Advertisement

Cellular and Molecular Life Sciences

, Volume 73, Issue 9, pp 1845–1858 | Cite as

The renewed battle against RAS-mutant cancers

  • Fuquan Zhang
  • Jit Kong CheongEmail author
Review

Abstract

The RAS genes encode for members of a large superfamily of guanosine-5′-triphosphate (GTP)-binding proteins that control diverse intracellular signaling pathways to promote cell proliferation. Somatic mutations in the RAS oncogenes are the most common activating lesions found in human cancers. These mutations invariably result in the gain-of-function of RAS by impairing GTP hydrolysis and are frequently associated with poor responses to standard cancer therapies. In this review, we summarize key findings of past and present landmark studies that have deepened our understanding of the RAS biology in the context of oncogenesis. We also discuss how emerging areas of research could further bolster a renewed global effort to target the largely undruggable oncogenic RAS and/or its activated downstream effector signaling cascades to achieve better treatment outcomes for RAS-mutant cancer patients.

Keywords

KRAS NRAS HRAS Small GTPases Kinases Autophagy Signaling Cancer therapeutics 

Notes

Acknowledgments

Space limitations preclude our manuscript from being a comprehensive review, and this unfortunately limits appropriate recognition of many of our colleagues worldwide, who have contributed immeasurably to the development of the RAS field. We thank David Virshup (Duke-NUS) for his critical review of our manuscript. This work was supported by an NMRC-CBRG New Investigator Grant (NMRC/BNIG/1078/2012) and a Duke-NUS-St. Baldrick’s Foundation Pediatric Cancer Research Fund (Duke-NUS-SBF/2015/0004) to JKC.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Harvey JJ (1964) An unidentified virus which causes the rapid production of tumours in mice. Nature 204:1104–1105PubMedCrossRefGoogle Scholar
  2. 2.
    Kirsten WH, Mayer LA (1967) Morphologic responses to a murine erythroblastosis virus. J Natl Cancer Inst 39(2):311–335PubMedGoogle Scholar
  3. 3.
    Scolnick EM, Rands E, Williams D, Parks WP (1973) Studies on the nucleic acid sequences of Kirsten sarcoma virus: a model for formation of a mammalian RNA-containing sarcoma virus. J Virol 12(3):458–463PubMedPubMedCentralGoogle Scholar
  4. 4.
    Shih C, Shilo BZ, Goldfarb MP, Dannenberg A, Weinberg RA (1979) Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. Proc Natl Acad Sci USA 76(11):5714–5718PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Shih C, Padhy LC, Murray M, Weinberg RA (1981) Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290(5803):261–264PubMedCrossRefGoogle Scholar
  6. 6.
    Perucho M, Goldfarb M, Shimizu K, Lama C, Fogh J, Wigler M (1981) Human-tumor-derived cell lines contain common and different transforming genes. Cell 27(3 Pt 2):467–476PubMedCrossRefGoogle Scholar
  7. 7.
    Shih C, Weinberg RA (1982) Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29(1):161–169PubMedCrossRefGoogle Scholar
  8. 8.
    Goldfarb M, Shimizu K, Perucho M, Wigler M (1982) Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature 296(5856):404–409PubMedCrossRefGoogle Scholar
  9. 9.
    Pulciani S, Santos E, Lauver AV, Long LK, Robbins KC, Barbacid M (1982) Oncogenes in human tumor cell lines: molecular cloning of a transforming gene from human bladder carcinoma cells. Proc Natl Acad Sci USA 79(9):2845–2849PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Der CJ, Krontiris TG, Cooper GM (1982) Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA 79(11):3637–3640PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Parada LF, Tabin CJ, Shih C, Weinberg RA (1982) Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297(5866):474–478PubMedCrossRefGoogle Scholar
  12. 12.
    Santos E, Tronick SR, Aaronson SA, Pulciani S, Barbacid M (1982) T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature 298(5872):343–347PubMedCrossRefGoogle Scholar
  13. 13.
