Skip to main content

Advertisement

Log in

Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis?

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In contrast to apoptosis and autophagy, necrotic cell death was considered to be a random, passive cell death without definable mediators. However, this dogma has been challenged by recent developments suggesting that necrotic cell death can also be a regulated process. Regulated necrosis includes multiple cell death modalities such as necroptosis, parthanatos, ferroptosis, pyroptosis, and mitochondrial permeability transition pore (MPTP)-mediated necrosis. Several distinctive executive molecules, particularly residing on the mitochondrial inner and outer membrane, amalgamating to form the MPTP have been defined. The c-subunit of the F1F0ATP synthase on the inner membrane and Bax/Bak on the outer membrane are considered to be the long sought components that form the MPTP. Opening of the MPTP results in loss of mitochondrial inner membrane potential, disruption of ATP production, increased ROS production, organelle swelling, mitochondrial dysfunction and consequent necrosis. Cyclophilin D, along with adenine nucleotide translocator and the phosphate carrier are considered to be important regulators involved in the opening of MPTP. Increased production of ROS can further trigger other necrotic pathways mediated through molecules such as PARP1, leading to irreversible cell damage. This review examines the roles of PARP1 and cyclophilin D in necrotic cell death. The hierarchical role of p53 in regulation and integration of key components of signaling pathway to elicit MPTP-mediated necrosis and ferroptosis is explored. In the context of recent insights, the indistinct role of necroptosis signaling in tubular necrosis after ischemic kidney injury is scrutinized. We conclude by discussing the participation of p53, PARP1 and cyclophilin D and their overlapping pathways to elicit MPTP-mediated necrosis and ferroptosis in acute kidney injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V, Kimmelman A, Kumar S, Levine B, Maiuri MC, Martin SJ, Penninger J, Piacentini M, Rubinsztein DC, Simon HU, Simonsen A, Thorburn AM, Velasco G, Ryan KM, Kroemer G (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34(7):856–880. doi:10.15252/embj.201490784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M, Candi E, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, Di Daniele N, Dixit VM, Dynlacht BD, El-Deiry WS, Fimia GM, Flavell RA, Fulda S, Garrido C, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Joseph B, Jost PJ, Kaufmann T, Kepp O, Klionsky DJ, Knight RA, Kumar S, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, Lopez-Otin C, Lugli E, Madeo F, Malorni W, Marine JC, Martin SJ, Martinou JC, Medema JP, Meier P, Melino S, Mizushima N, Moll U, Munoz-Pinedo C, Nunez G, Oberst A, Panaretakis T, Penninger JM, Peter ME, Piacentini M, Pinton P, Prehn JH, Puthalakath H, Rabinovich GA, Ravichandran KS, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Shi Y, Simon HU, Stockwell BR, Szabadkai G, Tait SW, Tang HL, Tavernarakis N, Tsujimoto Y, Vanden Berghe T, Vandenabeele P, Villunger A, Wagner EF, Walczak H, White E, Wood WG, Yuan J, Zakeri Z, Zhivotovsky B, Melino G, Kroemer G (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22(1):58–73. doi:10.1038/cdd.2014.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Galluzzi L, Pietrocola F, Levine B, Kroemer G (2014) Metabolic control of autophagy. Cell 159(6):1263–1276. doi:10.1016/j.cell.2014.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sica V, Galluzzi L, Bravo-San Pedro José M, Izzo V, Maiuri Maria C, Kroemer G (2015) Organelle-specific initiation of autophagy. Mol Cell 59(4):522–539. doi:10.1016/j.molcel.2015.07.021

    Article  CAS  PubMed  Google Scholar 

  5. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13(6):994–1002

    Article  CAS  PubMed  Google Scholar 

  6. Li Y-Z, Lu D-Y, Tan W-Q, Wang J-X, Li P-F (2008) p53 initiates apoptosis by transcriptionally targeting the antiapoptotic protein ARC. Mol Cell Biol 28(2):564–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519

    Article  CAS  PubMed  Google Scholar 

  8. Padanilam BJ (2003) Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol 284:F608–F627

    Article  CAS  PubMed  Google Scholar 

  9. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219. doi:10.1016/S0092-8674(04)00046-7

    Article  CAS  PubMed  Google Scholar 

  10. Webster KA (2012) Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol 8(6):863–884. doi:10.2217/fca.12.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Article  CAS  PubMed  Google Scholar 

  12. Yin XM, Oltvai ZN, Korsmeyer SJ (1995) Heterodimerization with Bax is required for Bcl-2 to repress cell death. Curr Top Microbiol Immunol 194:331–338

    CAS  PubMed  Google Scholar 

  13. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8(3):705–711. pii: S1097-2765(01)00320-3

