Skip to main content

Advertisement

Log in

Novel affinity binders for neutralization of vascular endothelial growth factor (VEGF) signaling

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Angiogenesis denotes the formation of new blood vessels from pre-existing vasculature. Progression of diseases such as cancer and several ophthalmological disorders may be promoted by excess angiogenesis. Novel therapeutics to inhibit angiogenesis and diagnostic tools for monitoring angiogenesis during therapy, hold great potential for improving treatment of such diseases. We have previously generated so-called biparatopic Affibody constructs with high affinity for the vascular endothelial growth factor receptor-2 (VEGFR2), which recognize two non-overlapping epitopes in the ligand-binding site on the receptor. Affibody molecules have previously been demonstrated suitable for imaging purposes. Their small size also makes them attractive for applications where an alternative route of administration is beneficial, such as topical delivery using eye drops. In this study, we show that decreasing linker length between the two Affibody domains resulted in even slower dissociation from the receptor. The new variants of the biparatopic Affibody bound to VEGFR2-expressing cells, blocked VEGFA binding, and inhibited VEGFA-induced signaling of VEGFR2 over expressing cells. Moreover, the biparatopic Affibody inhibited sprout formation of endothelial cells in an in vitro angiogenesis assay with similar potency as the bivalent monoclonal antibody ramucirumab. This study demonstrates that the biparatopic Affibody constructs show promise for future therapeutic as well as in vivo imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611

    Article  CAS  PubMed  Google Scholar 

  2. Claesson-Welsh L, Welsh M (2013) VEGFA and tumour angiogenesis. J Intern Med 273(2):114–127. doi:10.1111/joim.12019

    Article  CAS  PubMed  Google Scholar 

  3. Roskoski R (2007) Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 62(3):179–213. doi:10.1016/j.critrevonc.2007.01.006

    Article  PubMed  Google Scholar 

  4. Pötgens AJG, Lubsen NH, van Altena MC, Vermeulen R, Bakker A, Schoenmakers JGG, Ruiter DJ, de Waal RMW (1994) Covalent dimerization of vascular permeability factor vascular endothelial growth factor is essential for its biological activity. J Biol Chem 269(52):32879–32885

    PubMed  Google Scholar 

  5. Muller YA, Li B, Christinger HW, Wells JA, Cunningham BC, de Vos AM (1997) Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc Natl Acad Sci USA 94(14):7192–7197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, de Vos AM (1997) Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91:695–704

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi T, Yamaguchi S, Chida K, Shibuya M (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20(11):2768–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tugues S, Koch S, Gualandi L, Li X, Claesson-Welsh L (2011) Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Aspects Med 32(2):88–111. doi:10.1016/j.mam.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  9. Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, Winkler M, Ferrara N (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57(20):4593–4599

    CAS  PubMed  Google Scholar 

  10. Mross K, Richly H, Fischer R, Scharr D, Büchert M, Stern A, Gille H, Audoly LP, Scheulen ME (2013) First-in-human phase I study of PRS-050 (Angiocal), an anticalin targeting and antagonizing VEGF-A, in patients with advanced solid tumors. PLoS One 8(12):1–11

    Article  Google Scholar 

  11. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 99(17):11393–11398. doi:10.1073/pnas.172398299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Polverino A, Coxon A, Starnes C, Diaz Z, DeMelfi T, Wang L, Bready J, Estrada J, Cattley R, Kaufman S, Chen D, Gan Y, Kumar G, Meyer J, Neervannan S, Alva G, Talvenheimo J, Montestruque S, Tasker A, Patel V, Radinsky R, Kendall R (2006) AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Res 66(17):8715–8721. doi:10.1158/0008-5472.CAN-05-4665

    Article  CAS  PubMed  Google Scholar 

  13. Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M (2008) Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res 14(17):5459–5465. doi:10.1158/1078-0432.CCR-07-5270

    Article  CAS  PubMed  Google Scholar 

  14. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109. doi:10.1158/0008-5472.CAN-04-1443