    Shimizu K, Goldfarb M, Perucho M, Wigler M (1983) Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. Proc Natl Acad Sci USA 80(2):383–387PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hall A, Marshall CJ, Spurr NK, Weiss RA (1983) Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature 303(5916):396–400PubMedCrossRefGoogle Scholar
  15. 15.
    Pells S, Divjak M, Romanowski P, Impey H, Hawkins NJ, Clarke AR, Hooper ML, Williamson DJ (1997) Developmentally-regulated expression of murine K-ras isoforms. Oncogene 15(15):1781–1786PubMedCrossRefGoogle Scholar
  16. 16.
    Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, Bronson RT, Umanoff H, Edelmann W, Kucherlapati R, Jacks T (1997) K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 11(19):2468–2481PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T, Otani H, Aiba A, Katsuki M (1997) K-ras is essential for the development of the mouse embryo. Oncogene 15(10):1151–1159PubMedCrossRefGoogle Scholar
  19. 19.
    Esteban LM, Vicario-Abejon C, Fernandez-Salguero P, Fernandez-Medarde A, Swaminathan N, Yienger K, Lopez E, Malumbres M, McKay R, Ward JM, Pellicer A, Santos E (2001) Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 21(5):1444–1452PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Potenza N, Vecchione C, Notte A, De Rienzo A, Rosica A, Bauer L, Affuso A, De Felice M, Russo T, Poulet R, Cifelli G, De Vita G, Lembo G, Di Lauro R (2005) Replacement of K-Ras with H-Ras supports normal embryonic development despite inducing cardiovascular pathology in adult mice. EMBO Rep 6(5):432–437PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    To MD, Wong CE, Karnezis AN, Del Rosario R, Di Lauro R, Balmain A (2008) Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nat Genet 40(10):1240–1244PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ (2014) Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 13(11):828–851PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Stephen AG, Esposito D, Bagni RK, McCormick F (2014) Dragging ras back in the ring. Cancer Cell 25(3):272–281PubMedCrossRefGoogle Scholar
  24. 24.
    Lampson BL, Pershing NL, Prinz JA, Lacsina JR, Marzluff WF, Nicchitta CV, MacAlpine DM, Counter CM (2013) Rare codons regulate KRas oncogenesis. Curr Biol 23(1):70–75PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Pershing NL, Lampson BL, Belsky JA, Kaltenbrun E, MacAlpine DM, Counter CM (2015) Rare codons capacitate Kras-driven de novo tumorigenesis. J Clin Invest 125(1):222–233PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hunter JC, Manandhar A, Carrasco MA, Gurbani D, Gondi S, Westover KD (2015) biochemical and structural analysis of common cancer-associated KRAS mutations. Mol Cancer Res 13(9):1325–1335PubMedCrossRefGoogle Scholar
  27. 27.
    Wey M, Lee J, Jeong SS, Kim J, Heo J (2013) Kinetic mechanisms of mutation-dependent Harvey Ras activation and their relevance for the development of Costello syndrome. Biochemistry 52(47):8465–8479PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238(4826):542–545PubMedCrossRefGoogle Scholar
  29. 29.
    Leevers SJ, Paterson HF, Marshall CJ (1994) Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369(6479):411–414PubMedCrossRefGoogle Scholar
  30. 30.
    Marais R, Light Y, Paterson HF, Marshall CJ (1995) Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 14(13):3136–3145PubMedPubMedCentralGoogle Scholar
  31. 31.
    Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36(6):320–328PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yu CF, Liu ZX, Cantley LG (2002) ERK negatively regulates the epidermal growth factor-mediated interaction of Gab1 and the phosphatidylinositol 3-kinase. J Biol Chem 277(22):19382–19388PubMedCrossRefGoogle Scholar
  33. 33.
