Skip to main content
Log in

Transmembrane semaphorins, forward and reverse signaling: have a look both ways

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Semaphorins are signaling molecules playing pivotal roles not only as axon guidance cues, but are also involved in the regulation of a range of biological processes, such as immune response, angiogenesis and invasive tumor growth. The main functional receptors for semaphorins are plexins, which are large single-pass transmembrane molecules. Semaphorin signaling through plexins—the “classical” forward signaling—affects cytoskeletal remodeling and integrin-dependent adhesion, consequently influencing cell migration. Intriguingly, semaphorins and plexins can interact not only in trans, but also in cis, leading to differentiated and highly regulated signaling outputs. Moreover, transmembrane semaphorins can also mediate a so-called “reverse” signaling, by acting not as ligands but rather as receptors, and initiate a signaling cascade through their own cytoplasmic domains. Semaphorin reverse signaling has been clearly demonstrated in fruit fly Sema1a, which is required to control motor axon defasciculation and target recognition during neuromuscular development. Sema1a invertebrate semaphorin is most similar to vertebrate class-6 semaphorins, and examples of semaphorin reverse signaling in mammalians have been described for these family members. Reverse signaling is also reported for other vertebrate semaphorin subsets, e.g. class-4 semaphorins, which bear potential PDZ-domain interaction motifs in their cytoplasmic regions. Therefore, thanks to their various signaling abilities, transmembrane semaphorins can play multifaceted roles both in developmental processes and in physiological as well as pathological conditions in the adult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rehman M, Tamagnone L (2013) Semaphorins in cancer: biological mechanisms and therapeutic approaches. Semin Cell Dev Biol 24(3):179–189

    Article  CAS  PubMed  Google Scholar 

  2. Hota PK, Buck M (2012) Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 69(22):3765–3805

    Article  CAS  PubMed  Google Scholar 

  3. Cagnoni G, Tamagnone L (2014) Semaphorin receptors meet receptor tyrosine kinases on the way of tumor progression. Oncogene 33(40):4795–4802

    Article  CAS  PubMed  Google Scholar 

  4. Eissner G, Kolch W, Scheurich P (2004) Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev 15(5):353–366

    Article  CAS  PubMed  Google Scholar 

  5. Davy A, Soriano P (2005) Ephrin signaling in vivo: look both ways. Dev Dyn 232(1):1–10

    Article  CAS  PubMed  Google Scholar 

  6. Burkhardt C, Müller M, Badde A, Garner CC, Gundelfinger ED, Püschel AW (2005) Semaphorin 4B interacts with the post-synaptic density protein PSD-95/SAP90 and is recruited to synapses through a C-terminal PDZ-binding motif. FEBS Lett 579(17):3821–3828

    Article  CAS  PubMed  Google Scholar 

  7. Toyofuku T, Zhang H, Kumanogoh A, Takegahara N, Yabuki M, Harada K et al (2004) Guidance of myocardial patterning in cardiac development by Sema6D reverse signalling. Nat Cell Biol 6(12):1204–1211

    Article  CAS  PubMed  Google Scholar 

  8. Eckhardt F, Behar O, Calautti E, Yonezawa K, Nishimoto I, Fishman MC (1997) A novel transmembrane semaphorin can bind c-src. Mol Cell Neurosci 9(5–6):409–419

    Article  CAS  PubMed  Google Scholar 

  9. Klostermann A, Lutz B, Gertler F, Behl C (2000) The orthologous human and murine semaphorin 6A-1 proteins (SEMA6A-1/Sema6A-1) bind to the enabled/vasodilator-stimulated phosphoprotein-like protein (EVL) via a novel carboxyl-terminal zyxin-like domain. J Biol Chem 275(50):39647–39653

    Article  CAS  PubMed  Google Scholar 

  10. Cafferty P, Yu L, Long H, Rao Y (2006) Semaphorin-1a functions as a guidance receptor in the Drosophila visual system. J Neurosci 26(15):3999–4003

    Article  CAS  PubMed  Google Scholar 

  11. Komiyama T, Sweeney LB, Schuldiner O, Garcia KC, Luo L (2007) Graded expression of semaphorin-1a cell-autonomously directs dendritic targeting of olfactory projection neurons. Cell 128(2):399–410

