Skip to main content

Advertisement

Log in

The M. tuberculosis HAD phosphatase (Rv3042c) interacts with host proteins and is inhibited by Clofazimine

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis codes for a HAD-phosphatase, Rv3042c (MtSerB2), that has earlier been characterized as a metabolic enzyme. Here we demonstrate that MtSerB2 is secreted into the cytosol of infected macrophages and is found in bronchoalveolar lavage samples of tuberculosis patients. MtSerB2 induces significant cytoskeleton rearrangements through cofilin activation and affects the expression of genes that regulate actin dynamics. It specifically interacts with HSP90, HSP70 and HSP27 that block apoptotic pathways and not with other HSPs. It actively dephosphorylates MAPK-p38 and NF-kappa B p65 that play crucial roles in inflammatory and immune responses. This in turn leads to down-regulation of Interleukin 8, a chemotactic and inflammatory cytokine. Finally, during evaluation of inhibitors against MtSerB2 we found that Clofazimine, a drug being evaluated for XDR and MDR tuberculosis, inhibits MtSerB2 phosphatase activity and reverses the above effects and interactions with host proteins. Overall, the study identifies that MtSerB2 has new functions that might help the pathogen to evade the host’s immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. World Health Organisation Global Tuberculosis Report (2014) Executive summary. http://www.who.int/tb/publications/global_report/en/. Accessed 15 May 2015

  2. Koul A, Herget T, Klebl B, Ullrich A (2004) Interplay between mycobacteria and host signalling pathways. Nat Rev Microbiol 2(3):189–202. doi:10.1038/nrmicro840

    Article  CAS  PubMed  Google Scholar 

  3. Ligon LS, Hayden JD, Braunstein M (2012) The ins and outs of Mycobacterium tuberculosis protein export. Tuberculosis 92(2):121–132. doi:10.1016/j.tube.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  4. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48(1):77–84

    Article  CAS  PubMed  Google Scholar 

  5. Yadav GP, Shree S, Maurya R, Rai N, Singh DK, Srivastava KK, Ramachandran R (2014) Characterization of M. tuberculosis SerB2, an essential HAD-family phosphatase, reveals novel properties. PLoS One 9(12):e115409. doi:10.1371/journal.pone.0115409

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, Selengut JD, Parlikar BE, Rebay I (2003) The transcription factor eyes absent is a protein tyrosine phosphatase. Nature 426(6964):299–302. doi:10.1038/nature02097

    Article  CAS  PubMed  Google Scholar 

  7. Gohla A, Birkenfeld J, Bokoch GM (2005) Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol 7(1):21–29. doi:10.1038/ncb1201

    Article  CAS  PubMed  Google Scholar 

  8. Tribble GD, Mao S, James CE, Lamont RJ (2006) A Porphyromonas gingivalis haloacid dehalogenase family phosphatase interacts with human phosphoproteins and is important for invasion. Proc Natl Acad Sci USA 103(29):11027–11032. doi:10.1073/pnas.0509813103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cholo MC, Steel HC, Fourie PB, Germishuizen WA, Anderson R (2012) Clofazimine: current status and future prospects. J Antimicrob Chemother 67(2):290–298. doi:10.1093/jac/dkr444

    Article  CAS  PubMed  Google Scholar 

  10. Reddy VM, O’Sullivan JF, Gangadharam PR (1999) Antimycobacterial activities of riminophenazines. J Antimicrob Chemother 43(5):615–623

    Article  CAS  PubMed  Google Scholar 

  11. Lechartier B, Cole ST (2015) Mode of action of Clofazimine and combination therapy with benzothiazinones against Mycobacterium tuberculosis. Antimicrob Agents Chemother 59(8):4457–4463. doi:10.1128/AAC.00395-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lasunskaia EB, Campos MN, de Andrade MR, Damatta RA, Kipnis TL, Einicker-Lamas M, Da Silva WD (2006) Mycobacteria directly induce cytoskeletal rearrangements for macrophage spreading and polarization through TLR2-dependent PI3K signaling. J Leukoc Biol 80(6):1480–1490. doi:10.1189/jlb.0106066