    Hoeflich KP, O’Brien C, Boyd Z, Cavet G, Guerrero S, Jung K, Januario T, Savage H, Punnoose E, Truong T, Zhou W, Berry L, Murray L, Amler L, Belvin M, Friedman LS, Lackner MR (2009) In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res 15(14):4649–4664PubMedCrossRefGoogle Scholar
  34. 34.
    Carriere A, Romeo Y, Acosta-Jaquez HA, Moreau J, Bonneil E, Thibault P, Fingar DC, Roux PP (2011) ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J Biol Chem 286(1):567–577PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Foster KG, Acosta-Jaquez HA, Romeo Y, Ekim B, Soliman GA, Carriere A, Roux PP, Ballif BA, Fingar DC (2010) Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J Biol Chem 285(1):80–94PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121(2):179–193PubMedCrossRefGoogle Scholar
  37. 37.
    Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286(5445):1741–1744PubMedCrossRefGoogle Scholar
  38. 38.
    Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD, Vojtek AB (2000) Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem 275(35):27354–27359PubMedGoogle Scholar
  39. 39.
    Brundage ME, Tandon P, Eaves DW, Williams JP, Miller SJ, Hennigan RH, Jegga A, Cripe TP, Ratner N (2014) MAF mediates crosstalk between Ras-MAPK and mTOR signaling in NF1. Oncogene 33(49):5626–5636PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118(9):3065–3074PubMedPubMedCentralGoogle Scholar
  41. 41.
    Elgendy M, Sheridan C, Brumatti G, Martin SJ (2011) Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell 42(1):23–35PubMedCrossRefGoogle Scholar
  42. 42.
    Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16(8):461–472PubMedCrossRefGoogle Scholar
  43. 43.
    Guo JYCH-Y, Mathew R, Fan J, Strohecker AM et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–470PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kim MJWS, Yoon CH, Lee JS, An S et al (2011) Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J Biol Chem 286:12924–12932PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lock RRS, Kenific CM, Su JS, Salas E et al (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22:165–178PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Yang SWX, Contino G, Liesa M, Sahin E et al (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cheong JK, Zhang F, Chua PJ, Bay BH, Thorburn A, Virshup DM (2015) Casein kinase 1alpha-dependent feedback loop controls autophagy in RAS-driven cancers. J Clin Invest 125(4):1401–1418PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Dou Z, Xu C, Donahue G, Shimi T, Pan JA, Zhu J, Ivanov A, Capell BC, Drake AM, Shah PP, Catanzaro JM, Daniel Ricketts M, Lamark T, Adam SA, Marmorstein R, Zong WX, Johansen T, Goldman RD, Adams PD, Berger SL (2015) Autophagy mediates degradation of nuclear lamina. Nature 527(7576):105–109PubMedCrossRefGoogle Scholar
  49. 49.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602PubMedCrossRefGoogle Scholar
  50. 50.
    Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400(6743):464–468PubMedCrossRefGoogle Scholar
  51. 51.
    Rich JN, Guo C, McLendon RE, Bigner DD, Wang XF, Counter CM (2001) A genetically tractable model of human glioma formation. Cancer Res 61(9):3556–3560PubMedGoogle Scholar
  52. 52.
    Lundberg AS, Randell SH, Stewart SA, Elenbaas B, Hartwell KA, Brooks MW, Fleming MD, Olsen JC, Miller SW, Weinberg RA, Hahn WC (2002) Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene 21(29):4577–4586PubMedCrossRefGoogle Scholar
  53. 53.
    Liu J, Yang G, Thompson-Lanza JA, Glassman A, Hayes K, Patterson A, Marquez RT, Auersperg N, Yu Y, Hahn WC, Mills GB, Bast RC Jr (2004) A genetically defined model for human ovarian cancer. Cancer Res 64(5):1655–1663PubMedCrossRefGoogle Scholar
  54. 54.
    Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, Popescu NC, Hahn WC, Weinberg RA (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15(1):50–65PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Yu J, Boyapati A, Rundell K (2001) Critical role for SV40 small-t antigen in human cell transformation. Virology 290(2):192–198PubMedCrossRefGoogle Scholar
  56. 56.