  14. Walensky LD, Pitter K, Morash J, Oh KJ, Barbuto S, Fisher J, Smith E, Verdine GL, Korsmeyer SJ (2006) A stapled BID BH3 helix directly binds and activates BAX. Mol Cell 24(2):199–210

    Article  CAS  PubMed  Google Scholar 

  15. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  CAS  PubMed  Google Scholar 

  16. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  PubMed  Google Scholar 

  17. Karch J, Kwong JQ, Burr AR, Sargent MA, Elrod JW, Peixoto PM, Martinez-Caballero S, Osinska H, Cheng EH, Robbins J, Kinnally KW, Molkentin JD (2013) Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. eLife 2:e00772. doi:10.7554/eLife.00772

    Article  PubMed  PubMed Central  Google Scholar 

  18. Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A (2014) Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 35:24–32. doi:10.1016/j.semcdb.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  19. Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757(9–10):1371–1387

    Article  CAS  PubMed  Google Scholar 

  20. Gottlieb RA (2011) Cell death pathways in acute I/R injury. J Cardiovasc Pharmacol Ther 16(3–4):233–238. doi:10.1177/1074248411409581

    Article  CAS  PubMed  Google Scholar 

  21. Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem 280(19):18558–18561

    Article  CAS  PubMed  Google Scholar 

  22. Elrod JW, Molkentin JD (2013) Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore. Circ J 77(5):1111–1122

    Article  CAS  PubMed  Google Scholar 

  23. Bernardi P, Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr 28:131–138

    Article  CAS  PubMed  Google Scholar 

  24. Mallilankaraman K, Doonan P, Cárdenas C, Chandramoorthy Harish C, Müller M, Miller R, Hoffman Nicholas E, Gandhirajan RK, Molgó J, Birnbaum Morris J, Rothberg Brad S, MakD-On D, Foskett JK, Madesh M (2012) MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca2+ uptake that regulates cell survival. Cell 151(3):630–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patron M, Raffaello A, Granatiero V, Tosatto A, Merli G, De Stefani D, Wright L, Pallafacchina G, Terrin A, Mammucari C, Rizzuto R (2013) The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J Biol Chem 288(15):10750–10758. doi:10.1074/jbc.R112.420752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halestrap AP, Davidson AM (1990) Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268(1):153–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW II, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    Article  CAS  PubMed  Google Scholar 

  28. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658

    Article  CAS  PubMed  Google Scholar 

  29. Devalaraja-Narashimha K, Diener AM, Padanilam BJ (2009) Cyclophilin D gene ablation protects mice from ischemic renal injury. Am J Physiol Renal Physiol 297(3):F749–F759. doi:10.1152/ajprenal.00239.2009

    Article  CAS  PubMed  Google Scholar 

  30. Halestrap A (1999) The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury. Biochem Soc Symp 66:181–203

    Article  CAS  PubMed  Google Scholar 

  31. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9(5):550–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427(6973):461–465. doi:10.1038/nature02229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwong JQ, Davis J, Baines CP, Sargent MA, Karch J, Wang X, Huang T, Molkentin JD (2014) Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy. Cell Death Differ 21(8):1209–1217. doi:10.1038/cdd.2014.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141. doi:10.1016/j.yjmcc.2014.08.018

    Article  CAS  PubMed  Google Scholar 

  35. Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, Wieckowski MR, Kroemer G, Galluzzi L, Pinton P (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12(4):674–683. doi:10.4161/cc.23599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabo I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110(15):5887–5892. doi:10.1073/pnas.1217823110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Giorgio V, Bisetto E, Soriano ME, Dabbeni-Sala F, Basso E, Petronilli V, Forte MA, Bernardi P, Lippe G (2009) Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem 284(49):33982–33988. doi:10.1074/jbc.M109.020115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park H-A, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA, Jonas EA (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci 111(29):10580–10585. doi:10.1073/pnas.1401591111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen C, Ko Y, Delannoy M, Ludtke SJ, Chiu W, Pedersen PL (2004) Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP. J Biol Chem 279(30):31761–31768. doi:10.1074/jbc.M401353200

    Article  CAS  PubMed  Google Scholar 

  40. Ko YH, Delannoy M, Hullihen J, Chiu W, Pedersen PL (2003) Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J Biol Chem 278(14):12305–12309. doi:10.1074/jbc.C200703200

    Article  CAS  PubMed  Google Scholar 

  41. Karch J, Molkentin JD (2014) Identifying the components of the elusive mitochondrial permeability transition pore. Proc Natl Acad Sci 111(29):10396–10397. doi:10.1073/pnas.1410104111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031

