Abstract
Atherosclerosis is a chronic inflammatory disease that is mediated by innate and adaptive immune responses. The disease is characterized by sub-endothelial accumulation and modification of lipids in the artery wall triggering an inflammatory reaction which promotes lesion progression and eventual plaque rupture, thrombus formation, and the respective clinical sequelae such as myocardial infarction or stroke. During the past decade, T-cell-mediated immune responses, especially control of pro-inflammatory signals by regulatory T cells (Tregs), have increasingly attracted the interest of experimental and clinical researchers. By suppression of T cell proliferation and secretion of anti-inflammatory cytokines, such as interleukin-10 (IL-10) and transforming growth factor-β, Tregs exert their atheroprotective properties. Atherosclerosis-prone, hyperlipidemic mice harbor systemically less Tregs compared to wild-type mice, suggesting an imbalance of immune cells which affects local and systemic inflammatory and potentially metabolic processes leading to atherogenesis. Restoring or increasing Treg frequency and enhancing their suppressive capacity by various modulations may pose a promising approach for treating inflammatory conditions such as cardiovascular diseases. In this review, we briefly summarize the immunological basics of atherosclerosis and introduce the role and contribution of different subsets of T cells. We then discuss experimental data and current knowledge pertaining to Tregs in atherosclerosis and perspectives on manipulating the adaptive immune system to alleviate atherosclerosis and cardiovascular disease.



Abbreviations
- 3-HAA:
-
3-Hydroxyanthranilic acid
- AIRE:
-
Autoimmune regulator
- AML1:
-
Acute myeloid leukemia 1 protein
- APC:
-
Antigen-presenting cell
- ApoB/E:
-
Apolipoprotein B/E
- ATLO:
-
Artery tertiary lymphoid organ
- CD:
-
Cluster of differentiation
- CTLA-4:
-
Cytotoxic T-lymphocyte-associated protein-4
- DC:
-
Dendritic cell
- FcR:
-
Fc receptor
- Foxp3:
-
Forkhead box P3
- GARP:
-
Glycoprotein A repetitions predominant
- HSP:
-
Heat shock protein
- ICAM:
-
Intracellular adhesion molecule
- IDO:
-
Indoleamine 2,3-dioxygenase
- IFNγ:
-
Interferon gamma
- Ig:
-
Immunoglobulin
- IL:
-
Interleukin
- LAP:
-
Latency-associated peptide
- iNOS:
-
Inducible nitric oxide synthase
- LDL(r):
-
Low-density lipoprotein (receptor)
- MDA:
-
Malondialdehyde
- MHC:
-
Major histocompatibility complex
- mTEC:
-
Medullary thymic epithelial cells
- NFAT:
-
Nuclear factor of activating T cells
- NK cells:
-
Natural killer cells
- Nrp-1:
-
Neuropilin 1
- RA:
-
Rheumatoid arthritis
- Rag:
-
Recombinase activating gene
- RORγt:
-
Retinoic acid receptor-related orphan receptor
- TCR:
-
T cell receptor
- Tfr:
-
Follicular regulatory T cells
- Tfh:
-
Follicular helper cells
- TGFβ:
-
Transforming growth factor beta
- Th cell:
-
T helper cell
- TLR:
-
Toll-like receptor
- TNF(R):
-
Tumor necrosis factor (receptor)
- (i/n) Treg:
-
(Inducible/natural) regulatory T cells
- SLO:
-
Secondary lymphoid organ
- SMC:
-
Smooth muscle cell
- VCAM:
-
Vascular cell adhesion molecule
- VLDL:
-
Very low-density lipoprotein
References
Lozano R, Naghavi M, Foreman K et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–2128. doi:10.1016/S0140-6736(12)61728-0
Kalanuria AA, Nyquist P, Ling G (2012) The prevention and regression of atherosclerotic plaques: emerging treatments. Vasc Health Risk Manag 8:549–561. doi:10.2147/VHRM.S27764
Lusis AJ (2000) Atherosclerosis. Nature 407:233–241. doi:10.1038/35025203
Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17:1410–1422. doi:10.1038/nm.2538
Meager A (1999) Cytokine regulation of cellular adhesion molecule expression in inflammation. Cytokine Growth Factor Rev 10:27–39
Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8:802–815. doi:10.1038/nri2415
Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol 27:165–197. doi:10.1146/annurev.immunol.021908.132620.Immune
Wigren M, Nilsson J, Kolbus D (2012) Lymphocytes in atherosclerosis. Clin Chim Acta 413:1562–1568. doi:10.1016/j.cca.2012.04.031