    MacKenzie KL, Franco S, Naiyer AJ, May C, Sadelain M, Rafii S, Moore MA (2002) Multiple stages of malignant transformation of human endothelial cells modelled by co-expression of telomerase reverse transcriptase, SV40 T antigen and oncogenic N-ras. Oncogene 21(27):4200–4211PubMedCrossRefGoogle Scholar
  57. 57.
    Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410(6832):1111–1116PubMedCrossRefGoogle Scholar
  58. 58.
    Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15(24):3243–3248PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CV, Hruban RH, Lowy AM, Tuveson DA (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4(6):437–450PubMedCrossRefGoogle Scholar
  60. 60.
    Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, Redston MS, DePinho RA (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17(24):3112–3126PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF, Feng B, Brennan C, Weissleder R, Mahmood U, Hanahan D, Redston MS, Chin L, Depinho RA (2006) Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA 103(15):5947–5952PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7(5):469–483PubMedCrossRefGoogle Scholar
  63. 63.
    Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, Wright CV, Moses HL (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev 20(22):3147–3160PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Morton JP, Jamieson NB, Karim SA, Athineos D, Ridgway RA, Nixon C, McKay CJ, Carter R, Brunton VG, Frame MC, Ashworth A, Oien KA, Evans TR, Sansom OJ (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology 139(2):586–597, 597e1–6Google Scholar
  65. 65.
    Collins MA, Bednar F, Zhang Y, Brisset JC, Galban S, Galban CJ, Rakshit S, Flannagan KS, Adsay NV, Pasca di Magliano M (2012) Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122(2):639–653PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Collins MA, Brisset JC, Zhang Y, Bednar F, Pierre J, Heist KA, Galban CJ, Galban S, Pasca di Magliano M (2012) Metastatic pancreatic cancer is dependent on oncogenic Kras in mice. PLoS One 7(12):e49707PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J, Hezel AF, Perry SR, Hu J, Gan B, Xiao Y, Asara JM, Weissleder R, Wang YA, Chin L, Cantley LC, DePinho RA (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149(3):656–670PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Nguyen AT, Emelyanov A, Koh CH, Spitsbergen JM, Parinov S, Gong Z (2012) An inducible kras(V12) transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis Model Mech 5(1):63–72PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Langenau DM, Keefe MD, Storer NY, Guyon JR, Kutok JL, Le X, Goessling W, Neuberg DS, Kunkel LM, Zon LI (2007) Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 21(11):1382–1395PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Schook LB, Collares TV, Hu W, Liang Y, Rodrigues FM, Rund LA, Schachtschneider KM, Seixas FK, Singh K, Wells KD, Walters EM, Prather RS, Counter CM (2015) A Genetic Porcine Model of Cancer. PLoS One 10(7):e0128864PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Cox AD, Der CJ, Philips MR (2015) Targeting RAS membrane association: back to the future for anti-RAS drug discovery? Clin Cancer Res 21(8):1819–1827PubMedCrossRefGoogle Scholar
  72. 72.
    Downward J (2015) RAS synthetic lethal screens revisited: still seeking the elusive prize? Clin Cancer Res 21(8):1802–1809PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kimmelman AC (2015) Metabolic dependencies in RAS-driven cancers. Clin Cancer Res 21(8):1828–1834PubMedCrossRefGoogle Scholar
  74. 74.
    Marcus K, Mattos C (2015) Direct attack on RAS: intramolecular communication and mutation-specific effects. Clin Cancer Res 21(8):1810–1818PubMedCrossRefGoogle Scholar
  75. 75.
    McCormick F (2015) KRAS as a therapeutic target. Clin Cancer Res 21(8):1797–1801PubMedCrossRefGoogle Scholar
  76. 76.
    Singh H, Longo DL, Chabner BA (2015) Improving prospects for targeting RAS. J Clin Oncol 33:3650–3659PubMedCrossRefGoogle Scholar
  77. 77.