    Article  CAS  PubMed  Google Scholar 

  43. Shimizu S, Eguchi Y, Kamiike W, Funahashi Y, Mignon A, Lacronique V, Matsuda H, Tsujimoto Y (1998) Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc Natl Acad Sci USA 95:1455–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95(25):14681–14686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Whelan RS, Konstantinidis K, Wei A-C, Chen Y, Reyna DE, Jha S, Yang Y, Calvert JW, Lindsten T, Thompson CB, Crow MT, Gavathiotis E, Dorn GW, O’Rourke B, Kitsis RN (2013) Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci 109(17):6566–6571. doi:10.1073/pnas.1201608109

    Article  Google Scholar 

  46. Shanmughapriya S, Rajan S, Hoffman Nicholas E, Higgins Andrew M, Tomar D, Nemani N, Hines Kevin J, Smith Dylan J, Eguchi A, Vallem S, Shaikh F, Cheung M, Leonard Nicole J, Stolakis Ryan S, Wolfers Matthew P, Ibetti J, Chuprun JK, Jog Neelakshi R, Houser Steven R, Koch Walter J, Elrod John W, Madesh M (2015) SPG7 is an essential and conserved component of the mitochondrial permeability transition pore. Mol Cell 60(1):47–62. doi:10.1016/j.molcel.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  47. Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC (2007) Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131(2):257–270. doi:10.1016/j.cell.2007.08.028

    Article  CAS  PubMed  Google Scholar 

  48. Ghosh JC, Siegelin MD, Dohi T, Altieri DC (2010) Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res 70(22):8988–8993. doi:10.1158/0008-5472.can-10-2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lam CK, Zhao W, Liu GS, Cai WF, Gardner G, Adly G, Kranias EG (2015) HAX-1 regulates cyclophilin-D levels and mitochondria permeability transition pore in the heart. Proc Natl Acad Sci USA 112(47):E6466–E6475. doi:10.1073/pnas.1508760112

    Article  CAS  PubMed  Google Scholar 

  50. Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. BioEssays 26(8):882–893. doi:10.1002/bies.20085

    Article  CAS  PubMed  Google Scholar 

  51. Hegedűs C, Virág L (2014) Inputs and outputs of poly(ADP-ribosyl)ation: relevance to oxidative stress. Redox Biol 2:978–982. doi:10.1016/j.redox.2014.08.003

    Article  PubMed Central  CAS  Google Scholar 

  52. Kraus WL, Lis JT (2003) PARP goes transcription. Cell 113(6):677–683

    CAS  PubMed  Google Scholar 

  53. Krishnakumar R, Gamble MJ, Frizzell KM, Berrocal JG, Kininis M, Kraus WL (2008) Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 319(5864):819–821

    Article  CAS  PubMed  Google Scholar 

  54. Hassa PO, Hottiger MO (2002) The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci 59:1534–1553

    Article  CAS  PubMed  Google Scholar 

  55. Devalaraja-Narashimha K, Singaravelu K, Padanilam BJ (2005) Poly(ADP-ribose) polymerase-mediated cell injury in acute renal failure. Pharmacol Res 52:44–59

    Article  CAS  PubMed  Google Scholar 

  56. Kim J, Long KE, Tang K, Padanilam BJ (2012) Poly(ADP-ribose) polymerase 1 activation is required for cisplatin nephrotoxicity. Kidney Int 82(2):193–203

    Article  CAS  PubMed  Google Scholar 

  57. Chiarugi A, Moskowitz MA (2003) Poly(ADP-ribose) polymerase-1 activity promotes NF-kappaB-driven transcription and microglial activation: implication for neurodegenerative disorders. J Neurochem 85(2):306–317

    Article  CAS  PubMed  Google Scholar 

  58. Liaudet L, Pacher P, Mabley JG, Virag L, Soriano FG, Hasko G, Szabo C (2002) Activation of poly(ADP-Ribose) polymerase-1 is a central mechanism of lipopolysaccharide-induced acute lung inflammation. Am J Respir Crit Care Med 165(3):372–377

    Article  PubMed  Google Scholar 

  59. Ha HC, Hester LD, Snyder SH (2002) Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc Natl Acad Sci USA 99(5):3270–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zerfaoui M, Errami Y, Naura AS, Suzuki Y, Kim H, Ju J, Liu T, Hans CP, Kim JG, Abd Elmageed ZY, Koochekpour S, Catling A, Boulares AH (2010) Poly(ADP-ribose) polymerase-1 is a determining factor in Crm1-mediated nuclear export and retention of p65 NF-kappa B upon TLR4 stimulation. J Immunol 185(3):1894–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hassa PO, Hottiger MO (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 13:3046–3082

    Article  CAS  PubMed  Google Scholar 

  62. Devalaraja-Narashimha K, Padanilam BJ (2009) PARP-1 inhibits glycolysis in ischemic kidneys. J Am Soc Nephrol 20(1):95–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Andrabi SA, Umanah GK, Chang C, Stevens DA, Karuppagounder SS, Gagne JP, Poirier GG, Dawson VL, Dawson TM (2014) Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc Natl Acad Sci USA 111(28):10209–10214. doi:10.1073/pnas.1405158111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zheng X, Zhang X, Sun H, Feng B, Li M, Chen G, Vladau C, Chen D, Suzuki M, Min L, Liu W, Zhong R, Garcia B, Jevnikar A, Min WP (2006) Protection of renal ischemia injury using combination gene silencing of complement 3 and caspase 3 genes. Transplantation 82(12):1781–1786