    Article  CAS  PubMed  Google Scholar 

  12. Mauti O, Domanitskaya E, Andermatt I, Sadhu R, Stoeckli ET (2007) Semaphorin6A acts as a gate keeper between the central and the peripheral nervous system. Neural Dev 2:28

    Article  PubMed  PubMed Central  Google Scholar 

  13. Andermatt I, Wilson NH, Bergmann T, Mauti O, Gesemann M, Sockanathan S et al (2014) Semaphorin 6B acts as a receptor in post-crossing commissural axon guidance. Development 141(19):3709–3720

    Article  CAS  PubMed  Google Scholar 

  14. Bernard F, Moreau-Fauvarque C, Heitz-Marchaland C, Zagar Y, Dumas L, Fouquet S et al (2012) Role of transmembrane semaphorin Sema6A in oligodendrocyte differentiation and myelination. Glia 60(10):1590–1604

    Article  PubMed  Google Scholar 

  15. Granziero L, Circosta P, Scielzo C, Frisaldi E, Stella S, Geuna M et al (2003) CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5+ B lymphocytes. Blood 101(5):1962–1969

    Article  CAS  PubMed  Google Scholar 

  16. Yu HH, Araj HH, Ralls SA, Kolodkin AL (1998) The transmembrane Semaphorin Sema I is required in Drosophila for embryonic motor and CNS axon guidance. Neuron 20(2):207–220

    Article  CAS  PubMed  Google Scholar 

  17. Cho JY, Chak K, Andreone BJ, Wooley JR, Kolodkin AL (2012) The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance. Genes Dev 26(19):2222–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jeong S, Juhaszova K, Kolodkin AL (2012) The control of semaphorin-1a-mediated reverse signaling by opposing pebble and RhoGAPp190 functions in Drosophila. Neuron 76(4):721–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu L, Zhou Y, Cheng S, Rao Y (2010) Plexin a-semaphorin-1a reverse signaling regulates photoreceptor axon guidance in Drosophila. J Neurosci 30(36):12151–12156

    Article  CAS  PubMed  Google Scholar 

  20. Hsieh HH, Chang WT, Yu L, Rao Y (2014) Control of axon-axon attraction by Semaphorin reverse signaling. Proc Natl Acad Sci USA. 111(31):11383–11388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Godenschwege TA, Hu H, Shan-Crofts X, Goodman CS, Murphey RK (2002) Bi-directional signaling by Semaphorin 1a during central synapse formation in Drosophila. Nat Neurosci 5(12):1294–1301

    Article  CAS  PubMed  Google Scholar 

  22. Sweeney LB, Couto A, Chou YH, Berdnik D, Dickson BJ, Luo L et al (2007) Temporal target restriction of olfactory receptor neurons by semaphorin-1a/PlexinA-mediated axon-axon interactions. Neuron 53(2):185–200

    Article  CAS  PubMed  Google Scholar 

  23. Matsuoka RL, Chivatakarn O, Badea TC, Samuels IS, Cahill H, Katayama K et al (2011) Class 5 transmembrane semaphorins control selective mammalian retinal lamination and function. Neuron 71(3):460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu RQ, Wang W, Legg A, Abramyan J, O’Connor TP (2014) Semaphorin 5B is a repellent cue for sensory afferents projecting into the developing spinal cord. Development 141(9):1940–1949

    Article  CAS  PubMed  Google Scholar 

  25. Browne K, Wang W, Liu RQ, Piva M, O’Connor TP (2012) Transmembrane semaphorin5B is proteolytically processed into a repulsive neural guidance cue. J Neurochem 123(1):135–146

    Article  CAS  PubMed  Google Scholar 

  26. Masuda T, Sakuma C, Yaginuma H, Taniguchi M (2014) Attractive and permissive activities of semaphorin 5A toward dorsal root ganglion axons in higher vertebrate embryos. Cell Adh Migr 8(6):603–606

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kantor DB, Chivatakarn O, Peer KL, Oster SF, Inatani M, Hansen MJ et al (2004) Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44(6):961–975