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Perez BE, Mondragon-Flores R, Luna-Herrera J (2003) Internalization of Mycobacterium tuberculosis by macropinocytosis in non-phagocytic cells. Microb Pathog 35(2):49–55

    Article  CAS  PubMed  Google Scholar 

  14. Haglund CM, Welch MD (2011) Pathogens and polymers: microbe-host interactions illuminate the cytoskeleton. J Cell Biol 195(1):7–17. doi:10.1083/jcb.201103148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108(2):233–246

    Article  CAS  PubMed  Google Scholar 

  16. Moffatt CE, Inaba H, Hirano T, Lamont RJ (2012) Porphyromonas gingivalis SerB-mediated dephosphorylation of host cell cofilin modulates invasion efficiency. Cell Microbiol 14(4):577–588. doi:10.1111/j.1462-5822.2011.01743.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hasegawa Y, Tribble GD, Baker HV, Mans JJ, Handfield M, Lamont RJ (2008) Role of Porphyromonas gingivalis SerB in gingival epithelial cell cytoskeletal remodeling and cytokine production. Infect Immun 76(6):2420–2427. doi:10.1128/IAI.00156-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell pathways by bacterial pathogens. Nature 449(7164):827–834. doi:10.1038/nature06247

    Article  CAS  PubMed  Google Scholar 

  19. Finlay BB, Cossart P (1997) Exploitation of mammalian host cell functions by bacterial pathogens. Science 276(5313):718–725

    Article  CAS  PubMed  Google Scholar 

  20. Beere HM (2005) Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clin Investig 115(10):2633–2639. doi:10.1172/JCI26471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J (1997) Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110(Pt 3):357–368

    CAS  PubMed  Google Scholar 

  22. Blanco-Aparicio C, Torres J, Pulido R (1999) A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase. J Cell Biol 147(6):1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bischoff JR, Friedman PN, Marshak DR, Prives C, Beach D (1990) Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc Natl Acad Sci USA 87(12):4766–4770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, Shyu AB, Muller M, Gaestel M, Resch K, Holtmann H (1999) The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J 18(18):4969–4980. doi:10.1093/emboj/18.18.4969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wan F, Anderson DE, Barnitz RA, Snow A, Bidere N, Zheng L, Hegde V, Lam LT, Staudt LM, Levens D, Deutsch WA, Lenardo MJ (2007) Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation. Cell 131(5):927–939. doi:10.1016/j.cell.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  26. Sasaki CY, Barberi TJ, Ghosh P, Longo DL (2005) Phosphorylation of RelA/p65 on serine 536 defines an I{kappa}B{alpha}-independent NF-{kappa}B pathway. J Biol Chem 280(41):34538–34547. doi:10.1074/jbc.M504943200

    Article  CAS  PubMed  Google Scholar 

  27. Ghosh S, Hayden MS (2008) New regulators of NF-kappaB in inflammation. Nat Rev Immunol 8(11):837–848. doi:10.1038/nri2423

    Article  CAS  PubMed  Google Scholar 

  28. Arora G, Tiwari P, Mandal RS, Gupta A, Sharma D, Saha S, Singh R (2014) High throughput screen identifies small molecule inhibitors specific for Mycobacterium tuberculosis phosphoserine phosphatase. J Biol Chem 289(36):25149–25165. doi:10.1074/jbc.M114.597682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Collins L, Franzblau SG (1997) Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41(5):1004–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Abendroth J, Gardberg AS, Robinson JI, Christensen JS, Staker BL, Myler PJ, Stewart LJ, Edwards TE (2011) SAD phasing using iodide ions in a high-throughput structural genomics environment. J Struct Funct Genomics 12(2):83–95. doi:10.1007/s10969-011-9101-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DeVinney R, Steele-Mortimer O, Finlay BB (2000) Phosphatases and kinases delivered to the host cell by bacterial pathogens. Trends Microbiol 8(1):29–33