    Article  CAS  PubMed  Google Scholar 

  65. Martin DR, Lewington AJ, Hammerman MR, Padanilam BJ (2000) Inhibition of poly(ADP-ribose) polymerase attenuates ischemic renal injury in rats. Am J Physiol Regul Integr Comp Physiol 279(5):R1834–R1840

    CAS  PubMed  Google Scholar 

  66. Shevalye H, Stavniichuk R, Xu W, Zhang J, Lupachyk S, Maksimchyk Y, Drel VR, Floyd EZ, Slusher B, Obrosova IG (2010) Poly(ADP-ribose) polymerase (PARP) inhibition counteracts multiple manifestations of kidney disease in long-term streptozotocin-diabetic rat model. Biochem Pharmacol 79(7):1007–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim J, Padanilam BJ (2011) Loss of poly(ADP-ribose) polymerase 1 attenuates renal fibrosis and inflammation during unilateral ureteral obstruction. Am J Physiol 301:F450–F459

    CAS  Google Scholar 

  68. Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, Kroemer G (2000) Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 476:118–123

    Article  CAS  PubMed  Google Scholar 

  69. Lee Y, Kang HC, Lee BD, Lee Y-I, Kim YP, Shin J-H (2014) Poly (ADP-ribose) in the pathogenesis of Parkinson’s disease. BMB Rep 47(8):424–432. doi:10.5483/BMBRep.47.8.119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171(8):2000–2016. doi:10.1111/bph.12416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263

    Article  CAS  PubMed  Google Scholar 

  72. Yu S-W, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. PNAS 103:18314–18319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gagné J-P, Isabelle M, Lo KS, Bourassa S, Hendzel MJ, Dawson VL, Dawson TM, Poirier GG (2008) Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res 36(22):6959–6976. doi:10.1093/nar/gkn771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wang Y, Kim NS, Haince J-F, Kang H, David KK, Andrabi SA, Poirier GG, Dawson VL, Dawson TM (2011) Poly (ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal 4(167):ra20. doi:10.1126/scisignal.2000902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Erdélyi K, Bai P, Kovács I, Szabó É, Mocsár G, Kakuk A, Szabó C, Gergely P, Virág L (2009) Dual role of poly(ADP-ribose) glycohydrolase in the regulation of cell death in oxidatively stressed A549 cells. FASEB J 23(10):3553–3563. doi:10.1096/fj.09-133264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Xu Y, Huang S, Liu Z-G, Han J (2006) Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J Biol Chem 281:8788–8795

    Article  CAS  PubMed  Google Scholar 

  77. Chiu L-Y, Ho F-M, Shiah S-G, Chang Y, Lin W-W (2011) Oxidative stress initiates DNA damager MNNG-induced poly(ADP-ribose)polymerase-1-dependent parthanatos cell death. Biochem Pharmacol 81(3):459–470. doi:10.1016/j.bcp.2010.10.016

    Article  CAS  PubMed  Google Scholar 

  78. Zhang S, Lin Y, Kim Y-S, Hande MP, Liu Z-G, Shen H-M (2007) c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly(ADP-ribose) polymerase-1 activation. Cell Death Differ 14(5):1001–1010

    CAS  PubMed  Google Scholar 

  79. Sosna J, Voigt S, Mathieu S, Lange A, Thon L, Davarnia P, Herdegen T, Linkermann A, Rittger A, Chan FK-M, Kabelitz D, Schütze S, Adam D (2014) TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol Life Sci 71(2):331–348. doi:10.1007/s00018-013-1381-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Moubarak RS, Yuste VJ, Artus C, Bouharrour A, Greer PA, Menissier-de Murcia J, Susin SA (2007) Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27(13):4844–4862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vosler PS, Sun D, Wang S, Gao Y, Kintner DB, Signore AP, Cao G, Chen J (2009) Calcium dysregulation induces apoptosis-inducing factor release: cross-talk between PARP-1- and calpain-signaling pathways. Exp Neurol 218:213–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tagliarino C, Pink JJ, Reinicke KE, Simmers SM, Wuerzberger-Davis SM, Boothman DA (2003) Mu-calpain activation in beta-lapachone-mediated apoptosis. Cancer Biol Ther 2(2):141–152

