Skip to main content

Advertisement

Log in

Epigenesis and plasticity of mouse trophoblast stem cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The critical role of the placenta in supporting a healthy pregnancy is mostly ensured by the extraembryonic trophoblast lineage that acts as the interface between the maternal and the foetal compartments. The diverse trophoblast cell subtypes that form the placenta originate from a single layer of stem cells that emerge from the embryo when the earliest cell fate decisions are occurring. Recent studies show that these trophoblast stem cells exhibit extensive plasticity as they are capable of differentiating down multiple pathways and are easily converted into embryonic stem cells in vitro. In this review, we discuss current knowledge of the mechanisms and control of the epigenesis of mouse trophoblast stem cells through a comparison with the corresponding mechanisms in pluripotent embryonic stem cells. To illustrate some of the more striking manifestations of the epigenetic plasticity of mouse trophoblast stem cells, we discuss them within the context of two paradigms of epigenetic regulation of gene expression: the imprinted gene expression of specific loci and the process of X-chromosome inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rossant J, Tam PP (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136(5):701–713

    Article  CAS  PubMed  Google Scholar 

  2. Saiz N, Plusa B (2013) Early cell fate decisions in the mouse embryo. Reproduction 145(3):R65–R80

    Article  CAS  PubMed  Google Scholar 

  3. Cross JC et al (2002) Trophoblast functions, angiogenesis and remodeling of the maternal vasculature in the placenta. Mol Cell Endocrinol 187(1–2):207–212

    Article  CAS  PubMed  Google Scholar 

  4. Georgiades P, Ferguson-Smith AC, Burton GJ (2002) Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23(1):3–19

    Article  CAS  PubMed  Google Scholar 

  5. John R, Hemberger M (2012) A placenta for life. Reprod Biomed Online 25(1):5–11

    Article  CAS  PubMed  Google Scholar 

  6. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  7. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78(12):7634–7638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Tanaka S et al (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282(5396):2072–2075

    Article  CAS  PubMed  Google Scholar 

  9. Efthymiou AG et al (2014) Self-renewal and cell lineage differentiation strategies in human embryonic stem cells and induced pluripotent stem cells. Expert Opin Biol Ther 14(9):1333–1344

    Article  PubMed  Google Scholar 

  10. Copp AJ (1979) Interaction between inner cell mass and trophectoderm of the mouse blastocyst. II. The fate of the polar trophectoderm. J Embryol Exp Morphol 51:109–120

    CAS  PubMed  Google Scholar 

  11. Hemberger M, Hughes M, Cross JC (2004) Trophoblast stem cells differentiate in vitro into invasive trophoblast giant cells. Dev Biol 271(2):362–371

    Article  CAS  PubMed  Google Scholar 

  12. Hemberger M et al (2001) Genetic and developmental analysis of X-inactivation in interspecific hybrid mice suggests a role for the Y chromosome in placental dysplasia. Genetics 157(1):341–348

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Maltepe E, Bakardjiev AI, Fisher SJ (2010) The placenta: transcriptional, epigenetic, and physiological integration during development. J Clin Invest 120(4):1016–1025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Rugg-Gunn PJ et al (2012) Cell-surface proteomics identifies lineage-specific markers of embryo-derived stem cells. Dev Cell 22(4):887–901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Simmons DG, Fortier AL, Cross JC (2007) Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta. Dev Biol 304(2):567–578

    Article  CAS  PubMed  Google Scholar 

  16. Logan PC, Mitchell MD, Lobie PE (2013) DNA methyltransferases and TETs in the regulation of differentiation and invasiveness of extra-villous trophoblasts. Front Genet 4:265

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Perry JK et al (2010) Regulation of invasive growth: similar epigenetic mechanisms underpin tumour progression and implantation in human pregnancy. Clin Sci 118:451–457

    Article  Google Scholar 

  18. Richard G, Puisieux A, Caramel J (2014) Antagonistic functions of EMT-inducers in melanoma development: implications for cancer cell plasticity. Cancer Cell Microenviron 1:e61

    Google Scholar 

  19. Nichols J et al (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391

    Article  CAS  PubMed  Google Scholar 

  20. Strumpf D et al (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132(9):2093–2102

    Article  CAS  PubMed  Google Scholar 

  21. Albert M, Peters AH (2009) Genetic and epigenetic control of early mouse development. Curr Opin Genet Dev 19(2):113–121