    Article  CAS  PubMed  Google Scholar 

  15. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9(1):327–337

    CAS  PubMed  Google Scholar 

  16. Lu D, Jimenez X, Zhang H, Bohlen P, Witte L, Zhu Z (2002) Selection of high affinity human neutralizing antibodies to VEGFR2 from a large antibody phage display library for antiangiogenesis therapy. Int J Cancer 97(3):393–399

    Article  CAS  PubMed  Google Scholar 

  17. Lu D, Shen J, Vil MD, Zhang H, Jimenez X, Bohlen P, Witte L, Zhu Z (2003) Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. J Biol Chem 278(44):43496–43507. doi:10.1074/jbc.M307742200

    Article  CAS  PubMed  Google Scholar 

  18. Getmanova EV, Chen Y, Bloom L, Gokemeijer J, Shamah S, Warikoo V, Wang J, Ling V, Sun L (2006) Antagonists to human and mouse vascular endothelial growth factor receptor 2 generated by directed protein evolution in vitro. Chem Biol 13(5):549–556. doi:10.1016/j.chembiol.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  19. Behdani M, Zeinali S, Karimipour M, Khanahmad H, Schoonooghe S, Aslemarz A, Seyed N, Moazami-Godarzi R, Baniahmad F, Habibi-Anbouhi M, Hassanzadeh-Ghassabeh G, Muyldermans S (2013) Development of VEGFR2-specific nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. New Biotechnol 30(2):205–209. doi:10.1016/j.nbt.2012.09.002

    Article  CAS  Google Scholar 

  20. Siemeister G, Schirner M, Reusch P, Barleon B, Marmé D, Martiny-Baron G (1998) An antagonistic vascular endothelial growth factor (VEGF) variant inhibits VEGF-stimulated receptor autophosphorylation and proliferation of human endothelial cells. Proc Natl Acad Sci USA 95:4625–4629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Waldner MJ, Neurath MF (2012) Targeting the VEGF signaling pathway in cancer therapy. Expert Opin Ther Targets 16(1):5–13

    Article  CAS  PubMed  Google Scholar 

  22. Giuliano S, Pages G (2013) Mechanisms of resistance to anti-angiogenesis therapies. Biochimie 95(6):1110–1119. doi:10.1016/j.biochi.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  23. Sessa C, Guibal A, Del Conte G, Ruegg C (2008) Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations? Nat Clin Pract Oncol 5(7):378–391. doi:10.1038/ncponc1150

    Article  CAS  PubMed  Google Scholar 

  24. Olafsen T, Wu AM (2010) Antibody vectors for imaging. Semin Nucl Med 40(3):167–181. doi:10.1053/j.semnuclmed.2009.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsen L (2007) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7(4):555–568. doi:10.1517/14712598.7.4.555

    Article  CAS  PubMed  Google Scholar 

  26. Lofblom J, Feldwisch J, Tolmachev V, Carlsson J, Stahl S, Frejd FY (2010) Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 584(12):2670–2680. doi:10.1016/j.febslet.2010.04.014

    Article  CAS  PubMed  Google Scholar 

  27. Myers JK, Oas TG (2001) Preorganized secondary structure as an important determinant of fast protein folding. Nat Struct Biol 8(6):552–558. doi:10.1038/88626

    Article  CAS  PubMed  Google Scholar 

  28. Hogbom M, Eklund M, Nygren PA, Nordlund P (2003) Structural basis for recognition by an in vitro evolved affibody. Proc Natl Acad Sci USA 100(6):3191–3196. doi:10.1073/pnas.0436100100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Malm M, Bass T, Gudmundsdotter L, Lord M, Frejd FY, Stahl S, Lofblom J (2014) Engineering of a bispecific affibody molecule towards HER2 and HER3 by addition of an albumin-binding domain allows for affinity purification and in vivo half-life extension. Biotechnol J 9(9):1215–1222. doi:10.1002/biot.201400009