    Article  CAS  PubMed  Google Scholar 

  83. Wang Y, Kim NS, Li X, Greer PA, Koehler RC, Dawson VL, Dawson TM (2009) Calpain activation is not required for aif translocation in PARP-1-dependent cell death (parthanatos). J Neurochem 110(2):687–696. doi:10.1111/j.1471-4159.2009.06167.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Douglas DL, Baines CP (2014) PARP1-mediated necrosis is dependent on parallel JNK and Ca2+/calpain pathways. J Cell Sci 127(19):4134–4145. doi:10.1242/jcs.128009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zong W-X, Ditsworth D, Bauer DE, Wang Z-Q, Thompson CB (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18:1272–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Goonasekera SA, Davis J, Kwong JQ, Accornero F, Wei-LaPierre L, Sargent MA, Dirksen RT, Molkentin JD (2014) Enhanced Ca(2 +) influx from STIM1–Orai1 induces muscle pathology in mouse models of muscular dystrophy. Hum Mol Genet 23(14):3706–3715. doi:10.1093/hmg/ddu079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ying Y, Kim J, Westphal SN, Long KE, Padanilam BJ (2014) Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J Am Soc Nephrol 25(12):2707–2716. doi:10.1681/asn.2013121270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alam MR, Baetz D, Ovize M (2015) Cyclophilin D and myocardial ischemia–reperfusion injury: a fresh perspective. J Mol Cell Cardiol 78:80–89. doi:10.1016/j.yjmcc.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  89. Vaseva Angelina V, Marchenko Natalie D, Ji K, Tsirka Stella E, Holzmann S, Moll Ute M (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149(7):1536–1548. doi:10.1016/j.cell.2012.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhao LP, Ji C, Lu PH, Li C, Xu B, Gao H (2013) Oxygen glucose deprivation (OGD)/re-oxygenation-induced in vitro neuronal cell death involves mitochondrial cyclophilin-D/P53 signaling axis. Neurochem Res 38(4):705–713. doi:10.1007/s11064-013-0968-5

    Article  CAS  PubMed  Google Scholar 

  91. Chen B, Xu M, Zhang H, J-x Wang, Zheng P, Gong L, G-j Wu, Dai T (2013) Cisplatin-induced non-apoptotic death of pancreatic cancer cells requires mitochondrial cyclophilin-D-p53 signaling. Biochem Biophys Res Commun 437(4):526–531. doi:10.1016/j.bbrc.2013.06.103

    Article  CAS  PubMed  Google Scholar 

  92. Zhen YF, Wang GD, Zhu LQ, Tan SP, Zhang FY, Zhou XZ, Wang XD (2014) P53 dependent mitochondrial permeability transition pore opening is required for dexamethasone-induced death of osteoblasts. J Cell Physiol 229(10):1475–1483. doi:10.1002/jcp.24589

    Article  CAS  PubMed  Google Scholar 

  93. Guo X, Sesaki H, Qi X (2014) Drp1 stabilizes p53 on the mitochondria to trigger necrosis under oxidative stress conditions in vitro and in vivo. Biochem J 461(1):137–146. doi:10.1042/BJ20131438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Karch J, Molkentin JD (2012) Is p53 the long-sought molecular trigger for cyclophilin d-regulated mitochondrial permeability transition pore formation and necrosis? Circ Res 111(10):1258–1260. doi:10.1161/CIRCRESAHA.112.280990

    Article  CAS  PubMed  Google Scholar 

  95. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283

    Article  CAS  PubMed  Google Scholar 

  96. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431

    Article  CAS  PubMed  Google Scholar 

  97. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  98. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  CAS  PubMed  Google Scholar 

  99. Herceg Z, Wang ZQ (2001) Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res 477:97–110

    Article  CAS  PubMed  Google Scholar 

  100. Junttila MR, Evan GI (2009) p53—a Jack of all trades but master of none. Nat Rev Cancer 9(11):821–829

    Article  CAS  PubMed  Google Scholar 

  101. Vaziri H, West MD, Allsopp RC, Davison TS, Wu YS, Arrowsmith CH, Poirier GG, Benchimol S (1997) ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J 16(19):6018–6033. doi:10.1093/emboj/16.19.6018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kumari SR, Mendoza-Alvarez H, Alvarez-Gonzalez R (1998) Functional interactions of p53 with poly(ADP-ribose) polymerase (PARP) during apoptosis following DNA damage: covalent poly(ADP-ribosyl)ation of p53 by exogenous PARP and noncovalent binding of p53 to the Mr 85,000 proteolytic fragment. Cancer Res 58(22):5075–5078

    CAS  PubMed  Google Scholar 

  103. Mandir AS, Simbulan-Rosenthal CM, Poitras MF, Lumpkin JR, Dawson VL, Smulson ME, Dawson TM (2002) A novel in vivo post-translational modification of p53 by PARP-1 in MPTP-induced parkinsonism. J Neurochem 83(1):186–192. doi:10.1046/j.1471-4159.2002.01144.x