Hermansson A, Ketelhuth DFJ, Strodthoff D et al (2010) Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 207:1081–1093. doi:10.1084/jem.20092243
Legein B, Temmerman L, Biessen EA, Lutgens E (2013) Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci 70:3847–3869. doi:10.1007/s00018-013-1289-1
Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation 111:3481–3488. doi:10.1161/CIRCULATIONAHA.105.537878
Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721. doi:10.1038/nri3520
Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol 12:204–212. doi:10.1038/ni.2001
Peled M, Fisher EA (2014) Dynamic aspects of macrophage polarization during atherosclerosis progression and regression. Front Immunol 5:579. doi:10.3389/fimmu.2014.00579
Tiemessen MM, Jagger AL, Evans HG et al (2007) CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA 104:19446–19451. doi:10.1073/pnas.0706832104
Feig JE, Vengrenyuk Y, Reiser V et al (2012) Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome. PLoS One 7:e39790. doi:10.1371/journal.pone.0039790
Kadl A, Meher AK, Sharma PR et al (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107:737–746. doi:10.1161/CIRCRESAHA.109.215715
Van Leeuwen M, Gijbels MJJ, Duijvestijn A et al (2008) Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesions in LDLR−/− mice. Arterioscler Thromb Vasc Biol 28:84–89. doi:10.1161/ATVBAHA.107.154807
Döring Y, Drechsler M, Soehnlein O, Weber C (2014) Neutrophils in atherosclerosis: from mice to man. Arterioscler Thromb Vasc Biol 35:288–296. doi:10.1161/ATVBAHA.114.303564
Drechsler M, Megens RTA, van Zandvoort M et al (2010) Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122:1837–1845. doi:10.1161/CIRCULATIONAHA.110.961714
Tsiantoulas D, Sage AP, Mallat Z, Binder CJ (2014) Targeting B cells in atherosclerosis: closing the gap from bench to bedside. Arterioscler Thromb Vasc Biol 35:296–302. doi:10.1161/ATVBAHA.114.303569
Sage AP, Mallat Z (2014) Multiple potential roles for B cells in atherosclerosis. Ann Med 46:297–303. doi:10.3109/07853890.2014.900272
Zernecke A (2015) Dendritic cells in atherosclerosis: evidence in mice and humans. Arterioscler Thromb Vasc Biol 35:763–771. doi:10.1161/ATVBAHA.114.303566
Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV (2015) Myeloid dendritic cells: development, functions, and role in atherosclerotic inflammation. Immunobiology 220:833–844. doi:10.1016/j.imbio.2014.12.010
Cheong C, Choi J-H (2012) Dendritic cells and regulatory T cells in atherosclerosis. Mol Cells 34:341–347. doi:10.1007/s10059-012-0128-9
Ishibashi S, Goldstein JL, Brown M et al (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 93:1885–1893
Piedrahita JA, Zhang SH, Hagaman JR et al (1992) Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA 89:4471–4475
Imaizumi K (2011) Diet and atherosclerosis in apolipoprotein E-deficient mice. Biosci Biotechnol Biochem 75:1023–1035. doi:10.1271/bbb.110059
Daugherty A, Puré E, Delfel-Butteiger D et al (1997) The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J Clin Invest 100:1575–1580. doi:10.1172/JCI119681
Dansky HM, Charlton SA, Harper MM, Smith JD (1997) T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA 94:4642–4646
Elhage R, Gourdy P, Brouchet L et al (2004) Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice. Am J Pathol 165:2013–2018
Zhou X, Nicoletti A, Elhage R, Hansson GK (2000) Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 102:2919–2922. doi:10.1161/01.CIR.102.24.2919
Hansson GK, Holm J, Jonasson L (1989) Detection of activated T lymphocytes in the human atherosclerotic plaque. Am J Pathol 135:169–175
Jonasson L, Holm J, Skalli O et al (1985) Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J Clin Invest 76:125–131. doi:10.1172/JCI111934
Ammirati E, Cianflone D, Vecchio V et al (2012) Effector memory T cells are associated with atherosclerosis in humans and animal models. J Am Heart Assoc 1:27–41. doi:10.1161/JAHA.111.000125