    Article  CAS  PubMed  Google Scholar 

  28. Bron R, Vermeren M, Kokot N, Andrews W, Little GE, Mitchell KJ et al (2007) Boundary cap cells constrain spinal motor neuron somal migration at motor exit points by a semaphorin–plexin mechanism. Neural Dev 2:21

    Article  PubMed  PubMed Central  Google Scholar 

  29. Suto F, Tsuboi M, Kamiya H, Mizuno H, Kiyama Y, Komai S et al (2007) Interactions between plexin-A2, plexin-A4, and semaphorin 6A control lamina-restricted projection of hippocampal mossy fibers. Neuron 53(4):535–547

    Article  CAS  PubMed  Google Scholar 

  30. Suto F, Ito K, Uemura M, Shimizu M, Shinkawa Y, Sanbo M et al (2005) Plexin-a4 mediates axon-repulsive activities of both secreted and transmembrane semaphorins and plays roles in nerve fiber guidance. J Neurosci 25(14):3628–3637

    Article  CAS  PubMed  Google Scholar 

  31. Tawarayama H, Yoshida Y, Suto F, Mitchell KJ, Fujisawa H (2010) Roles of semaphorin-6B and plexin-A2 in lamina-restricted projection of hippocampal mossy fibers. J Neurosci 30(20):7049–7060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsuoka RL, Nguyen-Ba-Charvet KT, Parray A, Badea TC, Chédotal A, Kolodkin AL (2011) Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. Nature 470(7333):259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun LO, Jiang Z, Rivlin-Etzion M, Hand R, Brady CM, Matsuoka RL et al (2013) On and off retinal circuit assembly by divergent molecular mechanisms. Science 342(6158):1241974

    Article  PubMed  Google Scholar 

  34. Haklai-Topper L, Mlechkovich G, Savariego D, Gokhman I, Yaron A (2010) Cis interaction between Semaphorin6A and Plexin-A4 modulates the repulsive response to Sema6A. EMBO J 29(15):2635–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nawabi H, Briançon-Marjollet A, Clark C, Sanyas I, Takamatsu H, Okuno T et al (2010) A midline switch of receptor processing regulates commissural axon guidance in vertebrates. Genes Dev 24(4):396–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mizumoto K, Shen K (2013) Interaxonal interaction defines tiled presynaptic innervation in C. elegans. Neuron 77(4):655–666

    Article  CAS  PubMed  Google Scholar 

  37. Goldberg JL, Vargas ME, Wang JT, Mandemakers W, Oster SF, Sretavan DW et al (2004) An oligodendrocyte lineage-specific semaphorin, Sema5A, inhibits axon growth by retinal ganglion cells. J Neurosci 24(21):4989–4999

    Article  CAS  PubMed  Google Scholar 

  38. Worzfeld T, Püschel AW, Offermanns S, Kuner R (2004) Plexin-B family members demonstrate non-redundant expression patterns in the developing mouse nervous system: an anatomical basis for morphogenetic effects of Sema4D during development. Eur J Neurosci 19(10):2622–2632

    Article  PubMed  Google Scholar 

  39. Moreau-Fauvarque C, Kumanogoh A, Camand E, Jaillard C, Barbin G, Boquet I et al (2003) The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J Neurosci 23(27):9229–9239

    CAS  PubMed  Google Scholar 

  40. Yamaguchi W, Tamai R, Kageura M, Furuyama T, Inagaki S (2012) Sema4D as an inhibitory regulator in oligodendrocyte development. Mol Cell Neurosci 49(3):290–299

    Article  CAS  PubMed  Google Scholar 

  41. Parrinello S, Noon LA, Harrisingh MC, Wingfield Digby P, Rosenberg LH, Cremona CA et al (2008) NF1 loss disrupts Schwann cell-axonal interactions: a novel role for semaphorin 4F. Genes Dev 22(23):3335–3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moorman A, Webb S, Brown NA, Lamers W, Anderson RH (2003) Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart 89(7):806–814

    Article  PubMed  PubMed Central  Google Scholar 

  43. Epstein JA, Aghajanian H, Singh MK (2015) Semaphorin signaling in cardiovascular development. Cell Metab 21(2):163–173