    Article  CAS  PubMed  Google Scholar 

  104. Valenzuela MT, Guerrero R, Nunez MI, Ruiz De Almodovar JM, Sarker M, de Murcia G, Oliver FJ (2002) PARP-1 modifies the effectiveness of p53-mediated DNA damage response. Oncogene 21:1108–1116

    Article  CAS  PubMed  Google Scholar 

  105. Wieler S, Gagné J-P, Vaziri H, Poirier GG, Benchimol S (2003) Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J Biol Chem 278(21):18914–18921. doi:10.1074/jbc.M211641200

    Article  CAS  PubMed  Google Scholar 

  106. Montero J, Dutta C, van Bodegom D, Weinstock D, Letai A (2013) p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ 20(11):1465–1474. doi:10.1038/cdd.2013.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tu H-C, Ren D, Wang GX, Chen DY, Westergard TD, Kim H, Sasagawa S, Hsieh JJD, Cheng EHY (2009) The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage. Proc Natl Acad Sci USA 106(4):1093–1098. doi:10.1073/pnas.0808173106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dixon Scott J, Lemberg Kathryn M, Lamprecht Michael R, Skouta R, Zaitsev Eleina M, Gleason Caroline E, Patel Darpan N, Bauer Andras J, Cantley Alexandra M, Yang Wan S, Morrison Iii B, Stockwell Brent R (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. doi:10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545):57–62. doi:10.1038/nature14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, Prokai A, Zuchtriegel G, Krombach F, Welz PS, Weinlich R, Vanden Berghe T, Vandenabeele P, Pasparakis M, Bleich M, Weinberg JM, Reichel CA, Brasen JH, Kunzendorf U, Anders HJ, Stockwell BR, Green DR, Krautwald S (2014) Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA 111(47):16836–16841. doi:10.1073/pnas.1415518111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schrier RW, Wang W, Poole B, Mitra A (2004) Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 114:5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Star RA (1998) Treatment of acute renal failure. Kidney Int 54:1817–1831

    Article  CAS  PubMed  Google Scholar 

  113. Liano F, Pascual J (1998) Outcomes in acute renal failure. Semin Nephrol 18:541–550

    CAS  PubMed  Google Scholar 

  114. Rosner MH, Okusa MD (2006) Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol 1:19–32

    Article  PubMed  Google Scholar 

  115. Koreny M, Karth GD, Geppert A, Neunteufl T, Priglinger U, Heinz G, Siostrzonek P (2002) Prognosis of patients who develop acute renal failure during the first 24 hours of cardiogenic shock after myocardial infarction. Am J Med 112:115–119

    Article  PubMed  Google Scholar 

  116. Zanardo G, Michielon P, Paccagnella A, Rosi P, Calo M, Salandin V, Da Ros A, Michieletto F, Simini G (1994) Acute renal failure in the patient undergoing cardiac operation. Prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg 107:1489–1495

    CAS  PubMed  Google Scholar 

  117. Perico N, Cattaneo D, Sayegh MH, Remuzzi G (2004) Delayed graft function in kidney transplantation. Lancet 364(9447):1814–1827. doi:10.1016/S0140-6736(04)17406-0

    Article  PubMed  Google Scholar 

  118. Lo LJ, Go AS, Chertow GM, McCulloch CE, Fan D, Ordonez JD, C-y Hsu (2009) Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int 76(8):893–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bonventre JV, Weinberg JM (2003) Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14:2199–2210

    Article  PubMed  Google Scholar 

  120. Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–430

    Article  CAS  PubMed  Google Scholar 

  121. Wei Q, Dong G, Chen J-K, Ramesh G, Dong Z (2013) Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models. Kidney Int 84(1):138–148. doi:10.1038/ki.2013.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jang H-S, Padanilam BJ (2015) Simultaneous deletion of Bax and Bak is required to prevent apoptosis and interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol 309(6):F540–F550. doi:10.1152/ajprenal.00170.2015

    Article  CAS  PubMed  Google Scholar 

  123. Park JS, Pasupulati R, Feldkamp T, Roeser NF, Weinberg JM (2011) Cyclophilin D and the mitochondrial permeability transition in kidney proximal tubules after hypoxic and ischemic injury. Am J Physiol Renal Physiol 301(1):F134–F150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Feldkamp T, Park JS, Pasupulati R, Amora D, Roeser NF, Venkatachalam MA, Weinberg JM (2009) Regulation of the mitochondrial permeability transition in kidney proximal tubules and its alteration during hypoxia-reoxygenation. Am J Physiol Renal Physiol 297(6):F1632–F1646. doi:10.1152/ajprenal.00422.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kim J, Devalaraja-Narashimha K, Padanilam BJ (2015) TIGAR regulates glycolysis in ischemic kidney proximal tubules. Am J Physiol Renal Physiol 308(4):F298–F308. doi:10.1152/ajprenal.00459.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bao H, Ge Y, Zhuang S, Dworkin LD, Liu Z, Gong R (2012) Inhibition of glycogen synthase kinase-3[beta] prevents NSAID-induced acute kidney injury. Kidney Int 81(7):662–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Martin DR, Lewington AJ, Hammerman MR, Padanilam BJ (2000) Inhibition of poly(ADP-ribose) polymerase attenuates ischemic renal injury in rats. Am J Physiol Regul Integr Comp Physiol 279:R1834–R1840

