Abstract
Small regulatory RNAs (sRNAs) are emerging as key post-transcriptional regulators in many bacteria. In the human pathobiont Helicobacter pylori a plethora of trans- and cis-encoded sRNAs have been pinpointed by a global transcriptome study. However, only two have been studied in depth at the functional level. Here we report the characterization of CncR1, an abundant and conserved sRNA encoded by the virulence-associated cag pathogenicity island (cag-PAI) of H. pylori. Growth-phase dependent transcription of CncR1 is directed by the PcagP promoter, which resulted to be a target of the essential transcriptional regulator HsrA (HP1043). We demonstrate that the 213 nt transcript arising from this promoter ends at an intrinsic terminator, few bases upstream of the annotated cagP open reading frame, establishing CncR1 as the predominant gene product encoded by the cagP (cag15) locus. Interestingly, the deletion of the locus resulted in the deregulation en masse of σ54-dependent genes, linking CncR1 to flagellar functions. Accordingly, the enhanced motility recorded for cncR1 deletion mutants was complemented by ectopic reintroduction of the allele in trans. In silico prediction identified fliK, encoding a flagellar checkpoint protein, as likely regulatory target of CncR1. The interaction of CncR1 with the fliK mRNA was thus further investigated in vitro, demonstrating the formation of strand-specific interactions between the two RNA molecules. Accordingly, the full-length translational fusions of fliK with a lux reporter gene were induced in a cncR1 deletion mutant in vivo. These data suggest the involvement of CncR1 in the post-transcriptional modulation of H. pylori motility functions through down-regulation of a critical flagellar checkpoint factor. Concurrently, the cncR1 mutant revealed a decrease of transcript levels for several H. pylori adhesins, resulting in a phenotypically significant impairment of bacterial adhesion to a host gastric cell line. The data presented support a model in which the cag-PAI encoded CncR1 sRNA is able to oppositely modulate bacterial motility and adhesion to host cells.







Similar content being viewed by others
References
Salama NR, Hartung ML, Müller A (2013) Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol 11:385–399. doi:10.1038/nrmicro3016
Cover TL, Blaser MJ (2009) Helicobacter pylori in health and disease. Gastroenterology 136:1863–1873. doi:10.1053/j.gastro.2009.01.073
Danielli A, Amore G, Scarlato V (2010) Built shallow to maintain homeostasis and persistent infection: insight into the transcriptional regulatory network of the gastric human pathogen Helicobacter pylori. PLoS Pathog 6:e1000938. doi:10.1371/journal.ppat.1000938
Scarlato V, Delany I, Spohn G, Beier D (2001) Regulation of transcription in Helicobacter pylori: simple systems or complex circuits? Int J Med Microbiol IJMM 291:107–117. doi:10.1078/1438-4221-00107
Tomb JF, White O, Kerlavage AR et al (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547. doi:10.1038/41483
Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891. doi:10.1016/j.molcel.2011.08.022
Lalaouna D, Simoneau-Roy M, Lafontaine D, Massé E (2013) Regulatory RNAs and target mRNA decay in prokaryotes. Biochim Biophys Acta 1829:742–747. doi:10.1016/j.bbagrm.2013.02.013
Papenfort K, Vogel J (2014) Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front Cell Infect Microbiol 4:91. doi:10.3389/fcimb.2014.00091
Sharma CM, Hoffmann S, Darfeuille F et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255. doi:10.1038/nature08756
Pernitzsch SR, Sharma CM (2012) Transcriptome complexity and riboregulation in the human pathogen Helicobacter pylori. Front Cell Infect Microbiol 2:14. doi:10.3389/fcimb.2012.00014
Wen Y, Feng J, Sachs G (2013) Helicobacter pylori 5′ureB-sRNA, a cis-encoded antisense small RNA, negatively regulates ureAB expression by transcription termination. J Bacteriol 195:444–452. doi:10.1128/JB.01022-12
Wen Y, Feng J, Scott DR et al (2011) A cis-encoded antisense small RNA regulated by the HP0165-HP0166 two-component system controls expression of ureB in Helicobacter pylori. J Bacteriol 193:40–51. doi:10.1128/JB.00800-10