    Article  CAS  PubMed  Google Scholar 

  44. Toyofuku T, Zhang H, Kumanogoh A, Takegahara N, Suto F, Kamei J et al (2004) Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2. Genes Dev 18(4):435–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Toyofuku T, Yoshida J, Sugimoto T, Yamamoto M, Makino N, Takamatsu H et al (2008) Repulsive and attractive semaphorins cooperate to direct the navigation of cardiac neural crest cells. Dev Biol 321(1):251–262

    Article  CAS  PubMed  Google Scholar 

  46. Worzfeld T, Offermanns S (2014) Semaphorins and plexins as therapeutic targets. Nat Rev Drug Discov. 13(8):603–621

    Article  CAS  PubMed  Google Scholar 

  47. Gu C, Giraudo E (2013) The role of semaphorins and their receptors in vascular development and cancer. Exp Cell Res 319(9):1306–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bussolino F, Giraudo E, Serini G (2014) Class 3 semaphorin in angiogenesis and lymphangiogenesis. Chem Immunol Allergy 99:71–88

    Article  CAS  PubMed  Google Scholar 

  49. Neufeld G, Sabag AD, Rabinovicz N, Kessler O (2012) Semaphorins in angiogenesis and tumor progression. Cold Spring Harb Perspect Med 2(1):a006718

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fiore R, Rahim B, Christoffels VM, Moorman AF, Püschel AW (2005) Inactivation of the Sema5a gene results in embryonic lethality and defective remodeling of the cranial vascular system. Mol Cell Biol 25(6):2310–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Segarra M, Ohnuki H, Maric D, Salvucci O, Hou X, Kumar A et al (2012) Semaphorin 6A regulates angiogenesis by modulating VEGF signaling. Blood 120(19):4104–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kigel B, Rabinowicz N, Varshavsky A, Kessler O, Neufeld G (2011) Plexin-A4 promotes tumor progression and tumor angiogenesis by enhancement of VEGF and bFGF signaling. Blood 118(15):4285–4296

    Article  CAS  PubMed  Google Scholar 

  53. Basile JR, Gavard J, Gutkind JS (2007) Plexin-B1 utilizes RhoA and Rho kinase to promote the integrin-dependent activation of Akt and ERK and endothelial cell motility. J Biol Chem 282(48):34888–34895

    Article  CAS  PubMed  Google Scholar 

  54. Conrotto P, Valdembri D, Corso S, Serini G, Tamagnone L, Comoglio PM et al (2005) Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood 105(11):4321–4329

    Article  CAS  PubMed  Google Scholar 

  55. Sadanandam A, Rosenbaugh EG, Singh S, Varney M, Singh RK (2010) Semaphorin 5A promotes angiogenesis by increasing endothelial cell proliferation, migration, and decreasing apoptosis. Microvasc Res 79(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Roney K, Holl E, Ting J (2013) Immune plexins and semaphorins: old proteins, new immune functions. Protein Cell 4(1):17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumanogoh A, Marukawa S, Suzuki K, Takegahara N, Watanabe C, Ch’ng E et al (2002) Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature 419(6907):629–633

    Article  CAS  PubMed  Google Scholar 

  58. Meda C, Molla F, De Pizzol M, Regano D, Maione F, Capano S et al (2012) Semaphorin 4A exerts a proangiogenic effect by enhancing vascular endothelial growth factor-A expression in macrophages. J Immunol 188(8):4081–4092

    Article  CAS  PubMed  Google Scholar 

  59. Kumanogoh A, Watanabe C, Lee I, Wang X, Shi W, Araki H et al (2000) Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling. Immunity 13(5):621–631

    Article  CAS  PubMed  Google Scholar 

  60. Chabbert-de Ponnat I, Marie-Cardine A, Pasterkamp RJ, Schiavon V, Tamagnone L, Thomasset N et al (2005) Soluble CD100 functions on human monocytes and immature dendritic cells require plexin C1 and plexin B1, respectively. Int Immunol 17(4):439–447

    Article  CAS  PubMed  Google Scholar 

  61. Witherden DA, Watanabe M, Garijo O, Rieder SE, Sarkisyan G, Cronin SJ et al (2012) The CD100 receptor interacts with its plexin B2 ligand to regulate epidermal γδ T cell function. Immunity 37(2):314–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takegahara N, Takamatsu H, Toyofuku T, Tsujimura T, Okuno T, Yukawa K et al (2006) Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nat Cell Biol 8(6):615–622