    Article  CAS  PubMed  Google Scholar 

  32. Hussain H, Branny P, Allan E (2006) A eukaryotic-type serine/threonine protein kinase is required for biofilm formation, genetic competence, and acid resistance in Streptococcus mutans. J Bacteriol 188(4):1628–1632. doi:10.1128/JB.188.4.1628-1632.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rajagopal L, Clancy A, Rubens CE (2003) A eukaryotic type serine/threonine kinase and phosphatase in Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence. J Biol Chem 278(16):14429–14441. doi:10.1074/jbc.M212747200

    Article  CAS  PubMed  Google Scholar 

  34. Arbibe L, Kim DW, Batsche E, Pedron T, Mateescu B, Muchardt C, Parsot C, Sansonetti PJ (2007) An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat Immunol 8(1):47–56. doi:10.1038/ni1423

    Article  CAS  PubMed  Google Scholar 

  35. Cameron PU, Saleh S, Sallmann G, Solomon A, Wightman F, Evans VA, Boucher G, Haddad EK, Sekaly RP, Harman AN, Anderson JL, Jones KL, Mak J, Cunningham AL, Jaworowski A, Lewin SR (2010) Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci USA 107(39):16934–16939. doi:10.1073/pnas.1002894107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bierne H, Gouin E, Roux P, Caroni P, Yin HL, Cossart P (2001) A role for cofilin and LIM kinase in Listeria-induced phagocytosis. J Cell Biol 155(1):101–112. doi:10.1083/jcb.200104037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dai S, Sarmiere PD, Wiggan O, Bamburg JR, Zhou D (2004) Efficient Salmonella entry requires activity cycles of host ADF and cofilin. Cell Microbiol 6(5):459–471. doi:10.1111/j.1462-5822.2004.00375.x

    Article  CAS  PubMed  Google Scholar 

  38. Huang TY, Minamide LS, Bamburg JR, Bokoch GM (2008) Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation. Dev Cell 15(5):691–703. doi:10.1016/j.devcel.2008.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takayama S, Reed JC, Homma S (2003) Heat-shock proteins as regulators of apoptosis. Oncogene 22(56):9041–9047. doi:10.1038/sj.onc.1207114

    Article  CAS  PubMed  Google Scholar 

  40. Connarn JN, Assimon VA, Reed RA, Tse E, Southworth DR, Zuiderweg ER, Gestwicki JE, Sun D (2014) The molecular chaperone Hsp70 activates protein phosphatase 5 (PP5) by binding the tetratricopeptide repeat (TPR) domain. J Biol Chem 289(5):2908–2917. doi:10.1074/jbc.M113.519421

    Article  CAS  PubMed  Google Scholar 

  41. Morita K, Saitoh M, Tobiume K, Matsuura H, Enomoto S, Nishitoh H, Ichijo H (2001) Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress. EMBO J 20(21):6028–6036. doi:10.1093/emboj/20.21.6028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maruta H, Nheu TV, He H, Hirokawa Y (2003) Rho family-associated kinases PAK1 and rock. Progress Cell Cycle Res 5:203–210

    Google Scholar 

  43. Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11(12):471–477

    Article  CAS  PubMed  Google Scholar 

  44. Zhao ZS, Manser E, Chen XQ, Chong C, Leung T, Lim L (1998) A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol Cell Biol 18(4):2153–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu J, Wirtz D, Pollard TD (1998) Dynamic cross-linking by alpha-actinin determines the mechanical properties of actin filament networks. J Biol Chem 273(16):9570–9576

    Article  CAS  PubMed  Google Scholar 

  46. Ramarao N, Le Clainche C, Izard T, Bourdet-Sicard R, Ageron E, Sansonetti PJ, Carlier MF, Tran Van Nhieu G (2007) Capping of actin filaments by vinculin activated by the Shigella IpaA carboxyl-terminal domain. FEBS Lett 581(5):853–857. doi:10.1016/j.febslet.2007.01.057

    Article  CAS  PubMed  Google Scholar 

  47. Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7(10):713–726. doi:10.1038/nrm2026

    Article  CAS  PubMed  Google Scholar 

  48. Bernard O (2007) Lim kinases, regulators of actin dynamics. Int J Biochem Cell Biol 39(6):1071–1076. doi:10.1016/j.biocel.2006.11.011