    Spiegel J, Cromm PM, Zimmermann G, Grossmann TN, Waldmann H (2014) Small-molecule modulation of Ras signaling. Nat Chem Biol 10(8):613–622PubMedCrossRefGoogle Scholar
  78. 78.
    Bivona TG, Perez De Castro I, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ, Cullen PJ, Pellicer A, Cox AD, Philips MR (2003) Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424(6949):694–698PubMedCrossRefGoogle Scholar
  79. 79.
    Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H, Johnson RL 2nd, Cox AD, Philips MR (2002) Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4(5):343–350PubMedGoogle Scholar
  80. 80.
    Bergo MO, Leung GK, Ambroziak P, Otto JC, Casey PJ, Young SG (2000) Targeted inactivation of the isoprenylcysteine carboxyl methyltransferase gene causes mislocalization of K-Ras in mammalian cells. J Biol Chem 275(23):17605–17610PubMedCrossRefGoogle Scholar
  81. 81.
    Kim E, Ambroziak P, Otto JC, Taylor B, Ashby M, Shannon K, Casey PJ, Young SG (1999) Disruption of the mouse Rce1 gene results in defective Ras processing and mislocalization of Ras within cells. J Biol Chem 274(13):8383–8390PubMedCrossRefGoogle Scholar
  82. 82.
    Liu M, Bryant MS, Chen J, Lee S, Yaremko B, Lipari P, Malkowski M, Ferrari E, Nielsen L, Prioli N, Dell J, Sinha D, Syed J, Korfmacher WA, Nomeir AA, Lin CC, Wang L, Taveras AG, Doll RJ, Njoroge FG, Mallams AK, Remiszewski S, Catino JJ, Girijavallabhan VM, Bishop WR et al (1998) Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res 58(21):4947–4956PubMedGoogle Scholar
  83. 83.
    End DW, Smets G, Todd AV, Applegate TL, Fuery CJ, Angibaud P, Venet M, Sanz G, Poignet H, Skrzat S, Devine A, Wouters W, Bowden C (2001) Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 61(1):131–137PubMedGoogle Scholar
  84. 84.
    James GL, Goldstein JL, Brown MS (1995) Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J Biol Chem 270(11):6221–6226PubMedCrossRefGoogle Scholar
  85. 85.
    Manandhar SP, Hildebrandt ER, Schmidt WK (2007) Small-molecule inhibitors of the Rce1p CaaX protease. J Biomol Screen 12(7):983–993PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Porter SB, Hildebrandt ER, Breevoort SR, Mokry DZ, Dore TM, Schmidt WK (2007) Inhibition of the CaaX proteases Rce1p and Ste24p by peptidyl (acyloxy)methyl ketones. Biochim Biophys Acta 1773(6):853–862PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Winter-Vann AM, Baron RA, Wong W, dela Cruz J, York JD, Gooden DM, Bergo MO, Young SG, Toone EJ, Casey PJ (2005) A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase with antitumor activity in cancer cells. Proc Natl Acad Sci USA 102(12):4336–4341PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464(7287):431–435PubMedCrossRefGoogle Scholar
  89. 89.
    Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140(2):209–221PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464(7287):427–430PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Gilmartin AG, Bleam MR, Groy A, Moss KG, Minthorn EA, Kulkarni SG, Rominger CM, Erskine S, Fisher KE, Yang J, Zappacosta F, Annan R, Sutton D, Laquerre SG (2011) GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res 17(5):989–1000PubMedCrossRefGoogle Scholar
  92. 92.
    Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, Garcia-Echeverria C, Weissleder R, Mahmood U, Cantley LC, Wong KK (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14(12):1351–1356PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H, Chodon T, Nelson SF, McArthur G, Sosman JA, Ribas A, Lo RS (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468(7326):973–977PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD, Conrads TP, Veenstra TD, Lu KP, Morrison DK (2005) Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 17(2):215–224PubMedCrossRefGoogle Scholar
  95. 95.