Liuzzo G, Goronzy JJ, Yang H et al (2000) Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 101:2883–2888. doi:10.1161/01.CIR.101.25.2883
Dumitriu IE, Araguás ET, Baboonian C, Kaski JC (2009) CD4+CD28 null T cells in coronary artery disease: when helpers become killers. Cardiovasc Res 81:11–19. doi:10.1093/cvr/cvn248
Brugaletta S, Biasucci LM, Pinnelli M et al (2006) Novel anti-inflammatory effect of statins: reduction of CD4+CD28null T lymphocyte frequency in patients with unstable angina. Heart 92:249–250. doi:10.1136/hrt.2004.052282
Rizzello V, Liuzzo G, Brugaletta S et al (2006) Modulation of CD4(+)CD28null T lymphocytes by tumor necrosis factor-alpha blockade in patients with unstable angina. Circulation 113:2272–2277. doi:10.1161/CIRCULATIONAHA.105.588533
Hedrick CC (2015) Lymphocytes in atherosclerosis. Arterioscler Thromb Vasc Biol 35:253–257. doi:10.1161/ATVBAHA.114.305144
Hansson GK (2001) Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 21:1876–1890. doi:10.1161/hq1201.100220
Szabo SJ, Kim ST, Costa GL et al (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669
Buono C, Binder CJ, Stavrakis G et al (2005) T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci USA 102:1596–1601. doi:10.1073/pnas.0409015102
Harvey EJ, Ramji DP (2005) Interferon-gamma and atherosclerosis: pro- or anti-atherogenic? Cardiovasc Res 67:11–20. doi:10.1016/j.cardiores.2005.04.019
Gupta S, Pablo AM, Jiang XC et al (1997) IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 99:2752–2761. doi:10.1172/JCI119465
McLaren JE, Ramji DP (2009) Interferon gamma: a master regulator of atherosclerosis. Cytokine Growth Factor Rev 20:125–135. doi:10.1016/j.cytogfr.2008.11.003
Davenport P, Tipping PG (2003) The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 163:1117–1125. doi:10.1016/S0002-9440(10)63471-2
Okamura H, Tsutsui H, Kashiwamura S-I et al (1998) Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv Immunol. doi:10.1016/S0065-2776(08)60389-2
Gerdes N, Sukhova GK, Libby P et al (2002) Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med 195:245–257
Mallat Z, Corbaz A, Scoazec A et al (2001) Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 104:1598–1603. doi:10.1161/hc3901.096721
Alexander MR, Moehle CW, Johnson JL et al (2012) Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J Clin Invest 122:70–79. doi:10.1172/JCI43713
Zhou X, Paulsson G, Stemme S, Hansson GK (1998) Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest 101:1717–1725. doi:10.1172/JCI1216
Potteaux S, Esposito B, van Oostrom O et al (2004) Leukocyte-derived interleukin 10 is required for protection against atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 24:1474–1478. doi:10.1161/01.ATV.0000134378.86443.cd
King VL, Szilvassy SJ, Daugherty A (2002) Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler Thromb Vasc Biol 22:456–461
Cardilo-Reis L, Gruber S, Schreier SM et al (2012) Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med 4:1072–1086. doi:10.1002/emmm.201201374
Binder CJ, Hartvigsen K, Chang M-K et al (2004) IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 114:427–437. doi:10.1172/JCI20479
Robertson A-KL, Hansson GK (2006) T cells in atherogenesis: for better or for worse? Arterioscler Thromb Vasc Biol 26:2421–2432. doi:10.1161/01.ATV.0000245830.29764.84
Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795. doi:10.1172/JCI59643DS1
Leskinen MJ, Kovanen PT, Lindstedt KA (2003) Regulation of smooth muscle cell growth, function and death in vitro by activated mast cells—a potential mechanism for the weakening and rupture of atherosclerotic plaques. Biochem Pharmacol 66:1493–1498
King VL, Cassis LA, Daugherty A (2007) Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice. Am J Pathol 171:2040–2047. doi:10.2353/ajpath.2007.060857
Morokata T, Ishikawa J, Ida K, Yamada T (1999) C57BL/6 mice are more susceptible to antigen-induced pulmonary eosinophilia than BALB/c mice, irrespective of systemic T helper 1/T helper 2 responses. Immunology 98:345–351. doi:10.1046/j.1365-2567.1999.00890.x