    Article  CAS  PubMed  Google Scholar 

  49. Dold FG, Sanger JM, Sanger JW (1994) Intact alpha-actinin molecules are needed for both the assembly of actin into the tails and the locomotion of Listeria monocytogenes inside infected cells. Cell Motil Cytoskelet 28(2):97–107. doi:10.1002/cm.970280202

    Article  CAS  Google Scholar 

  50. Monteville MR, Yoon JE, Konkel ME (2003) Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology 149(Pt 1):153–165

    Article  CAS  PubMed  Google Scholar 

  51. Yilmaz O, Young PA, Lamont RJ, Kenny GE (2003) Gingival epithelial cell signalling and cytoskeletal responses to Porphyromonas gingivalis invasion. Microbiology 149(Pt 9):2417–2426

    Article  CAS  PubMed  Google Scholar 

  52. Darveau RP, Belton CM, Reife RA, Lamont RJ (1998) Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infect Immun 66(4):1660–1665

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Garrelts JC (1991) Clofazimine: a review of its use in leprosy and Mycobacterium avium complex infection. DICP Ann Pharmacother 25(5):525–531

    CAS  Google Scholar 

  54. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  55. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    Article  CAS  Google Scholar 

  56. Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50(3):437–450. doi:10.1002/prot.10286

    Article  CAS  PubMed  Google Scholar 

  57. Singh AK, Joharapurkar AA, Khan MP, Mishra JS, Singh N, Yadav M, Hossain Z, Khan K, Kumar S, Dhanesha NA, Mishra DP, Maurya R, Sharma S, Jain MR, Trivedi AK, Godbole MM, Gayen JR, Chattopadhyay N, Sanyal S (2014) Orally active osteoanabolic agent GTDF binds to adiponectin receptors, with a preference for AdipoR1, induces adiponectin-associated signaling, and improves metabolic health in a rodent model of diabetes. Diabetes 63(10):3530–3544. doi:10.2337/db13-1619

    Article  CAS  PubMed  Google Scholar 

  58. Khan MP, Singh AK, Joharapurkar AA, Yadav M, Shree S, Kumar H, Gurjar A, Mishra JS, Tiwari MC, Nagar GK, Kumar S, Ramachandran R, Sharan A, Jain MR, Trivedi AK, Maurya R, Godbole MM, Gayen JR, Sanyal S, Chattopadhyay N (2015) Pathophysiological mechanism of bone loss in type 2 diabetes involves inverse regulation of osteoblast function by PGC-1alpha and skeletal muscle atrogenes: AdipoR1 as a potential target for reversing diabetes-induced osteopenia. Diabetes 64(7):2609–2623. doi:10.2337/db14-1611

    Article  CAS  PubMed  Google Scholar 

  59. Singh N, Yadav M, Singh AK, Kumar H, Dwivedi SK, Mishra JS, Gurjar A, Manhas A, Chandra S, Yadav PN, Jagavelu K, Siddiqi MI, Trivedi AK, Chattopadhyay N, Sanyal S (2014) Synthetic FXR agonist GW4064 is a modulator of multiple G protein-coupled receptors. Mol Endocrinol 28(5):659–673. doi:10.1210/me.2013-1353

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Seattle Structural Genomics Center for Infectious Diseases for providing the M avium SerB clone as a gift. We thank R. R. Sarkar for help with confocal microscopy experiments and Shikha Dubey for help in pull-down assays and protein purification. This work was supported by the Council of Scientific and Industrial Research (CSIR) vide Grant BSC0104. This manuscript bears the CSIR-CDRI communication number 9192.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravishankar Ramachandran.

Ethics declarations

Conflict of interest

The authors declare no competing conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4033 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shree, S., Singh, A.K., Saxena, R. et al. The M. tuberculosis HAD phosphatase (Rv3042c) interacts with host proteins and is inhibited by Clofazimine. Cell. Mol. Life Sci. 73, 3401–3417 (2016). https://doi.org/10.1007/s00018-016-2177-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2177-2

Keywords

Navigation