Skip to main content
Log in

The cag-pathogenicity island encoded CncR1 sRNA oppositely modulates Helicobacter pylori motility and adhesion to host cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Small regulatory RNAs (sRNAs) are emerging as key post-transcriptional regulators in many bacteria. In the human pathobiont Helicobacter pylori a plethora of trans- and cis-encoded sRNAs have been pinpointed by a global transcriptome study. However, only two have been studied in depth at the functional level. Here we report the characterization of CncR1, an abundant and conserved sRNA encoded by the virulence-associated cag pathogenicity island (cag-PAI) of H. pylori. Growth-phase dependent transcription of CncR1 is directed by the PcagP promoter, which resulted to be a target of the essential transcriptional regulator HsrA (HP1043). We demonstrate that the 213 nt transcript arising from this promoter ends at an intrinsic terminator, few bases upstream of the annotated cagP open reading frame, establishing CncR1 as the predominant gene product encoded by the cagP (cag15) locus. Interestingly, the deletion of the locus resulted in the deregulation en masse of σ54-dependent genes, linking CncR1 to flagellar functions. Accordingly, the enhanced motility recorded for cncR1 deletion mutants was complemented by ectopic reintroduction of the allele in trans. In silico prediction identified fliK, encoding a flagellar checkpoint protein, as likely regulatory target of CncR1. The interaction of CncR1 with the fliK mRNA was thus further investigated in vitro, demonstrating the formation of strand-specific interactions between the two RNA molecules. Accordingly, the full-length translational fusions of fliK with a lux reporter gene were induced in a cncR1 deletion mutant in vivo. These data suggest the involvement of CncR1 in the post-transcriptional modulation of H. pylori motility functions through down-regulation of a critical flagellar checkpoint factor. Concurrently, the cncR1 mutant revealed a decrease of transcript levels for several H. pylori adhesins, resulting in a phenotypically significant impairment of bacterial adhesion to a host gastric cell line. The data presented support a model in which the cag-PAI encoded CncR1 sRNA is able to oppositely modulate bacterial motility and adhesion to host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salama NR, Hartung ML, Müller A (2013) Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol 11:385–399. doi:10.1038/nrmicro3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cover TL, Blaser MJ (2009) Helicobacter pylori in health and disease. Gastroenterology 136:1863–1873. doi:10.1053/j.gastro.2009.01.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Danielli A, Amore G, Scarlato V (2010) Built shallow to maintain homeostasis and persistent infection: insight into the transcriptional regulatory network of the gastric human pathogen Helicobacter pylori. PLoS Pathog 6:e1000938. doi:10.1371/journal.ppat.1000938

    Article  PubMed  PubMed Central  Google Scholar 

  4. Scarlato V, Delany I, Spohn G, Beier D (2001) Regulation of transcription in Helicobacter pylori: simple systems or complex circuits? Int J Med Microbiol IJMM 291:107–117. doi:10.1078/1438-4221-00107

    Article  CAS  PubMed  Google Scholar 

  5. Tomb JF, White O, Kerlavage AR et al (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547. doi:10.1038/41483

    Article  CAS  PubMed  Google Scholar 

  6. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891. doi:10.1016/j.molcel.2011.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lalaouna D, Simoneau-Roy M, Lafontaine D, Massé E (2013) Regulatory RNAs and target mRNA decay in prokaryotes. Biochim Biophys Acta 1829:742–747. doi:10.1016/j.bbagrm.2013.02.013

    Article  CAS  PubMed  Google Scholar 

  8. Papenfort K, Vogel J (2014) Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front Cell Infect Microbiol 4:91. doi:10.3389/fcimb.2014.00091

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sharma CM, Hoffmann S, Darfeuille F et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255. doi:10.1038/nature08756

    Article  CAS  PubMed  Google Scholar 

  10. Pernitzsch SR, Sharma CM (2012) Transcriptome complexity and riboregulation in the human pathogen Helicobacter pylori. Front Cell Infect Microbiol 2:14. doi:10.3389/fcimb.2012.00014

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wen Y, Feng J, Sachs G (2013) Helicobacter pylori 5′ureB-sRNA, a cis-encoded antisense small RNA, negatively regulates ureAB expression by transcription termination. J Bacteriol 195:444–452. doi:10.1128/JB.01022-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wen Y, Feng J, Scott DR et al (2011) A cis-encoded antisense small RNA regulated by the HP0165-HP0166 two-component system controls expression of ureB in Helicobacter pylori. J Bacteriol 193:40–51. doi:10.1128/JB.00800-10

    Article  CAS  PubMed  Google Scholar 

  13. Pernitzsch SR, Tirier SM, Beier D, Sharma CM (2014) A variable homopolymeric G-repeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in Helicobacter pylori. Proc Natl Acad Sci USA 111:E501–E510. doi:10.1073/pnas.1315152111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harris JF, Micheva-Viteva S, Li N, Hong-Geller E (2013) Small RNA-mediated regulation of host-pathogen interactions. Virulence 4:785–795. doi:10.4161/viru.26119