Eid RE, Rao DA, Zhou J et al (2009) Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 119:1424–1432. doi:10.1161/CIRCULATIONAHA.108.827618
Butcher M, Galkina E (2011) Current views on the functions of interleukin-17A-producing cells in atherosclerosis. Thromb Haemost 106:787–795. doi:10.1160/TH11-05-0342
Taleb S, Tedgui A, Mallat Z (2015) IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles. Arterioscler Thromb Vasc Biol 35:258–264. doi:10.1161/ATVBAHA.114.303567
Chung Y, Chang SH, Martinez GJ et al (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30:576–587. doi:10.1016/j.immuni.2009.02.007
Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517. doi:10.1146/annurev.immunol.021908.132710
Yosef N, Shalek AK, Gaublomme JT et al (2013) Dynamic regulatory network controlling TH17 cell differentiation. Nature 496:461–468. doi:10.1038/nature11981
Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141. doi:10.1038/ni1261
Erbel C, Chen L, Bea F et al (2009) Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J Immunol 183:8167–8175. doi:10.4049/jimmunol.0901126
Smith E, Prasad K-MR, Butcher M et al (2010) Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121:1746–1755. doi:10.1161/CIRCULATIONAHA.109.924886
Gao Q, Jiang Y, Ma T et al (2010) A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 185:5820–5827. doi:10.4049/jimmunol.1000116
Taleb S, Romain M, Ramkhelawon B et al (2009) Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 206:2067–2077. doi:10.1084/jem.20090545
Gisterå A, Robertson A-KL, Andersson J et al (2013) Transforming growth factor-β signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci Transl Med 5:196ra100. doi:10.1126/scitranslmed.3006133
Madhur MS, Funt SA, Li L et al (2011) Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol 31:1565–1572. doi:10.1161/ATVBAHA.111.227629
Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238. doi:10.1038/nature04753
Berod L, Friedrich C, Nandan A et al (2014) De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20:1327–1333. doi:10.1038/nm.3704
Potekhina AV, Pylaeva E, Provatorov S et al (2015) Treg/Th17 balance in stable CAD patients with different stages of coronary atherosclerosis. Atherosclerosis 238:17–21. doi:10.1016/j.atherosclerosis.2014.10.088
Ketelhuth DFJ, Hansson GK (2011) Cellular immunity, low-density lipoprotein and atherosclerosis: break of tolerance in the artery wall. Thromb Haemost 106:779–786. doi:10.1160/TH11-05-0321
Tse K, Tse H, Sidney J et al (2013) T cells in atherosclerosis. Int Immunol 25:615–622. doi:10.1093/intimm/dxt043
Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164
George J (2008) Mechanisms of disease: the evolving role of regulatory T cells in atherosclerosis. Nat Clin Pract Cardiovasc Med 5:531–540. doi:10.1038/ncpcardio1279
Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336. doi:10.1038/ni904
Lin W, Haribhai D, Relland LM et al (2007) Regulatory T cell development in the absence of functional Foxp3. Nat Immunol 8:359–368. doi:10.1038/ni1445
Wu Y, Borde M, Heissmeyer V et al (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126:375–387. doi:10.1016/j.cell.2006.05.042
Ono M, Yaguchi H, Ohkura N et al (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446:685–689. doi:10.1038/nature05673
Williams LM, Rudensky AY (2007) Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 8:277–284. doi:10.1038/ni1437
Marson A, Kretschmer K, Frampton GM et al (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445:931–935. doi:10.1038/nature05478
Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061. doi:10.1126/science.1079490
Wang J, Ioan-Facsinay A, van der Voort EIH et al (2007) Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 37:129–138. doi:10.1002/eji.200636435
Hartigan-O’Connor DJ, Poon C, Sinclair E, McCune JM (2007) Human CD4+ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells. J Immunol Methods 319:41–52. doi:10.1016/j.jim.2006.10.008
Wang R, Zhu J, Dong X et al (2012) GARP regulates the bioavailability and activation of TGFβ. Mol Biol Cell 23:1129–1139. doi:10.1091/mbc.E11-12-1018