    CAS  PubMed  Google Scholar 

  128. Zheng J, Devalaraja-Narashimha K, Singaravelu K, Padanilam BJ (2005) Poly(ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury. Am J Physiol Renal Physiol 288:F387–F398

    Article  CAS  PubMed  Google Scholar 

  129. Bonventre JV (1993) Mechanisms of ischemic acute renal failure [clinical conference]. Kidney Int 43:1160–1178

    Article  CAS  PubMed  Google Scholar 

  130. Mason J, Torhorst J, Welsch J (1984) Role of the medullary perfusion defect in the pathogenesis of ischemic renal failure. Kidney Int 26:283–293

    Article  CAS  PubMed  Google Scholar 

  131. Olof P, Hellberg A, Kallskog O, Wolgast M (1991) Red cell trapping and postischemic renal blood flow. Differences between the cortex, outer and inner medulla. Kidney Int 40:625–631

    Article  CAS  PubMed  Google Scholar 

  132. Yagil Y, Miyamoto M, Jamison RL (1989) Inner medullary blood flow in postischemic acute renal failure in the rat. Am J Physiol Renal Physiol 256:F456–F461

    CAS  Google Scholar 

  133. Ruegg CE, Mandel LJ (1990) Bulk isolation of renal PCT and PST. I. Glucose-dependent metabolic differences. Am J Physiol 259:F164–F175

    CAS  PubMed  Google Scholar 

  134. Ruegg CE, Mandel LJ (1990) Bulk isolation of renal PCT and PST. II. Differential responses to anoxia or hypoxia. Am J Physiol 259:F176–F185

    CAS  PubMed  Google Scholar 

  135. Kelly KJ, Plotkin Z, Vulgamott SL, Dagher PC (2003) P53 mediates the apoptotic response to GTP depletion after renal ischemia–reperfusion: protective role of a p53 inhibitor. J Am Soc Nephrol 14:128–138

    Article  CAS  PubMed  Google Scholar 

  136. Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, Brafman A, Faerman A, Atkinson SJ, Thompson JD, Kalinski H, Skaliter R, Erlich S, Feinstein E (2009) siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol 20(8):1754–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dagher PC, Mai EM, Hato T, Lee S-Y, Anderson MD, Karozos SC, Mang HE, Knipe NL, Plotkin Z, Sutton TA (2012) The p53 inhibitor pifithrin-alpha can stimulate fibrosis in a rat model of ischemic acute kidney injury. Am J Physiol Renal Physiol 302(2):F284–F291. doi:10.1152/ajprenal.00317.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sutton TA, Hato T, Mai E, Yoshimoto M, Kuehl S, Anderson M, Mang H, Plotkin Z, Chan RJ, Dagher PC (2013) p53 is renoprotective after ischemic kidney injury by reducing inflammation. J Am Soc Nephrol 24(1):113–124. doi:10.1681/asn.2012050469

    Article  CAS  PubMed  Google Scholar 

  139. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120. doi:10.1016/j.cell.2006.05.036

    Article  CAS  PubMed  Google Scholar 

  140. Green DR, Chipuk JE (2006) p53 and metabolism: inside the TIGAR. Cell 126(1):30–32. doi:10.1016/j.cell.2006.06.032

    Article  CAS  PubMed  Google Scholar 

  141. Dodoni G, Canton M, Petronilli V, Bernardi P, Di Lisa F (2004) Induction of the mitochondrial permeability transition by the DNA alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine. Sorting cause and consequence of mitochondrial dysfunction. Biochim Biophys Acta 1658(1–2):58–63. doi:10.1016/j.bbabio.2004.05.005

    Article  CAS  PubMed  Google Scholar 

  142. Alano CC, Ying W, Swanson RA (2004) Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J Biol Chem 279(18):18895–18902. doi:10.1074/jbc.M313329200

    Article  CAS  PubMed  Google Scholar 

  143. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370(5):455–465. doi:10.1056/NEJMra1310050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147. doi:10.1038/nrm3737

    Article  CAS  PubMed  Google Scholar 

  145. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320. doi:10.1038/nature14191

    Article  CAS  PubMed  Google Scholar 

  146. Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187(9):1477–1485. doi:10.1084/jem.187.9.1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer J-L, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495