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tegtmeyer N, Wessler S, Backert S (2011) Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J 278:1190–1202. doi:10.1111/j.1742-4658.2011.08035.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vannini A, Roncarati D, Spinsanti M et al (2014) In depth analysis of the Helicobacter pylori cag pathogenicity island transcriptional responses. PLoS One 9:e98416. doi:10.1371/journal.pone.0098416

    Article  PubMed  PubMed Central  Google Scholar 

  17. Castillo AR, Arevalo SS, Woodruff AJ, Ottemann KM (2008) Experimental analysis of Helicobacter pylori transcriptional terminators suggests this microbe uses both intrinsic and factor-dependent termination. Mol Microbiol 67:155–170. doi:10.1111/j.1365-2958.2007.06033.x

    Article  CAS  PubMed  Google Scholar 

  18. Vannini A, Agriesti F, Mosca F et al (2012) A convenient and robust in vivo reporter system to monitor gene expression in the human pathogen Helicobacter pylori. Appl Environ Microbiol 78:6524–6533. doi:10.1128/AEM.01252-12

    Article  PubMed  PubMed Central  Google Scholar 

  19. Olekhnovich IN, Vitko S, Chertihin O et al (2013) Mutations to essential orphan response regulator HP1043 of Helicobacter pylori result in growth-stage regulatory defects. Infect Immun 81:1439–1449. doi:10.1128/IAI.01193-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Delany I, Spohn G, Rappuoli R, Scarlato V (2002) Growth phase-dependent regulation of target gene promoters for binding of the essential orphan response regulator HP1043 of Helicobacter pylori. J Bacteriol 184:4800–4810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mahdavi J, Sondén B, Hurtig M et al (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–578. doi:10.1126/science.1069076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang G, Alamuri P, Maier RJ (2006) The diverse antioxidant systems of Helicobacter pylori. Mol Microbiol 61:847–860. doi:10.1111/j.1365-2958.2006.05302.x

    Article  CAS  PubMed  Google Scholar 

  23. Lertsethtakarn P, Ottemann KM, Hendrixson DR (2011) Motility and chemotaxis in Campylobacter and Helicobacter. Annu Rev Microbiol 65:389–410. doi:10.1146/annurev-micro-090110-102908

    Article  CAS  PubMed  Google Scholar 

  24. Cendron L, Seydel A, Angelini A et al (2004) Crystal structure of CagZ, a protein from the Helicobacter pylori pathogenicity island that encodes for a type IV secretion system. J Mol Biol 340:881–889. doi:10.1016/j.jmb.2004.05.016

    Article  CAS  PubMed  Google Scholar 

  25. Jurik A, Hausser E, Kutter S et al (2010) The coupling protein Cagbeta and its interaction partner CagZ are required for type IV secretion of the Helicobacter pylori CagA protein. Infect Immun 78:5244–5251. doi:10.1128/IAI.00796-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roncarati D, Danielli A, Spohn G et al (2007) Transcriptional regulation of stress response and motility functions in Helicobacter pylori is mediated by HspR and HrcA. J Bacteriol 189:7234–7243. doi:10.1128/JB.00626-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tjaden B, Goodwin SS, Opdyke JA et al (2006) Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res 34:2791–2802. doi:10.1093/nar/gkl356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wright PR, Georg J, Mann M et al (2014) CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. Nucleic Acids Res 42(W1):W119–W123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Z-W, Dorrell N, Wren BW, Farthingt MJG (2002) Helicobacter pylori adherence to gastric epithelial cells: a role for non-adhesin virulence genes. J Med Microbiol 51:495–502

    Article  CAS  PubMed  Google Scholar 

  30. Snelling WJ, Moran AP, Ryan KA et al (2007) HorB (HP0127) is a gastric epithelial cell adhesin. Helicobacter 12:200–209. doi:10.1111/j.1523-5378.2007.00499.x

    Article  CAS  PubMed  Google Scholar 

  31. Backert S, Selbach M (2008) Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 10:1573–1581. doi:10.1111/j.1462-5822.2008.01156.x

    Article  CAS  PubMed  Google Scholar 

  32. Hornsby MJ, Huff JL, Kays RJ et al (2008) Helicobacter pylori induces an antimicrobial response in rhesus macaques in a cag pathogenicity island-dependent manner. Gastroenterology 134:1049–1057. doi:10.1053/j.gastro.2008.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ellermeier JR, Slauch JM (2007) Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 10:24–29. doi:10.1016/j.mib.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  34. Gong H, Vu G-P, Bai Y et al (2011) A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Pathog 7:e1002120. doi:10.1371/journal.ppat.1002120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee YH, Kim S, Helmann JD et al (2013) RaoN, a small RNA encoded within Salmonella pathogenicity island-11, confers resistance to macrophage-induced stress. Microbiol Read Engl 159:1366–1378. doi:10.1099/mic.0.066688-0