    Britten CD (2013) PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother Pharmacol 71(6):1395–1409PubMedCrossRefGoogle Scholar
  96. 96.
    Liu EY, Ryan KM (2012) Autophagy and cancer—issues we need to digest. J Cell Sci 125(Pt 10):2349–2358PubMedCrossRefGoogle Scholar
  97. 97.
    White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12(6):401–410PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ganley IG, du Lam H, Wang J, Ding X, Chen S, Jiang X (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284(18):12297–12305PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20(7):1992–2003PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273(7):3963–3966PubMedCrossRefGoogle Scholar
  102. 102.
    Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7(2):167–178PubMedCrossRefGoogle Scholar
  103. 103.
    Levy JM, Thompson JC, Griesinger AM, Amani V, Donson AM, Birks DK, Morgan MJ, Mirsky DM, Handler MH, Foreman NK, Thorburn A (2014) Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Discov 4(7):773–780PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, Mathew R, McMahon M, White E (2013) Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3(11):1272–1285PubMedCrossRefGoogle Scholar
  105. 105.
    Corazzari M, Rapino F, Ciccosanti F, Giglio P, Antonioli M, Conti B, Fimia GM, Lovat PE, Piacentini M (2015) Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death Differ 22(6):946–958PubMedCrossRefGoogle Scholar
  106. 106.
    Ma XH, Piao SF, Dey S, McAfee Q, Karakousis G, Villanueva J, Hart LS, Levi S, Hu J, Zhang G, Lazova R, Klump V, Pawelek JM, Xu X, Xu W, Schuchter LM, Davies MA, Herlyn M, Winkler J, Koumenis C, Amaravadi RK (2014) Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest 124(3):1406–1417PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Milani M, Rzymski T, Mellor HR, Pike L, Bottini A, Generali D, Harris AL (2009) The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with bortezomib. Cancer Res 69(10):4415–4423PubMedCrossRefGoogle Scholar
  108. 108.
    Bowman BM, Sebolt KA, Hoff BA, Boes JL, Daniels DL, Heist KA, Galban CJ, Patel RM, Zhang J, Beer DG, Ross BD, Rehemtulla A, Galban S (2015) Phosphorylation of FADD by the kinase CK1alpha promotes KRASG12D-induced lung cancer. Sci Signal 8(361):ra9PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Degtyarev M, De Maziere A, Orr C, Lin J, Lee BB, Tien JY, Prior WW, van Dijk S, Wu H, Gray DC, Davis DP, Stern HM, Murray LJ, Hoeflich KP, Klumperman J, Friedman LS, Lin K (2008) Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 183(1):101–116PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Barnard RA, Wittenburg LA, Amaravadi RK, Gustafson DL, Thorburn A, Thamm DH (2014) Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy 10(8):1415–1425PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Mahalingam D, Mita M, Sarantopoulos J, Wood L, Amaravadi RK, Davis LE, Mita AC, Curiel TJ, Espitia CM, Nawrocki ST, Giles FJ, Carew JS (2014) Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10(8):1403–1414PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Rangwala R, Chang YC, Hu J, Algazy KM, Evans TL, Fecher LA, Schuchter LM, Torigian DA, Panosian JT, Troxel AB, Tan KS, Heitjan DF, DeMichele AM, Vaughn DJ, Redlinger M, Alavi A, Kaiser J, Pontiggia L, Davis LE, O’Dwyer PJ, Amaravadi RK (2014) Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10(8):1391–1402PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Rangwala R, Leone R, Chang YC, Fecher LA, Schuchter LM, Kramer A, Tan KS, Heitjan DF, Rodgers G, Gallagher M, Piao S, Troxel AB, Evans TL, DeMichele AM, Nathanson KL, O’Dwyer PJ, Kaiser J, Pontiggia L, Davis LE, Amaravadi RK (2014) Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10(8):1369–1379PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S, Mikkelson