Hahn SA, Stahl HF, Becker C et al (2013) Soluble GARP has potent antiinflammatory and immunomodulatory impact on human CD4+ T cells. Blood 122:1182–1191. doi:10.1182/blood-2012-12-474478
Milpied P, Renand A, Bruneau J et al (2009) Neuropilin-1 is not a marker of human Foxp3+Treg. Eur J Immunol 39:1466–1471. doi:10.1002/eji.200839040
Papatriantafyllou M (2012) T cells: neuropilin 1—distinguishing TReg cell subsets. Nat Rev Immunol 12:746. doi:10.1038/nri3323
Bilate AM, Lafaille JJ (2012) Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 30:733–758. doi:10.1146/annurev-immunol-020711-075043
Tran D, Thornton A, Shevach E (2010) Helios is a marker for human thymic-derived FOXP3+ regulatory T cells. J Immunol 184(143):1
Hsieh CS, Lee HM, Lio CWJ (2012) Selection of regulatory T cells in the thymus. Nat Rev Immunol 12:157–167. doi:10.1038/nri3155
Coquet JM, Ribot JC, Bąbała N et al (2013) Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27–CD70 pathway. J Exp Med 210:715–728. doi:10.1084/jem.20112061
Hinterberger M, Wirnsberger G, Klein L (2011) B7/CD28 in central tolerance: costimulation promotes maturation of regulatory T cell precursors and prevents their clonal deletion. Front Immunol 2:30. doi:10.3389/fimmu.2011.00030
Lio CWJ, Dodson LF, Deppong CM et al (2010) CD28 facilitates the generation of Foxp3(-) cytokine responsive regulatory T cell precursors. J Immunol 184:6007–6013. doi:10.4049/jimmunol.1000019
Roncarolo MG, Gregori S (2008) Is FOXP3 a bona fide marker for human regulatory T cells? Eur J Immunol 38:925–927. doi:10.1002/eji.200838168
Sakaguchi S, Ono M, Setoguchi R et al (2006) Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212:8–27. doi:10.1111/j.0105-2896.2006.00427.x
Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564. doi:10.1146/annurev.immunol.25.022106.141623
Von Boehmer H (2005) Mechanisms of suppression by suppressor T cells. Nat Immunol 6:338–344
Weiner HL, da Cunha AP, Quintana F, Wu H (2011) Oral tolerance. Immunol Rev 241:241–259. doi:10.1111/j.1600-065X.2011.01017.x
Wakkach A, Fournier N, Brun V et al (2003) Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18:605–617
Maynard CL, Harrington LE, Janowski KM et al (2007) Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3− precursor cells in the absence of interleukin 10. Nat Immunol 8:931–941. doi:10.1038/ni1504
Hilgendorf I, Swirski FK, Robbins CS (2015) Monocyte fate in atherosclerosis. Arterioscler Thromb Vasc Biol 35:272–279. doi:10.1161/ATVBAHA.114.303565
O’Garra A, Vieira PL, Vieira P, Goldfeld AE (2004) IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J Clin Invest 114:1372–1378. doi:10.1172/JCI23215
Chen ML, Yan BS, Bando Y et al (2008) Latency-associated peptide identifies a novel CD4+CD25+ regulatory T cell subset with TGFbeta-mediated function and enhanced suppression of experimental autoimmune encephalomyelitis. J Immunol 180:7327–7337
Ochi H, Abraham M, Ishikawa H et al (2006) Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+CD25−LAP+ T cells. Nat Med 12:627–635. doi:10.1038/nm1408
Annes JP, Munger JS, Rifkin DB (2003) Making sense of latent TGFbeta activation. J Cell Sci 116:217–224. doi:10.1242/jcs.00229
Oida T, Weiner HL (2010) TGF-β induces surface LAP expression on murine CD4 T cells independent of Foxp3 induction. PLoS One 5:e15523. doi:10.1371/journal.pone.0015523
Wu HY, Maron R, Tukpah AM, Weiner HL (2010) Mucosal anti-CD3 monoclonal antibody attenuates collagen-induced arthritis that is associated with induction of LAP+ regulatory T cells and is enhanced by administration of an emulsome-based Th2-skewing adjuvant. J Immunol 185:3401–3407. doi:10.4049/jimmunol.1000836
Wu HY, Center EM, Tsokos GC, Weiner HL (2009) Suppression of murine SLE by oral anti-CD3: inducible CD4+CD25-LAP+ regulatory T cells control the expansion of IL-17+ follicular helper T cells. Lupus 18:586–596. doi:10.1177/0961203308100511
Ishikawa H, Ochi H, Chen ML et al (2007) Inhibition of autoimmune diabetes by oral administration of anti-CD3 monoclonal antibody. Diabetes 56:2103–2109. doi:10.2337/db06-1632