Pernitzsch SR, Tirier SM, Beier D, Sharma CM (2014) A variable homopolymeric G-repeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in Helicobacter pylori. Proc Natl Acad Sci USA 111:E501–E510. doi:10.1073/pnas.1315152111
Harris JF, Micheva-Viteva S, Li N, Hong-Geller E (2013) Small RNA-mediated regulation of host-pathogen interactions. Virulence 4:785–795. doi:10.4161/viru.26119
Tegtmeyer N, Wessler S, Backert S (2011) Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J 278:1190–1202. doi:10.1111/j.1742-4658.2011.08035.x
Vannini A, Roncarati D, Spinsanti M et al (2014) In depth analysis of the Helicobacter pylori cag pathogenicity island transcriptional responses. PLoS One 9:e98416. doi:10.1371/journal.pone.0098416
Castillo AR, Arevalo SS, Woodruff AJ, Ottemann KM (2008) Experimental analysis of Helicobacter pylori transcriptional terminators suggests this microbe uses both intrinsic and factor-dependent termination. Mol Microbiol 67:155–170. doi:10.1111/j.1365-2958.2007.06033.x
Vannini A, Agriesti F, Mosca F et al (2012) A convenient and robust in vivo reporter system to monitor gene expression in the human pathogen Helicobacter pylori. Appl Environ Microbiol 78:6524–6533. doi:10.1128/AEM.01252-12
Olekhnovich IN, Vitko S, Chertihin O et al (2013) Mutations to essential orphan response regulator HP1043 of Helicobacter pylori result in growth-stage regulatory defects. Infect Immun 81:1439–1449. doi:10.1128/IAI.01193-12
Delany I, Spohn G, Rappuoli R, Scarlato V (2002) Growth phase-dependent regulation of target gene promoters for binding of the essential orphan response regulator HP1043 of Helicobacter pylori. J Bacteriol 184:4800–4810
Mahdavi J, Sondén B, Hurtig M et al (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–578. doi:10.1126/science.1069076
Wang G, Alamuri P, Maier RJ (2006) The diverse antioxidant systems of Helicobacter pylori. Mol Microbiol 61:847–860. doi:10.1111/j.1365-2958.2006.05302.x
Lertsethtakarn P, Ottemann KM, Hendrixson DR (2011) Motility and chemotaxis in Campylobacter and Helicobacter. Annu Rev Microbiol 65:389–410. doi:10.1146/annurev-micro-090110-102908
Cendron L, Seydel A, Angelini A et al (2004) Crystal structure of CagZ, a protein from the Helicobacter pylori pathogenicity island that encodes for a type IV secretion system. J Mol Biol 340:881–889. doi:10.1016/j.jmb.2004.05.016
Jurik A, Hausser E, Kutter S et al (2010) The coupling protein Cagbeta and its interaction partner CagZ are required for type IV secretion of the Helicobacter pylori CagA protein. Infect Immun 78:5244–5251. doi:10.1128/IAI.00796-10
Roncarati D, Danielli A, Spohn G et al (2007) Transcriptional regulation of stress response and motility functions in Helicobacter pylori is mediated by HspR and HrcA. J Bacteriol 189:7234–7243. doi:10.1128/JB.00626-07
Tjaden B, Goodwin SS, Opdyke JA et al (2006) Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res 34:2791–2802. doi:10.1093/nar/gkl356
Wright PR, Georg J, Mann M et al (2014) CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. Nucleic Acids Res 42(W1):W119–W123
Zhang Z-W, Dorrell N, Wren BW, Farthingt MJG (2002) Helicobacter pylori adherence to gastric epithelial cells: a role for non-adhesin virulence genes. J Med Microbiol 51:495–502
Snelling WJ, Moran AP, Ryan KA et al (2007) HorB (HP0127) is a gastric epithelial cell adhesin. Helicobacter 12:200–209. doi:10.1111/j.1523-5378.2007.00499.x
Backert S, Selbach M (2008) Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 10:1573–1581. doi:10.1111/j.1462-5822.2008.01156.x
Hornsby MJ, Huff JL, Kays RJ et al (2008) Helicobacter pylori induces an antimicrobial response in rhesus macaques in a cag pathogenicity island-dependent manner. Gastroenterology 134:1049–1057. doi:10.1053/j.gastro.2008.01.018
Ellermeier JR, Slauch JM (2007) Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 10:24–29. doi:10.1016/j.mib.2006.12.002
Gong H, Vu G-P, Bai Y et al (2011) A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Pathog 7:e1002120. doi:10.1371/journal.ppat.1002120