    Article  CAS  PubMed  Google Scholar 

  22. Niwa H et al (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123(5):917–929

    Article  CAS  PubMed  Google Scholar 

  23. Zernicka-Goetz M, Morris SA, Bruce AW (2009) Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 10(7):467–477

    Article  CAS  PubMed  Google Scholar 

  24. Nishioka N et al (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125(3–4):270–283

    Article  CAS  PubMed  Google Scholar 

  25. Nishioka N et al (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16(3):398–410

    Article  CAS  PubMed  Google Scholar 

  26. Ralston A, Rossant J (2008) Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol 313(2):614–629

    Article  CAS  PubMed  Google Scholar 

  27. Stephenson RO, Yamanaka Y, Rossant J (2010) Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development 137(20):3383–3391

    Article  CAS  PubMed  Google Scholar 

  28. Kondratiuk I et al (2012) Delay of polarization event increases the number of Cdx2-positive blastomeres in mouse embryo. Dev Biol 368(1):54–62

    Article  CAS  PubMed  Google Scholar 

  29. Jedrusik A et al (2008) Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev 22(19):2692–2706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Gardner RL, Papaioannou VE, Barton SC (1973) Origin of the ectoplacental cone and secondary giant cells in mouse blastocysts reconstituted from isolated trophoblast and inner cell mass. J Embryol Exp Morphol 30(3):561–572

    CAS  PubMed  Google Scholar 

  31. Rossant J, Tamura-Lis W (1981) Effect of culture conditions on diploid to giant-cell transformation in postimplantation mouse trophoblast. J Embryol Exp Morphol 62:217–227

    CAS  PubMed  Google Scholar 

  32. Ilgren EB (1981) On the control of the trophoblastic giant-cell transformation in the mouse: homotypic cellular interactions and polyploidy. J Embryol Exp Morphol 62:183–202

    CAS  PubMed  Google Scholar 

  33. Arman E et al (1998) Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci USA 95(9):5082–5087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Haffner-Krausz R et al (1999) Expression of Fgfr2 in the early mouse embryo indicates its involvement in preimplantation development. Mech Dev 85(1–2):167–172

    Article  CAS  PubMed  Google Scholar 

  35. Niswander L, Martin GR (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114(3):755–768

    CAS  PubMed  Google Scholar 

  36. Feldman B et al (1995) Requirement of FGF-4 for postimplantation mouse development. Science 267(5195):246–249

    Article  CAS  PubMed  Google Scholar 

  37. Bedzhov I et al (2014) Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo. Phil Trans R Soc London B Biol Sci 369:20130538. doi:10.1098/rstb.2013.0538

    Article  CAS  Google Scholar 

  38. Guzman-Ayala M et al (2004) Nodal protein processing and fibroblast growth factor 4 synergize to maintain a trophoblast stem cell microenvironment. Proc Natl Acad Sci USA 101(44):15656–15660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lu CW et al (2008) Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos. Nat Genet 40(7):921–926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Rossant J (2001) Stem cells from the mammalian blastocyst. Stem Cells 19(6):477–482

    Article  CAS  PubMed  Google Scholar 

  41. Saba-El-Leil MK et al (2003) An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep 4(10):964–968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Himeno E, Tanaka S, Kunath T (2008) Isolation and manipulation of mouse trophoblast stem cells. Curr Protoc Stem Cell Biol Chapter 1:Unit 1E.4

    PubMed  Google Scholar 

  43. Kubaczka C et al (2014) Derivation and maintenance of murine trophoblast stem cells under defined conditions. Stem Cell Rep 2(2):232–242

    Article  CAS  Google Scholar 

  44. Krueger WH et al (2010) Natural and artificial routes to pluripotency. Int J Dev Biol 54(11–12):1545–1564

    Article  CAS  PubMed  Google Scholar 

  45. Soza-Ried J, Fisher AG (2012) Reprogramming somatic cells towards pluripotency by cellular fusion. Curr Opin Genet Dev 22(5):459–465

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  47. Ogawa H et al (2015) Deficiency of genomic reprogramming in trophoblast stem cells following nuclear transfer. Cell Reprogram 17(2):115–123

    Article  CAS  PubMed  Google Scholar 

  48. Santos J et al (2010) Differences in the epigenetic and reprogramming properties of pluripotent and extra-embryonic stem cells implicate chromatin remodelling as an important early event in the developing mouse embryo. Epigenetics Chromatin 3:1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Kuckenberg P et al (2011) Lineage conversion of murine extraembryonic trophoblast stem cells to pluripotent stem cells. Mol Cell Biol 31(8):1748–1756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Wu T et al (2011) Reprogramming of trophoblast stem cells into pluripotent stem cells by Oct4. Stem Cells 29(5):755–763