Sasaki N, Yamashita T, Takeda M et al (2009) Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation 120:1996–2005. doi:10.1161/CIRCULATIONAHA.109.863431
Awasthi A, Carrier Y, Peron JPS et al (2007) A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8:1380–1389. doi:10.1038/ni1541
Linterman MA, Pierson W, Lee SK et al (2011) Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med 17:975–982. doi:10.1038/nm.2425
Sage PT, Paterson AM, Lovitch SB, Sharpe AH (2014) The coinhibitory receptor CTLA-4 controls b cell responses by modulating T follicular helper, T follicular regulatory and T regulatory cells. Immunity 41:1026–1039. doi:10.1016/j.immuni.2014.12.005
Paust S, Lu L, McCarty N, Cantor H (2004) Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 101:10398–10403. doi:10.1073/pnas.0403342101
Qureshi OS, Zheng Y, Nakamura K et al (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332:600–603. doi:10.1126/science.1202947
Pandiyan P, Zheng L, Ishihara S et al (2007) CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8:1353–1362. doi:10.1038/ni1536
Collison LW, Workman CJ, Kuo TT et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569. doi:10.1038/nature06306
Cao X, Cai SF, Fehniger TA et al (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27:635–646. doi:10.1016/j.immuni.2007.08.014
Deaglio S, Dwyer KM, Gao W et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265. doi:10.1084/jem.20062512
Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920. doi:10.1038/414916a
Zarek PE, Huang CT, Lutz ER et al (2008) A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 111:251–259. doi:10.1182/blood-2007-03-081646
Zhang L, Ovchinnikova O, Jönsson A et al (2012) The tryptophan metabolite 3-hydroxyanthranilic acid lowers plasma lipids and decreases atherosclerosis in hypercholesterolaemic mice. Eur Heart J 33:2025–2034. doi:10.1093/eurheartj/ehs175
Platten M, Ho PP, Youssef S et al (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310:850–855. doi:10.1126/science.1117634
Baban B, Chandler PR, Sharma MD et al (2009) IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J Immunol 183:2475–2483. doi:10.4049/jimmunol.0900986
Pastrana JL, Sha X, Virtue A et al (2012) Regulatory T cells and atherosclerosis. J Clin Exp Cardiol 2012:2. doi:10.4172/2155-9880.S12-002
De Boer OJ, van der Meer JJ, Teeling P et al (2007) Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS One 2:e779. doi:10.1371/journal.pone.0000779
Xiong Z, Yan Y, Song J et al (2009) Expression of TCTP antisense in CD25(high) regulatory T cells aggravates cuff-injured vascular inflammation. Atherosclerosis 203:401–408. doi:10.1016/j.atherosclerosis.2008.07.041
Taleb S, Tedgui A, Mallat Z (2008) Regulatory T-cell immunity and its relevance to atherosclerosis. J Intern Med 263:489–499. doi:10.1111/j.1365-2796.2008.01944.x
Ait-Oufella H, Salomon BL, Potteaux S et al (2006) Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 12:178–180. doi:10.1038/nm1343
Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548. doi:10.1146/annurev.immunol.23.021704.115611
Buono C, Hong P, Yasushi U et al (2004) B7-1/B7-2 costimulation regulates plaque antigen-specific T-cell responses and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation 109:2009–2015. doi:10.1161/01.CIR.0000127121.16815.F1
Mor A, Planer D, Luboshits G et al (2007) Role of naturally occurring CD4+CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 27:893–900. doi:10.1161/01.ATV.0000259365.31469.89
Lievens D, Zernecke A, Seijkens T et al (2010) Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 116:4317–4327. doi:10.1182/blood-2010-01-261206
Driesen J, Popov A, Schultze JL (2008) CD25 as an immune regulatory molecule expressed on myeloid dendritic cells. Immunobiology 213:849–858. doi:10.1016/j.imbio.2008.07.026
Van Es T, van Puijvelde GHM, Foks AC et al (2010) Vaccination against Foxp3(+) regulatory T cells aggravates atherosclerosis. Atherosclerosis 209:74–80. doi:10.1016/j.atherosclerosis.2009.08.041
