed  Google Scholar 

  38. Gungor B, Gombos I, Crul T, Ayaydin F, Szabo L, Torok Z, Mates L, Vigh L, Horvath I (2014) Rac1 participates in thermally induced alterations of the cytoskeleton, cell morphology and lipid rafts, and regulates the expression of heat shock proteins in B16F10 melanoma cells. PLoS One 9(2):e89136. doi:10.1371/journal.pone.0089136

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kellermayer MS, Karsai A, Kengyel A, Nagy A, Bianco P, Huber T, Kulcsar A, Niedetzky C, Proksch R, Grama L (2006) Spatially and temporally synchronized atomic force and total internal reflection fluorescence microscopy for imaging and manipulating cells and biomolecules. Biophys J 91(7):2665–2677. doi:10.1529/biophysj.106.085456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, Oddos S, Eissmann P, Brodsky FM, Hopkins C, Onfelt B, Sattentau Q, Davis DM (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 10(2):211–219. doi:10.1038/ncb1682

    Article  CAS  PubMed  Google Scholar 

  41. Puklin-Faucher E, Gao M, Schulten K, Vogel V (2006) How the headpiece hinge angle is opened: new insights into the dynamics of integrin activation. J Cell Biol 175(2):349–360. doi:10.1083/jcb.200602071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ambrose HE, Wagner SD (2004) α6-Integrin is expressed on germinal center B cells and modifies growth of a B-cell line. Immunology 111:400–406. doi:10.1111/j.1365-2567.2004.01824.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen L, Vicente-Manzanares M, Potvin-Trottier L, Wiseman PW, Horwitz AR (2012) The integrin-ligand interaction regulates adhesion and migration through a molecular clutch. PLoS One 7(7):e40202. doi:10.1371/journal.pone.0040202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Danen EH, Sonneveld P, Brakebusch C, Fassler R, Sonnenberg A (2002) The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J Cell Biol 159(6):1071–1086. doi:10.1083/jcb.200205014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Osteikoetxea X, Balogh A, Szabo-Taylor K, Nemeth A, Szabo TG, Paloczi K, Sodar B, Kittel A, Gyorgy B, Pallinger E, Matko J, Buzas EI (2015) Improved characterization of EV preparations based on protein to lipid ratio and lipid properties. PLoS One 10(3):e0121184. doi:10.1371/journal.pone.0121184

    Article  PubMed  PubMed Central  Google Scholar 

  46. Babich A, Burkhardt JK (2013) Coordinate control of cytoskeletal remodeling and calcium mobilization during T-cell activation. Immunol Rev 256(1):80–94. doi:10.1111/imr.12123

    Article  CAS  PubMed  Google Scholar 

  47. Sayyad WA, Amin L, Fabris P, Ercolini E, Torre V (2015) The role of myosin-II in force generation of DRG filopodia and lamellipodia. Sci Rep 5:7842. doi:10.1038/srep07842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ilani T, Vasiliver-Shamis G, Vardhana S, Bretscher A, Dustin ML (2009) T cell antigen receptor signaling and immunological synapse stability require myosin IIA. Nat Immunol 10(5):531–539. doi:10.1038/ni.1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumari S, Vardhana S, Cammer M, Curado S, Santos L, Sheetz MP, Dustin ML (2012) T lymphocyte myosin IIA is required for maturation of the immunological synapse. Front Immunol 3:230. doi:10.3389/fimmu.2012.00230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Manes TD, Pober JS (2013) TCR-driven transendothelial migration of human effector memory CD4 T cells involves Vav, Rac, and myosin IIA. J Immunol 190(7):3079–3088. doi:10.4049/jimmunol.1201817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kepiro M, Varkuti BH, Vegner L, Voros G, Hegyi G, Varga M, Malnasi-Csizmadia A (2014) Para-nitroblebbistatin, the non-cytotoxic and photostable myosin II inhibitor. Angew Chem Int Ed Engl 53(31):8211–8215. doi:10.1002/anie.201403540

    Article  CAS  PubMed  Google Scholar 

  52. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10(11):778–790. doi:10.1038/nrm2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Obermajer N, Jevnikar Z, Doljak B, Sadaghiani AM, Bogyo M, Kos J (2009) Cathepsin X-mediated beta2 integrin activation results in nanotube outgrowth. Cell Mol Life Sci CMLS 66(6):1126–1134. doi:10.1007/s00018-009-8829-8