    Article  CAS  PubMed  Google Scholar 

  63. Ch’ng ES, Kumanogoh A (2010) Roles of Sema4D and Plexin-B1 in tumor progression. Mol Cancer 9:251

    Article  PubMed  PubMed Central  Google Scholar 

  64. Swiercz JM, Worzfeld T, Offermanns S (2008) ErbB-2 and met reciprocally regulate cellular signaling via plexin-B1. J Biol Chem 283(4):1893–1901

    Article  CAS  PubMed  Google Scholar 

  65. Sadanandam A, Varney ML, Singh S, Ashour AE, Moniaux N, Deb S et al (2010) High gene expression of semaphorin 5A in pancreatic cancer is associated with tumor growth, invasion and metastasis. Int J Cancer 127(6):1373–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sadanandam A, Sidhu SS, Wullschleger S, Singh S, Varney ML, Yang CS et al (2012) Secreted semaphorin 5A suppressed pancreatic tumour burden but increased metastasis and endothelial cell proliferation. Br J Cancer 107(3):501–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pan GQ, Ren HZ, Zhang SF, Wang XM, Wen JF (2009) Expression of semaphorin 5A and its receptor plexin B3 contributes to invasion and metastasis of gastric carcinoma. World J Gastroenterol 15(22):2800–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pan G, Zhu Z, Huang J, Yang C, Yang Y, Wang Y et al (2013) Semaphorin 5A promotes gastric cancer invasion/metastasis via urokinase-type plasminogen activator/phosphoinositide 3-kinase/protein kinase B. Dig Dis Sci 58(8):2197–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li X, Lee AY (2010) Semaphorin 5A and plexin-B3 inhibit human glioma cell motility through RhoGDIalpha-mediated inactivation of Rac1 GTPase. J Biol Chem 285(42):32436–32445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li X, Law JW, Lee AY (2012) Semaphorin 5A and plexin-B3 regulate human glioma cell motility and morphology through Rac1 and the actin cytoskeleton. Oncogene 31(5):595–610

    CAS  PubMed  Google Scholar 

  71. Pan G, Zhang X, Ren J, Lu J, Li W, Fu H et al (2013) Semaphorin 5A, an axon guidance molecule, enhances the invasion and metastasis of human gastric cancer through activation of MMP9. Pathol Oncol Res. 19(1):11–18

    Article  CAS  PubMed  Google Scholar 

  72. Loria R, Bon G, Perotti V, Gallo E, Bersani I, Baldassari P et al (2015) Sema6A and Mical1 control cell growth and survival of BRAFV600E human melanoma cells. Oncotarget 6(5):2779–2793

    Article  PubMed  PubMed Central  Google Scholar 

  73. Catalano A, Lazzarini R, Di Nuzzo S, Orciari S, Procopio A (2009) The plexin-A1 receptor activates vascular endothelial growth factor-receptor 2 and nuclear factor-kappaB to mediate survival and anchorage-independent growth of malignant mesothelioma cells. Cancer Res 69(4):1485–1493

    Article  CAS  PubMed  Google Scholar 

  74. Ge C, Li Q, Wang L, Xu X (2013) The role of axon guidance factor semaphorin 6B in the invasion and metastasis of gastric cancer. J Int Med Res 41(2):284–292

    Article  CAS  PubMed  Google Scholar 

  75. Hirota E, Yan L, Tsunoda T, Ashida S, Fujime M, Shuin T et al (2006) Genome-wide gene expression profiles of clear cell renal cell carcinoma: identification of molecular targets for treatment of renal cell carcinoma. Int J Oncol 29(4):799–827

    CAS  PubMed  Google Scholar 

  76. Oinuma I, Katoh H, Negishi M (2006) Semaphorin 4D/Plexin-B1-mediated R-Ras GAP activity inhibits cell migration by regulating beta(1) integrin activity. J Cell Biol 173(4):601–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Toyofuku T, Yabuki M, Kamei J, Kamei M, Makino N, Kumanogoh A et al (2007) Semaphorin-4A, an activator for T-cell-mediated immunity, suppresses angiogenesis via Plexin-D1. EMBO J 26(5):1373–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mizui M, Kumanogoh A, Kikutani H (2009) Immune semaphorins: novel features of neural guidance molecules. J Clin Immunol 29(1):1–11