    Article  CAS  PubMed  Google Scholar 

  51. Schenke-Layland K et al (2007) Collagen IV induces trophoectoderm differentiation of mouse embryonic stem cells. Stem Cells 25(6):1529–1538

    Article  CAS  PubMed  Google Scholar 

  52. Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24(4):372–376

    Article  CAS  PubMed  Google Scholar 

  53. Cambuli F et al (2014) Epigenetic memory of the first cell fate decision prevents complete ES cell reprogramming into trophoblast. Nat Commun 5:5538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7(7):540–546

    Article  CAS  PubMed  Google Scholar 

  55. Meshorer E et al (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10(1):105–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Efroni S et al (2008) Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2(5):437–447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Ahmed K et al (2010) Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS One 5(5):e10531

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Rugg-Gunn PJ et al (2010) Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proc Natl Acad Sci USA 107(24):10783–10790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Saha B et al (2013) EED and KDM6B coordinate the first mammalian cell lineage commitment to ensure embryo implantation. Mol Cell Biol 33(14):2691–2705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Dahl JA et al (2010) Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos. PLoS One 5(2):e9150

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Alder O et al (2010) Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. Development 137(15):2483–2492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Bernstein BE et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326

    Article  CAS  PubMed  Google Scholar 

  63. Chapman V et al (1984) Cell lineage-specific undermethylation of mouse repetitive DNA. Nature 307(5948):284–286

    Article  CAS  PubMed  Google Scholar 

  64. Rossant J et al (1986) Undermethylation of structural gene sequences in extraembryonic lineages of the mouse. Dev Biol 117(2):567–573

    Article  CAS  PubMed  Google Scholar 

  65. Santos F et al (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1):172–182

    Article  CAS  PubMed  Google Scholar 

  66. Senner CE et al (2012) DNA methylation profiles define stem cell identity and reveal a tight embryonic-extraembryonic lineage boundary. Stem Cells 30(12):2732–2745

    Article  CAS  PubMed  Google Scholar 

  67. Farthing CR et al (2008) Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 4(6):e1000116

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Hattori N et al (2007) Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells 12(3):387–396

    Article  CAS  PubMed  Google Scholar 

  69. Hattori N et al (2004) Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem 279(17):17063–17069

    Article  CAS  PubMed  Google Scholar 

  70. Nakanishi MO et al (2012) Trophoblast-specific DNA methylation occurs after the segregation of the trophectoderm and inner cell mass in the mouse periimplantation embryo. Epigenetics 7(2):173–182

    Article  CAS  PubMed  Google Scholar 

  71. Wang K et al (2010) Brg1 is required for Cdx2-mediated repression of Oct4 expression in mouse blastocysts. PLoS One 5(5):e10622

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Donnison M et al (2005) Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development 132(10):2299–2308

    Article  CAS  PubMed  Google Scholar 

  73. Ng RK et al (2008) Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol 10(11):1280–1290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Carey TS et al (2014) Transcriptional reprogramming and chromatin remodeling accompanies Oct4 and Nanog silencing in mouse trophoblast lineage. Stem Cells Dev 23(3):219–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Yuan P et al (2009) Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev 23(21):2507–2520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Sakaue M et al (2010) DNA methylation is dispensable for the growth and survival of the extraembryonic lineages. Curr Biol 20(16):1452–1457

    Article  CAS  PubMed  Google Scholar 

  77. Kidder BL, Palmer S (2012) HDAC1 regulates pluripotency and lineage specific transcriptional networks in embryonic and trophoblast stem cells. Nucleic Acids Res 40(7):2925–2939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Zhu D et al (2014) Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells. Nat Commun 5:3174

    PubMed  Google Scholar 

  79. Barlow DP (2011) Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet 45:379–403

    Article  CAS  PubMed  Google Scholar 

  80. Bartolomei MS1, Ferguson-Smith AC (2011) Mammalian genomic imprinting. Cold Spring Harb Perspect Biol 3(7):a002592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Duffie R, Bourc’his D (2013) Parental epigenetic asymmetry in mammals. Curr Top Dev Biol 104:293–328

    Article  CAS  PubMed  Google Scholar 

  82. Mohammad F, Mondal T, Kanduri C (2009) Epigenetics of imprinted long noncoding RNAs. Epigenetics 4(5):277–286

    Article  CAS  PubMed  Google Scholar 

  83. Santoro F, Barlow DP (2011) Developmental control of imprinted expression by macro non-coding RNAs. Semin Cell Dev Biol 22(4):328–335