    Article  CAS  Google Scholar 

  36. Pfeiffer V, Sittka A, Tomer R et al (2007) A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome. Mol Microbiol 66:1174–1191. doi:10.1111/j.1365-2958.2007.05991.x

    Article  CAS  PubMed  Google Scholar 

  37. Niehus E, Ye F, Suerbaum S, Josenhans C (2002) Growth phase-dependent and differential transcriptional control of flagellar genes in Helicobacter pylori. Microbiol Read Engl 148:3827–3837

    Article  CAS  Google Scholar 

  38. Hughes KT (2012) Flagellar hook length is controlled by a secreted molecular ruler. J Bacteriol 194:4793–4796. doi:10.1128/JB.00343-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aizawa S-I (2012) Mystery of FliK in length control of the flagellar hook. J Bacteriol 194:4798–4800. doi:10.1128/JB.06239-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ryan KA, Karim N, Worku M et al (2005) Helicobacter pylori flagellar hook-filament transition is controlled by a FliK functional homolog encoded by the gene HP0906. J Bacteriol 187:5742–5750. doi:10.1128/JB.187.16.5742-5750.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Douillard FP, Ryan KA, Hinds J, O’Toole PW (2009) Effect of FliK mutation on the transcriptional activity of the σ54 sigma factor RpoN in Helicobacter pylori. Microbiol Read Engl 155:1901–1911. doi:10.1099/mic.0.026062-0

    Article  CAS  Google Scholar 

  42. Kim N, Marcus EA, Wen Y et al (2004) Genes of Helicobacter pylori regulated by attachment to AGS cells. Infect Immun 72:2358–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baidya AK, Bhattacharya S, Chowdhury R (2014) Role of the flagellar hook-length control protein FliK and σ28 in cagA expression in gastric cell-adhered Helicobacter pylori. J Infect Dis. doi:10.1093/infdis/jiu808

    PubMed  Google Scholar 

  44. Ernst FD, Bereswill S, Waidner B et al (2005) Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression. Microbiol Read Engl 151:533–546. doi:10.1099/mic.0.27404-0

    Article  CAS  Google Scholar 

  45. Fischer W, Püls J, Buhrdorf R et al (2001) Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42:1337–1348

    Article  CAS  PubMed  Google Scholar 

  46. Boonjakuakul JK, Canfield DR, Solnick JV (2005) Comparison of Helicobacter pylori virulence gene expression in vitro and in the Rhesus macaque. Infect Immun 73:4895–4904. doi:10.1128/IAI.73.8.4895-4904.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ta LH, Hansen LM, Sause WE et al (2012) Conserved transcriptional unit organization of the cag pathogenicity island among Helicobacter pylori strains. Front Cell Infect Microbiol 2:46. doi:10.3389/fcimb.2012.00046

    Article  PubMed  PubMed Central  Google Scholar 

  48. Boonjakuakul JK, Syvanen M, Suryaprasad A et al (2004) Transcription profile of Helicobacter pylori in the human stomach reflects its physiology in vivo. J Infect Dis 190:946–956. doi:10.1086/423142

    Article  CAS  PubMed  Google Scholar 

  49. Danielli A, Roncarati D, Delany I et al (2006) In vivo dissection of the Helicobacter pylori Fur regulatory circuit by genome-wide location analysis. J Bacteriol 188:4654–4662. doi:10.1128/JB.00120-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pfeiffer V, Papenfort K, Lucchini S et al (2009) Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol 16:840–846. doi:10.1038/nsmb.1631

    Article  CAS  PubMed  Google Scholar 

  51. Delany I, Spohn G, Rappuoli R, Scarlato V (2001) The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol Microbiol 42:1297–1309

    Article  CAS  PubMed  Google Scholar 

  52. Liu ST, Hong GF (1998) Three-minute G + A specific reaction for DNA sequencing. Anal Biochem 255:158–159. doi:10.1006/abio.1997.2457

    Article  CAS  PubMed  Google Scholar 

  53. Lorenz R, Bernhart SH, Höner Zu Siederdissen C et al (2011) ViennaRNA package 2.0. Algorithms Mol Biol AMB 6:26. doi:10.1186/1748-7188-6-26

Download references

Acknowledgments

The authors wish to thank Vincenzo Scarlato scientific advice, editing and critical reading of the manuscript, Paola Pisacane for skillful participation in the preliminary phase of the project, and Silvia Ferrara and Giovanni Bertoni (University of Milan) for their helpful advices on the RNA–RNA EMSA experiment. This work was supported by a Grant from the Italian Ministry of Education and University (2010P3S8BR_003) and by the University of Bologna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Danielli.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vannini, A., Roncarati, D. & Danielli, A. The cag-pathogenicity island encoded CncR1 sRNA oppositely modulates Helicobacter pylori motility and adhesion to host cells. Cell. Mol. Life Sci. 73, 3151–3168 (2016). https://doi.org/10.1007/s00018-016-2151-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2151-z

Keywords

Profiles

  1. Alberto Danielli