    Article  CAS  PubMed  Google Scholar 

  54. Sa S, Wong L, McCloskey KE (2014) Combinatorial fibronectin and laminin signaling promote hoghly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access 3(4):150–161. doi:10.1089/biores.2014.0018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ramos Gde O, Bernardi L, Lauxen I, Sant’Ana Filho M, Horwitz AR, Lamers ML (2016) Fibronectin modulates cell adhesion and signaling to promote single cell migration of highly invasive oral squamous cell carcinoma. PLoS One 11(3):e0151338. doi:10.1371/journal.pone.0151338

    Article  PubMed  Google Scholar 

  56. Yarwood SJ, Woodgett JR (2001) Extracellular matrix composition determines the transcriptional response to epidermal growth factor receptor activation. Proc Natl Acad Sci USA 98:4472–4477. doi:10.1073/pnas.081069098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Borland G, Cushley W (2004) Positioning the immune system: unexpected roles for α6-integrins. Immunology 111:381–383. doi:10.1111/j.1365-2567.2004.01838.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thayanithy V, Babatunde V, Dickson EL, Wong P, Oh S, Ke X, Barlas A, Fujisawa S, Romin Y, Moreira AL, Downey RJ, Steer CJ, Subramanian S, Manova-Todorova K, Moore MA, Lou E (2014) Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells. Exp Cell Res 323(1):178–188. doi:10.1016/j.yexcr.2014.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gombos I, Detre C, Vamosi G, Matko J (2004) Rafting MHC-II domains in the APC (presynaptic) plasma membrane and the thresholds for T-cell activation and immunological synapse formation. Immunol Lett 92(1–2):117–124. doi:10.1016/j.imlet.2003.11.022

    Article  CAS  PubMed  Google Scholar 

  60. Anderson HA, Hiltbold EM, Roche PA (2000) Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol 1(2):156–162. doi:10.1038/77842

    Article  CAS  PubMed  Google Scholar 

  61. Gurke S, Barroso JF, Hodneland E, Bukoreshtliev NV, Schlicker O, Gerdes HH (2008) Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp Cell Res 314(20):3669–3683. doi:10.1016/j.yexcr.2008.08.022

    Article  CAS  PubMed  Google Scholar 

  62. Wang X, Gerdes HH (2015) Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22(7):1181–1191. doi:10.1038/cdd.2014.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Poupot M, Fournie JJ (2003) Spontaneous membrane transfer through homotypic synapses between lymphoma cells. J Immunol 171(5):2517–2523

    Article  CAS  PubMed  Google Scholar 

  64. Quah BJ, Barlow VP, McPhun V, Matthaei KI, Hulett MD, Parish CR (2008) Bystander B cells rapidly acquire antigen receptors from activated B cells by membrane transfer. Proc Natl Acad Sci USA 105(11):4259–4264. doi:10.1073/pnas.0800259105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bukoreshtliev NV, Wang X, Hodneland E, Gurke S, Barroso JF, Gerdes HH (2009) Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett 583(9):1481–1488. doi:10.1016/j.febslet.2009.03.065

    Article  CAS  PubMed  Google Scholar 

  66. Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JC (2005) Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 118(Pt 16):3695–3703. doi:10.1242/jcs.02507

    Article  CAS  PubMed  Google Scholar 

  67. Kiss E, Sarmay G, Matko J (2006) Ceramide modulation of antigen- triggered Ca2 + signals and cell fate: diversity in the responses of various immunocytes. Ann N Y Acad Sci 1090:161–167. doi:10.1196/annals.1378.017

    Article  CAS  PubMed  Google Scholar 

  68. Monroe JG, Cambier JC (1983) B cell activation. III. B cell plasma membrane depolarization and hyper-Ia antigen expression induced by receptor immunoglobulin cross-linking are coupled. J Exp Med 158(5):1589–1599

    Article  CAS  PubMed  Google Scholar 

  69. Brown J, Wang H, Hajishengallis GN, Martin M (2011) TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90(4):417–427. doi:10.1177/0022034510381264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Samstag Y, Eibert SM, Klemke M, Wabnitz GH (2003) Actin cytoskeletal dynamics in T lymphocyte activation and migration. J Leukoc Biol 73(1):30–48