    Article  CAS  PubMed  Google Scholar 

  84. Ito M et al (2015) A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development. Development 142(14):2425–2430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Hanna JH, Saha K, Jaenisch R (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143(4):508–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Bressan FF et al (2009) Unearthing the roles of imprinted genes in the placenta. Placenta 30(10):823–834

    Article  CAS  PubMed  Google Scholar 

  87. Hudson QJ et al (2010) Genomic imprinting mechanisms in embryonic and extraembryonic mouse tissues. Heredity (Edinb) 105(1):45–56

    Article  CAS  Google Scholar 

  88. Radford EJ, Ferron SR, Ferguson-Smith AC (2011) Genomic imprinting as an adaptative model of developmental plasticity. FEBS Lett 585(13):2059–2066

    Article  CAS  PubMed  Google Scholar 

  89. Li L et al (1999) Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 284(5412):330–333

    Article  CAS  PubMed  Google Scholar 

  90. Constancia M et al (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417(6892):945–948

    Article  CAS  PubMed  Google Scholar 

  91. Lefebvre L et al (1998) Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet 20(2):163–169

    Article  CAS  PubMed  Google Scholar 

  92. Weaver JR, Susiarjo M, Bartolomei MS (2009) Imprinting and epigenetic changes in the early embryo. Mamm Genome 20(9–10):532–543

    Article  PubMed  Google Scholar 

  93. Lewis A et al (2006) Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo. Development 133(21):4203–4210

    Article  CAS  PubMed  Google Scholar 

  94. Pandey RR et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246

    Article  CAS  PubMed  Google Scholar 

  95. Murakami K, Oshimura M, Kugoh H (2007) Suggestive evidence for chromosomal localization of non-coding RNA from imprinted LIT1. J Hum Genet 52(11):926–933

    Article  CAS  PubMed  Google Scholar 

  96. Terranova R et al (2008) Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 15(5):668–679

    Article  CAS  PubMed  Google Scholar 

  97. Nagano T et al (2008) The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322(5908):1717–1720

    Article  CAS  PubMed  Google Scholar 

  98. Gendrel AV, Heard E (2014) Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu Rev Cell Dev Biol 30:561–580

    Article  CAS  PubMed  Google Scholar 

  99. Morey C, Avner P (2011) The demoiselle of X-inactivation: 50 years old and as trendy and mesmerising as ever. PLoS Genet 7(7):e1002212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Barakat TS, Gribnau J (2012) X chromosome inactivation in the cycle of life. Development 139(12):2085–2089

    Article  CAS  PubMed  Google Scholar 

  101. Deuve JL, Avner P (2011) The coupling of X-chromosome inactivation to pluripotency. Annu Rev Cell Dev Biol 27:611–629

    Article  CAS  PubMed  Google Scholar 

  102. Mak W et al (2004) Reactivation of the paternal X chromosome in early mouse embryos. Science 303(5658):666–669

    Article  CAS  PubMed  Google Scholar 

  103. Okamoto I et al (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303(5658):644–649

    Article  CAS  PubMed  Google Scholar 

  104. Patrat C et al (2009) Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proc Natl Acad Sci USA 106(13):5198–5203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Sado T et al (2000) X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev Biol 225(2):294–303

    Article  CAS  PubMed  Google Scholar 

  106. Marahrens Y et al (1997) Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11(2):156–166

    Article  CAS  PubMed  Google Scholar 

  107. Senner CE et al (2011) Disruption of a conserved region of Xist exon 1 impairs Xist RNA localisation and X-linked gene silencing during random and imprinted X chromosome inactivation. Development 138(8):1541–1550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Kalantry S et al (2009) Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature 460(7255):647–651

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Hoki Y et al (2011) Incomplete X-inactivation initiated by a hypomorphic Xist allele in the mouse. Development 138(13):2649–2659

    Article  CAS  PubMed  Google Scholar 

  110. Papaioannou VE, West JD (1981) Relationship between the parental origin of the X chromosomes, embryonic cell lineage and X chromosome expression in mice. Genet Res 37(2):183–197

    Article  CAS  PubMed  Google Scholar 

  111. Kay GF et al (1994) Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development. Cell 77(5):639–650

    Article  CAS  PubMed  Google Scholar 

  112. Nesterova TB et al (2001) Loss of Xist imprinting in diploid parthenogenetic preimplantation embryos. Dev Biol 235(2):343–350

    Article  CAS  PubMed  Google Scholar 

  113. Goto Y, Takagi N (2000) Maternally inherited X chromosome is not inactivated in mouse blastocysts due to parental imprinting. Chromosome Res 8(2):101–109