Lee YH, Kim S, Helmann JD et al (2013) RaoN, a small RNA encoded within Salmonella pathogenicity island-11, confers resistance to macrophage-induced stress. Microbiol Read Engl 159:1366–1378. doi:10.1099/mic.0.066688-0
Pfeiffer V, Sittka A, Tomer R et al (2007) A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome. Mol Microbiol 66:1174–1191. doi:10.1111/j.1365-2958.2007.05991.x
Niehus E, Ye F, Suerbaum S, Josenhans C (2002) Growth phase-dependent and differential transcriptional control of flagellar genes in Helicobacter pylori. Microbiol Read Engl 148:3827–3837
Hughes KT (2012) Flagellar hook length is controlled by a secreted molecular ruler. J Bacteriol 194:4793–4796. doi:10.1128/JB.00343-12
Aizawa S-I (2012) Mystery of FliK in length control of the flagellar hook. J Bacteriol 194:4798–4800. doi:10.1128/JB.06239-11
Ryan KA, Karim N, Worku M et al (2005) Helicobacter pylori flagellar hook-filament transition is controlled by a FliK functional homolog encoded by the gene HP0906. J Bacteriol 187:5742–5750. doi:10.1128/JB.187.16.5742-5750.2005
Douillard FP, Ryan KA, Hinds J, O’Toole PW (2009) Effect of FliK mutation on the transcriptional activity of the σ54 sigma factor RpoN in Helicobacter pylori. Microbiol Read Engl 155:1901–1911. doi:10.1099/mic.0.026062-0
Kim N, Marcus EA, Wen Y et al (2004) Genes of Helicobacter pylori regulated by attachment to AGS cells. Infect Immun 72:2358–2368
Baidya AK, Bhattacharya S, Chowdhury R (2014) Role of the flagellar hook-length control protein FliK and σ28 in cagA expression in gastric cell-adhered Helicobacter pylori. J Infect Dis. doi:10.1093/infdis/jiu808
Ernst FD, Bereswill S, Waidner B et al (2005) Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression. Microbiol Read Engl 151:533–546. doi:10.1099/mic.0.27404-0
Fischer W, Püls J, Buhrdorf R et al (2001) Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42:1337–1348
Boonjakuakul JK, Canfield DR, Solnick JV (2005) Comparison of Helicobacter pylori virulence gene expression in vitro and in the Rhesus macaque. Infect Immun 73:4895–4904. doi:10.1128/IAI.73.8.4895-4904.2005
Ta LH, Hansen LM, Sause WE et al (2012) Conserved transcriptional unit organization of the cag pathogenicity island among Helicobacter pylori strains. Front Cell Infect Microbiol 2:46. doi:10.3389/fcimb.2012.00046
Boonjakuakul JK, Syvanen M, Suryaprasad A et al (2004) Transcription profile of Helicobacter pylori in the human stomach reflects its physiology in vivo. J Infect Dis 190:946–956. doi:10.1086/423142
Danielli A, Roncarati D, Delany I et al (2006) In vivo dissection of the Helicobacter pylori Fur regulatory circuit by genome-wide location analysis. J Bacteriol 188:4654–4662. doi:10.1128/JB.00120-06
Pfeiffer V, Papenfort K, Lucchini S et al (2009) Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol 16:840–846. doi:10.1038/nsmb.1631
Delany I, Spohn G, Rappuoli R, Scarlato V (2001) The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol Microbiol 42:1297–1309
Liu ST, Hong GF (1998) Three-minute G + A specific reaction for DNA sequencing. Anal Biochem 255:158–159. doi:10.1006/abio.1997.2457
Lorenz R, Bernhart SH, Höner Zu Siederdissen C et al (2011) ViennaRNA package 2.0. Algorithms Mol Biol AMB 6:26. doi:10.1186/1748-7188-6-26
Acknowledgments
The authors wish to thank Vincenzo Scarlato scientific advice, editing and critical reading of the manuscript, Paola Pisacane for skillful participation in the preliminary phase of the project, and Silvia Ferrara and Giovanni Bertoni (University of Milan) for their helpful advices on the RNA–RNA EMSA experiment. This work was supported by a Grant from the Italian Ministry of Education and University (2010P3S8BR_003) and by the University of Bologna.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Vannini, A., Roncarati, D. & Danielli, A. The cag-pathogenicity island encoded CncR1 sRNA oppositely modulates Helicobacter pylori motility and adhesion to host cells. Cell. Mol. Life Sci. 73, 3151–3168 (2016). https://doi.org/10.1007/s00018-016-2151-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-016-2151-z