T, Wang D, Chang YC, Hu J, McAfee Q, Fisher J, Troxel AB, Piao S, Heitjan DF, Tan KS, Pontiggia L, O’Dwyer PJ, Davis LE, Amaravadi RK (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10(8):1359–1368PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Vogl DT, Stadtmauer EA, Tan KS, Heitjan DF, Davis LE, Pontiggia L, Rangwala R, Piao S, Chang YC, Scott EC, Paul TM, Nichols CW, Porter DL, Kaplan J, Mallon G, Bradner JE, Amaravadi RK (2014) Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 10(8):1380–1390PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Carretero J, Shimamura T, Rikova K, Jackson AL, Wilkerson MD, Borgman CL, Buttarazzi MS, Sanofsky BA, McNamara KL, Brandstetter KA, Walton ZE, Gu TL, Silva JC, Crosby K, Shapiro GI, Maira SM, Ji H, Castrillon DH, Kim CF, Garcia-Echeverria C, Bardeesy N, Sharpless NE, Hayes ND, Kim WY, Engelman JA, Wong KK (2010) Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors. Cancer Cell 17(6):547–559PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kim HS, Mendiratta S, Kim J, Pecot CV, Larsen JE, Zubovych I, Seo BY, Kim J, Eskiocak B, Chung H, McMillan E, Wu S, De Brabander J, Komurov K, Toombs JE, Wei S, Peyton M, Williams N, Gazdar AF, Posner BA, Brekken RA, Sood AK, Deberardinis RJ, Roth MG, Minna JD, White MA (2013) Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer. Cell 155(3):552–566PubMedCrossRefGoogle Scholar
  118. 118.
    Ou YH, Torres M, Ram R, Formstecher E, Roland C, Cheng T, Brekken R, Wurz R, Tasker A, Polverino T, Tan SL, White MA (2011) TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol Cell 41(4):458–470PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, Frohling S, Chan EM, Sos ML, Michel K, Mermel C, Silver SJ, Weir BA, Reiling JH, Sheng Q, Gupta PB, Wadlow RC, Le H, Hoersch S, Wittner BS, Ramaswamy S, Livingston DM, Sabatini DM, Meyerson M, Thomas RK, Lander ES, Mesirov JP, Root DE, Gilliland DG, Jacks T, Hahn WC (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462(7269):108–112PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kumar MS, Hancock DC, Molina-Arcas M, Steckel M, East P, Diefenbacher M, Armenteros-Monterroso E, Lassailly F, Matthews N, Nye E, Stamp G, Behrens A, Downward J (2012) The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 149(3):642–655PubMedCrossRefGoogle Scholar
  121. 121.
    Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK, Elledge SJ (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137(5):835–848PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, Liu Q, Iorio F, Surdez D, Chen L, Milano RJ, Bignell GR, Tam AT, Davies H, Stevenson JA, Barthorpe S, Lutz SR, Kogera F, Lawrence K, McLaren-Douglas A, Mitropoulos X, Mironenko T, Thi H, Richardson L, Zhou W, Jewitt F, Zhang T, O’Brien P, Boisvert JL, Price S, Hur W, Yang W, Deng X, Butler A, Choi HG, Chang JW, Baselga J, Stamenkovic I, Engelman JA, Sharma SV, Delattre O, Saez-Rodriguez J, Gray NS, Settleman J, Futreal PA, Haber DA, Stratton MR, Ramaswamy S, McDermott U, Benes CH (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483(7391):570–575PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P, Papadimitriou CA, Murray S (2008) Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 9(10):962–972PubMedCrossRefGoogle Scholar
  125. 125.
    De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V, Papamichael D, Laurent-Puig P, Penault-Llorca F, Rougier P, Vincenzi B, Santini D, Tonini G, Cappuzzo F, Frattini M, Molinari F, Saletti P, De Dosso S, Martini M, Bardelli A, Siena S, Sartore-Bianchi A, Tabernero J, Macarulla T, Di Fiore F, Gangloff AO, Ciardiello F, Pfeiffer P, Qvortrup C, Hansen TP, Van Cutsem E, Piessevaux H, Lambrechts D, Delorenzi M, Tejpar S (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11(8):753–762PubMedCrossRefGoogle Scholar
  126. 126.
    Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J, Rivera F, Kocakova I, Ruff P, Blasinska-Morawiec M, Smakal M, Canon JL, Rother M, Williams R, Rong A, Wiezorek J, Sidhu R, Patterson SD (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369(11):1023–1034PubMedCrossRefGoogle Scholar
  127. 127.
    Tan IB, Malik S, Ramnarayanan K, McPherson JR, Ho DL, Suzuki Y, Ng SB, Yan S, Lim KH, Koh D, Hoe CM, Chan CY, Ten R, Goh BK, Chung AY, Tan J, Chan CX, Tay ST, Alexander L, Nagarajan N, Hillmer AM, Tang CL, Chua C, Teh BT, Rozen S, Tan P (2015) High-depth sequencing of over 750 genes supports linear progression of primary tumors and metastases in most patients with liver-limited metastatic colorectal cancer. Genome Biol 16:32PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503(7477):548–551PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Herrero A, Pinto A, Colon-Bolea P, Casar B, Jones M, Agudo-Ibanez L, Vidal R, Tenbaum SP, Nuciforo P, Valdizan EM, Horvath Z, Orfi L, Pineda-Lucena A, Bony E, Keri G, Rivas G, Pazos A, Gozalbes R, Palmer HG, Hurlstone A, Crespo P (2015) Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell 28(2):170–182PubMedCrossRefGoogle Scholar
  130. 130.
    Peng SB, Henry JR, Kaufman MD, Lu WP, Smith BD, Vogeti S, Rutkoski TJ, Wise S, Chun L, Zhang Y, Van Horn RD, Yin T, Zhang X, Yadav V, Chen SH, Gong X, Ma X, Webster Y, Buchanan S, Mochalkin I, Huber L, Kays L, Donoho GP, Walgren J, McCann D, Patel P, Conti I, Plowman GD, Starling JJ, Flynn DL (2015) Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell 28(3):384–398PubMedCrossRefGoogle Scholar
  131. 131.
    Yao Z, Torres NM, Tao A, Gao Y, Luo L, Li Q, de Stanchina E, Abdel-Wahab O, Solit DB, Poulikakos PI, Rosen N (2015) BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell 28(3):370–383PubMedCrossRefGoogle Scholar
  132. 132.
    Freeman AK, Ritt DA, Morrison DK (2013) Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol Cell 49(4):751–758PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Santos E, Nebreda AR, Bryan T, Kempner ES (1988) Oligomeric structure of p21 ras proteins as determined by radiation inactivation. J Biol Chem 263(20):9853–9858PubMedGoogle Scholar
  134. 134.
    Inouye K, Mizutani S, Koide H, Kaziro Y (2000) Formation of the Ras dimer is essential for Raf-1 activation. J Biol Chem 275(6):3737–3740PubMedCrossRefGoogle Scholar
  135. 135.
    Lin WC, Iversen L, Tu HL, Rhodes C, Christensen SM, Iwig JS, Hansen SD, Huang WY, Groves JT (2014) H-Ras forms dimers on membrane surfaces via a protein-protein interface. Proc Natl Acad Sci USA 111(8):2996–3001PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Nan X, Tamguney TM, Collisson EA, Lin LJ, Pitt C, Galeas J, Lewis S, Gray JW, McCormick F, Chu S (2015) Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. Proc Natl Acad Sci USA 112(26):7996–8001PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Muratcioglu S, Chavan TS, Freed BC, Jang H, Khavrutskii L, Freed RN, Dyba MA, Stefanisko K, Tarasov SG, Gursoy A, Keskin O, Tarasova NI, Gaponenko V, Nussinov R (2015) GTP-dependent K-Ras dimerization. Structure 23(7):1325–1335PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Programme in Cancer and Stem Cell BiologyDuke-NUS Medical SchoolSingaporeSingapore

Personalised recommendations