    Article  CAS  PubMed  Google Scholar 

  79. Zhou H, Binmadi NO, Yang YH, Proia P, Basile JR (2012) Semaphorin 4D cooperates with VEGF to promote angiogenesis and tumor progression. Angiogenesis 15(3):391–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Inagaki S, Ohoka Y, Sugimoto H, Fujioka S, Amazaki M, Kurinami H et al (2001) Sema4c, a transmembrane semaphorin, interacts with a post-synaptic density protein, PSD-95. J Biol Chem 276(12):9174–9181

    Article  CAS  PubMed  Google Scholar 

  81. Schultze W, Eulenburg V, Lessmann V, Herrmann L, Dittmar T, Gundelfinger ED et al (2001) Semaphorin4F interacts with the synapse-associated protein SAP90/PSD-95. J Neurochem 78(3):482–489

    Article  CAS  PubMed  Google Scholar 

  82. Wang LH, Kalb RG, Strittmatter SM (1999) A PDZ protein regulates the distribution of the transmembrane semaphorin, M-SemF. J Biol Chem 274(20):14137–14146

    Article  CAS  PubMed  Google Scholar 

  83. Koropouli E, Kolodkin AL (2014) Semaphorins and the dynamic regulation of synapse assembly, refinement, and function. Curr Opin Neurobiol 27:1–7

    Article  CAS  PubMed  Google Scholar 

  84. Paradis S, Harrar DB, Lin Y, Koon AC, Hauser JL, Griffith EC et al (2007) An RNAi-based approach identifies molecules required for glutamatergic and GABAergic synapse development. Neuron 53(2):217–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kuzirian MS, Moore AR, Staudenmaier EK, Friedel RH, Paradis S (2013) The class 4 semaphorin Sema4D promotes the rapid assembly of GABAergic synapses in rodent hippocampus. J Neurosci 33(21):8961–8973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Raissi AJ, Staudenmaier EK, David S, Hu L, Paradis S (2013) Sema4D localizes to synapses and regulates GABAergic synapse development as a membrane-bound molecule in the mammalian hippocampus. Mol Cell Neurosci 57:23–32

    Article  CAS  PubMed  Google Scholar 

  87. Ko JA, Gondo T, Inagaki S, Inui M (2005) Requirement of the transmembrane semaphorin Sema4C for myogenic differentiation. FEBS Lett 579(10):2236–2242

    Article  CAS  PubMed  Google Scholar 

  88. Elhabazi A, Lang V, Hérold C, Freeman GJ, Bensussan A, Boumsell L et al (1997) The human semaphorin-like leukocyte cell surface molecule CD100 associates with a serine kinase activity. J Biol Chem 272(38):23515–23520

    Article  CAS  PubMed  Google Scholar 

  89. Herold C, Elhabazi A, Bismuth G, Bensussan A, Boumsell L (1996) CD100 is associated with CD45 at the surface of human T lymphocytes. Role in T cell homotypic adhesion. J Immunol 157(12):5262–5268

    CAS  PubMed  Google Scholar 

  90. Billard C, Delaire S, Raffoux E, Bensussan A, Boumsell L (2000) Switch in the protein tyrosine phosphatase associated with human CD100 semaphorin at terminal B-cell differentiation stage. Blood 95(3):965–972

    CAS  PubMed  Google Scholar 

  91. Kikutani H, Kumanogoh A (2003) Semaphorins in interactions between T cells and antigen-presenting cells. Nat Rev Immunol 3(2):159–167

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all Tamagnone lab members for advice and discussion. The work was supported by grants from Italian Association for Cancer Research (AIRC) (IG #2014-15179) and the Fondazione Piemontese per la Ricerca sul Cancro (FPRC-ONLUS) (Grant “MIUR 2010 Vaschetto-5 per mille 2010 MIUR”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Tamagnone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battistini, C., Tamagnone, L. Transmembrane semaphorins, forward and reverse signaling: have a look both ways. Cell. Mol. Life Sci. 73, 1609–1622 (2016). https://doi.org/10.1007/s00018-016-2137-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2137-x

Keywords

Navigation