    Article  CAS  PubMed  Google Scholar 

  148. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J, Mocarski ES (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288(43):31268–31279. doi:10.1074/jbc.M113.462341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Harberts E, Fishelevich R, Liu J, Atamas SP, Gaspari AA (2014) MyD88 mediates the decision to die by apoptosis or necroptosis after UV irradiation. Innate Immun 20(5):529–539. doi:10.1177/1753425913501706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Thapa RJ, Basagoudanavar SH, Nogusa S, Irrinki K, Mallilankaraman K, Slifker MJ, Beg AA, Madesh M, Balachandran S (2011) NF-κB protects cells from gamma interferon-induced RIP1-dependent necroptosis. Mol Cell Biol 31(14):2934–2946. doi:10.1128/mcb.05445-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Upton Jason W, Kaiser William J, Mocarski Edward S (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11(3):290–297. doi:10.1016/j.chom.2012.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, Chan FK, Wu H (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150(2):339–350. doi:10.1016/j.cell.2012.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Murphy James M, Lucet Isabelle S, Hildebrand Joanne M, Tanzer Maria C, Young Samuel N, Sharma P, Lessene G, Alexander Warren S, Babon Jeffrey J, Silke J, Czabotar Peter E (2014) Insights into the evolution of divergent nucleotide-binding mechanisms among pseudokinases revealed by crystal structures of human and mouse MLKL. Biochem J 457(3):369–377. doi:10.1042/bj20131270

    Article  CAS  PubMed  Google Scholar 

  154. Chen X, Li W, Ren J, Huang D, He WT, Song Y, Yang C, Li W, Zheng X, Chen P, Han J (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24(1):105–121. doi:10.1038/cr.2013.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54(1):133–146. doi:10.1016/j.molcel.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  156. Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG, Liu ZG (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1):55–65. doi:10.1038/ncb2883

    Article  CAS  PubMed  Google Scholar 

  157. Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CA, Marquis RW, Bertin J, Gough PJ, Savvides S, Martinou JC, Bertrand MJ, Vandenabeele P (2014) MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7(4):971–981. doi:10.1016/j.celrep.2014.04.026

    Article  CAS  PubMed  Google Scholar 

  158. Linkermann A, Brasen JH, Himmerkus N, Liu S, Huber TB, Kunzendorf U, Krautwald S (2012) Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int 81(8):751–761. doi:10.1038/ki.2011.450

    Article  CAS  PubMed  Google Scholar 

  159. Zhang L, Jiang F, Chen Y, Luo J, Liu S, Zhang B, Ye Z, Wang W, Liang X, Shi W (2013) Necrostatin-1 attenuates ischemia injury induced cell death in rat tubular cell line NRK-52E through decreased Drp1 expression. Int J Mol Sci 14(12):24742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Tristão VR, Gonçalves PF, Dalboni MA, Batista MC, Durão MdS, Monte JCM (2012) Nec-1 protects against nonapoptotic cell death in cisplatin-induced kidney injury. Ren Fail 34(3):373–377. doi:10.3109/0886022X.2011.647343

    Article  PubMed  CAS  Google Scholar 

  161. Linkermann A, Brasen JH, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H, Weinberg JM, Green DR, Kunzendorf U, Krautwald S (2013) Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury. Proc Natl Acad Sci USA 110(29):12024–12029. doi:10.1073/pnas.1305538110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Rådmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Förster H, Yefremova O, Heinrichmeyer M, Bornkamm GW, Geissler EK, Thomas SB, Stockwell BR, O’Donnell VB, Kagan VE, Schick JA, Conrad M (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180–1191

    Article  CAS  PubMed  Google Scholar 

  163. Ouyang ZZ (2012) Necroptosis contributes to the cyclosporin A-induced cytotoxicity in NRK-52E cells. Pharmazie 67(8):725

    CAS  PubMed  Google Scholar 

  164. Linkermann A, Heller JO, Prokai A, Weinberg JM, De Zen F, Himmerkus N, Szabo AJ, Brasen JH, Kunzendorf U, Krautwald S (2013) The RIP1-kinase inhibitor necrostatin-1 prevents osmotic nephrosis and contrast-induced AKI in mice. J Am Soc Nephrol 24(10):1545–1557. doi:10.1681/ASN.2012121169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by National Institute of Diabetes and Digestive and Kidney Diseases grants R01-DK-083291 and R56-DK-090332 and American Heart Association Grant-In-aid 10GRNT4040022 and 15GRNT25080031 to BJP and a University of Nebraska Medical Center pre-doctoral fellowship to YY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babu J. Padanilam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, Y., Padanilam, B.J. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis?. Cell. Mol. Life Sci. 73, 2309–2324 (2016). https://doi.org/10.1007/s00018-016-2202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2202-5

Keywords

Navigation