    Article  CAS  PubMed  Google Scholar 

  114. Goto Y, Takagi N (1998) Tetraploid embryos rescue embryonic lethality caused by an additional maternally inherited X chromosome in the mouse. Development 125(17):3353–3363

    CAS  PubMed  Google Scholar 

  115. Okamoto I, Tan S, Takagi N (2000) X-chromosome inactivation in XX androgenetic mouse embryos surviving implantation. Development 127(19):4137–4145

    CAS  PubMed  Google Scholar 

  116. Shao C, Takagi N (1990) An extra maternally derived X chromosome is deleterious to early mouse development. Development 110(3):969–975

    CAS  PubMed  Google Scholar 

  117. Tada T, Takagi N, Adler ID (1993) Parental imprinting on the mouse X chromosome: effects on the early development of X0, XXY and XXX embryos. Genet Res 62(2):139–148

    Article  CAS  PubMed  Google Scholar 

  118. Merzouk S et al (2014) Lineage-specific regulation of imprinted X inactivation in extraembryonic endoderm stem cells. Epigenetics Chromatin 7:11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Berletch JB et al (2015) Escape from X inactivation varies in mouse tissues. PLoS Genet 11(3):e1005079

    Article  PubMed Central  PubMed  Google Scholar 

  120. Calabrese JM et al (2012) Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151(5):951–963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Yang F et al (2010) Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20(5):614–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Corbel C et al (2013) Unusual chromatin status and organization of the inactive X chromosome in murine trophoblast giant cells. Development 140(4):861–872

    Article  CAS  PubMed  Google Scholar 

  123. Hadjantonakis AK et al (2001) An X-linked GFP transgene reveals unexpected paternal X-chromosome activity in trophoblastic giant cells of the mouse placenta. Genesis 29(3):133–140

    Article  CAS  PubMed  Google Scholar 

  124. Tam PP, Williams EA, Tan SS (1994) Expression of an X-linked HMG-lacZ transgene in mouse embryos: implication of chromosomal imprinting and lineage-specific X-chromosome activity. Dev Genet 15(6):491–503

    Article  CAS  PubMed  Google Scholar 

  125. Tan SS, Williams EA, Tam PP (1993) X-chromosome inactivation occurs at different times in different tissues of the post-implantation mouse embryo. Nat Genet 3(2):170–174

    Article  CAS  PubMed  Google Scholar 

  126. Dubois A et al (2014) Spontaneous reactivation of clusters of X-linked genes is associated with the plasticity of X-inactivation in mouse trophoblast stem cells. Stem Cells 32(2):377–390

    Article  CAS  PubMed  Google Scholar 

  127. Mugford JW, Yee D, Magnuson T (2012) Failure of extra-embryonic progenitor maintenance in the absence of dosage compensation. Development 139(12):2130–2138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Hemberger M (2002) The role of the X chromosome in mammalian extra embryonic development. Cytogenet Genome Res 99(1–4):210–217

    Article  CAS  PubMed  Google Scholar 

  129. Guttman M et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Flynn RA, Chang HY (2014) Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14(6):752–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Furukawa S, Kuroda Y, Sugiyama A (2014) A comparison of the histological structure of the placenta in experimental animals. J Toxicol Pathol 27(1):11–18

    Article  PubMed Central  PubMed  Google Scholar 

  132. Knox K, Baker JC (2008) Genomic evolution of the placenta using co-option and duplication and divergence. Genome Res 18(5):695–705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Chuong EB (2013) Retroviruses facilitate the rapid evolution of the mammalian placenta. BioEssays 35(10):853–861

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Hemberger M (2010) Genetic-epigenetic intersection in trophoblast differentiation: implications for extraembryonic tissue function. Epigenetics 5(1):24–29

    Article  CAS  PubMed  Google Scholar 

  135. Chuong EB et al (2013) Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet 45(3):325–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologise to the authors who have contributed to related studies or aspects of trophoblast stem cell plasticity that could not be addressed here due to the format restrictions of the review. We thank Dr. Graham Hayhurst for critical reading of the manuscript. J.P. was supported by a doctoral fellowship from the Région Ile-de-France (DIM-StemPôle), and by a grant from the REVIVE Labex. CM is supported on a permanent basis by the French National Institute for Scientific and Medical Research (INSERM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Morey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prudhomme, J., Morey, C. Epigenesis and plasticity of mouse trophoblast stem cells. Cell. Mol. Life Sci. 73, 757–774 (2016). https://doi.org/10.1007/s00018-015-2086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2086-9

Keywords

Navigation