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants T 104971 (to JM), NN 107776 and K112794 (to MN), K108437 (to LN) and K109480 (to MK) sponsored by the Hungarian National Science Fund (OTKA) and partly by MedinProt Project (Hungarian Academy of Sciences) to JM. We thank National Development Agency (NFU) and the European Social Fund for partly supporting this project by Grant Agreement TÁMOP 4.2.1./B-09/1/KMR-2010-0003. The authors are grateful to Drs. András Málnási-Csizmadia, Boglárka Várkuti, Miklós Képíró, Mihály Kovács, Judit Ovádi, Andrea Balogh, Glória László, and Imre Derényi for valuable advice and discussions throughout this work and to Ms. Márta Pásztor and Árpád Mikesy for their skillful technical assistance. The authors are very grateful to Xabier Osteikoetxea for careful reading and for the English language revisions of the manuscript, as well as, for the valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janos Matko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2016_2233_MOESM1_ESM.eps

Figure S1: a Flow cytometric histograms show the presence of α6 (black: isotype control antibody; grey: anti6 antibody), b and the lack of β4 (black: isotype control antibody; grey: anti- β4 antibody) integrin chains on A20 mature murine B cells. c Representative fluorescent live cell confocal image of A20 B cells stained with DiI dye and incubated for 1 h on laminin. d A20 B cell NT growth frequency was found dependent on the interaction between laminin and both of its integrin receptor subunits (α6β1); significantly reduced number of NT growing cells was found upon blocking of β1 chains with the respective antibody. Blocking α6 chain alone or the two chains simultaneously almost fully suppressed NT formation. Mean and SD values for TNT forming cell  % were derived from three independent experiments, from approximately 500 cells/sample (*: p ≤ 0.05, **: p ≤ 0.01) (EPS 3495 kb)

Movie S1: Movement of vesicles within thick membrane nanotubes of A488-CTX-B stained A20 mature murine B cells as visualized by structured illumination microscopy (SIM) in real time for 280 s (MP4 209 kb)

Movie S2: Prototypical trajectories of vesicles (see blue and green lines) tracked from a section within a nanotube for 280 s illustrating bidirectional traffic of microvesicles within thick membrane nanotubes of A20 B cells. Position of the tracked microvesicles at the beginning of the process is indicated by purple circles. ImageJ/TrackMate plugin was used to identify and then track vesicles on a frame-by-frame basis. (http://fiji.sc/TrackMate) Time-lapse movie was acquired by SIM using 5 grid rotations. (MP4 461 kb)

18_2016_2233_MOESM4_ESM.mp4

Movie S3: Movement of mitochondria stained with MitoTracker between two adjacent A20 mature B cells via nanotube as shown by a time lapse movie generated from LC-CLSM image series recorded in real time for 96 s (MP4 334 kb)

18_2016_2233_MOESM5_ESM.mp4

Movie S4: Retraction of an already existing nanotube (see white arrow) upon ionomycin administration (Ca2+-influx) within 11 s following addition of ionomycin as shown by a time lapse movie of DIC images of A20 B cells recorded in real time (MP4 2119 kb)

18_2016_2233_MOESM6_ESM.eps

Figure S2: Flow cytometric dot plots show that addition of ionomycin to A20 B cells did not have in itself cytotoxic effects. Annexin V (early apoptosis marker) and propidium iodide (PI) (late apoptosis and necrosis marker) were used to verifying the viability of cells. The percentage of Annexin V positive and Annexin V + PI double positive cells in control, untreated sample (a) and in control cells cultured for 1 h without ionomycin (c) were low. These percentages did not change significantly in the sample treated with 1 µg/ml ionomycin for 5 min (b) or in samples treated with 1 µg/ml ionomycin for 5 min, followed by a wash and culturing for 1 h (d) (EPS 1248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osteikoetxea-Molnár, A., Szabó-Meleg, E., Tóth, E.A. et al. The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes. Cell. Mol. Life Sci. 73, 4531–4545 (2016). https://doi.org/10.1007/s00018-016-2233-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2233-y

Keywords

Navigation