    Article  CAS  PubMed  Google Scholar 

  30. Fleetwood F, Klint S, Hanze M, Gunneriusson E, Frejd FY, Stahl S, Lofblom J (2014) Simultaneous targeting of two ligand-binding sites on VEGFR2 using biparatopic Affibody molecules results in dramatically improved affinity. Sci Rep 4:7518. doi:10.1038/srep07518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kronqvist N, Lofblom J, Jonsson A, Wernerus H, Stahl S (2008) A novel affinity protein selection system based on staphylococcal cell surface display and flow cytometry. Protein Eng Des Sel 21(4):247–255. doi:10.1093/protein/gzm090

    Article  CAS  PubMed  Google Scholar 

  32. Kronqvist N, Malm M, Rockberg J, Hjelm B, Uhlen M, Stahl S, Lofblom J (2010) Staphylococcal surface display in combinatorial protein engineering and epitope mapping of antibodies. Recent Pat Biotechnol 4(3):171–182

    Article  CAS  PubMed  Google Scholar 

  33. Fleetwood F, Devoogdt N, Pellis M, Wernery U, Muyldermans S, Stahl S, Lofblom J (2013) Surface display of a single-domain antibody library on Gram-positive bacteria. Cell Mol Life Sci 70(6):1081–1093. doi:10.1007/s00018-012-1179-y

    Article  CAS  PubMed  Google Scholar 

  34. Jonsson A, Dogan J, Herne N, Abrahmsen L, Nygren PA (2008) Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng Des Sel 21(8):515–527. doi:10.1093/protein/gzn028

    Article  CAS  PubMed  Google Scholar 

  35. Kontermann RE (2011) Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol 22(6):868–876. doi:10.1016/j.copbio.2011.06.012

    Article  CAS  PubMed  Google Scholar 

  36. Orlova A, Jonsson A, Rosik D, Lundqvist H, Lindborg M, Abrahmsen L, Ekblad C, Frejd FY, Tolmachev V (2013) Site-specific radiometal labeling and improved biodistribution using ABY-027, a novel HER2-targeting affibody molecule-albumin-binding domain fusion protein. J Nucl Med 54(6):961–968. doi:10.2967/jnumed.112.110700

    Article  CAS  PubMed  Google Scholar 

  37. Andersen JT, Pehrson R, Tolmachev V, Daba MB, Abrahmsen L, Ekblad C (2011) Extending half-life by indirect targeting of the neonatal Fc receptor (FcRn) using a minimal albumin binding domain. J Biol Chem 286(7):5234–5241. doi:10.1074/jbc.M110.164848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Larrivee B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A, Simons M, Eichmann A (2012) ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 22(3):489–500. doi:10.1016/j.devcel.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108

    Article  CAS  PubMed  Google Scholar 

  40. Davis BM, Normando EM, Guo L, Turner LA, Nizari S, O’Shea P, Moss SE, Somavarapu S, Cordeiro MF (2014) Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small 10(8):1575–1584. doi:10.1002/smll.201303433

    Article  CAS  PubMed  Google Scholar 

  41. Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, Sandström M, Rosik D, Carlsson J, Lundqvist H, Wennborg A, Nilsson FY (2007) Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res 67(6):2773–2782. doi:10.1158/0008-5472.CAN-06-1630

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Swedish Research Council (621-2012-5236), the Swedish Cancer Society, and the Governmental Agency for Innovation system (2009-00179). EG is supported by Wenner-Gren Stiftelserna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Löfblom.

Additional information

F. Fleetwood and R. Güler contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleetwood, F., Güler, R., Gordon, E. et al. Novel affinity binders for neutralization of vascular endothelial growth factor (VEGF) signaling. Cell. Mol. Life Sci. 73, 1671–1683 (2016). https://doi.org/10.1007/s00018-015-2088-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2088-7

Keywords

Navigation