Klingenberg R, Gerdes N, Badeau RM et al (2013) Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J Clin Invest 123:1323–1334. doi:10.1172/JCI63891
Lutgens E, Gijbels M, Smook M et al (2002) Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol 22:975–982
Mallat Z, Gojova A, Marchiol-Fournigault C et al (2001) Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 89:930–934
Robertson A-KL, Rudling M, Zhou X et al (2003) Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 112:1342–1350. doi:10.1172/JCI18607
Gojova A, Brun V, Esposito B et al (2003) Specific abrogation of transforming growth factor-beta signaling in T cells alters atherosclerotic lesion size and composition in mice. Blood 102:4052–4058. doi:10.1182/blood-2003-05-1729
Frutkin AD, Otsuka G, Stempien-Otero A et al (2009) TGF-[beta]1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 29:1251–1257. doi:10.1161/ATVBAHA.109.186593
Lievens D, Habets KL, Robertson A-K et al (2013) Abrogated transforming growth factor beta receptor II (TGFβRII) signalling in dendritic cells promotes immune reactivity of T cells resulting in enhanced atherosclerosis. Eur Heart J 34:3717–3727. doi:10.1093/eurheartj/ehs106
Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P (2010) The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 10:554–567. doi:10.1038/nri2808
Caligiuri G, Rudling M, Ollivier V et al (2003) Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol Med 9:10–17
Mallat Z, Besnard S, Duriez M et al (1999) Protective role of interleukin-10 in atherosclerosis. Circ Res 85:e17–e24. doi:10.1161/01.RES.85.8.e17
Pinderski LJ, Fischbein MP, Subbanagounder G et al (2002) Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient Mice by altering lymphocyte and macrophage phenotypes. Circ Res 90:1064–1071
Ammirati E, Cianflone D, Banfi M et al (2010) Circulating CD4+CD25hiCD127lo regulatory T-Cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arterioscler Thromb Vasc Biol 30:1832–1841. doi:10.1161/ATVBAHA.110.206813
Melero I, Hervas-Stubbs S, Glennie M et al (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7:95–106. doi:10.1038/nrc2051
Gressner AM, Weiskirchen R, Breitkopf K, Dooley S (2002) Roles of TGF-beta in hepatic fibrosis. Front Biosci 7:d793–d807
Tilg H, van Montfrans C, van den Ende A et al (2002) Treatment of Crohn’s disease with recombinant human interleukin 10 induces the proinflammatory cytokine interferon gamma. Gut 50:191–195
Schreiber S, Fedorak RN, Nielsen OH et al (2000) Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology 119:1461–1472
Marlow GJ, van Gent D, Ferguson LR (2013) Why interleukin-10 supplementation does not work in Crohn’s disease patients. World J Gastroenterol 19:3931–3941. doi:10.3748/wjg.v19.i25.3931
Asadullah K, Sterry W, Volk HD (2003) Interleukin-10 therapy—review of a new approach. Med Immunol 55:241–269. doi:10.1124/pr.55.2.4.241
Bijjiga E, Martino AT (2013) Interleukin 10 (IL10) regulatory cytokine and its clinical consequences. Clin Cell Immunol. doi:10.4172/2155-9899.S1-007
Wang TJ, Pencina MJ, Booth SL et al (2008) Vitamin D deficiency and risk of cardiovascular disease. Circulation 117:503–511. doi:10.1161/CIRCULATIONAHA.107.706127
Chambers ES, Hawrylowicz CM (2011) The impact of vitamin D on regulatory T cells. Curr Allergy Asthma Rep 11:29–36. doi:10.1007/s11882-010-0161-8
Mora JR, Iwata M, von Andrian UH (2008) Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 8:685–698. doi:10.1038/nri2378
Autier P, Gandini S (2007) Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials. Arch Intern Med 167:1730–1737. doi:10.1001/archinte.167.16.1730
Weber C, Meiler S, Döring Y et al (2011) CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J Clin Invest 121:2898–2910. doi:10.1172/JCI44925
Burton RC, Cosimi AB, Colvin RB et al (1982) Monoclonal antibodies to human T cell subsets: use for immunological monitoring and immunosuppression in renal transplantation. J Clin Immunol 2:142S–147S
Woodle ES, Xu D, Zivin RA et al (1999) Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3gamma1(Ala-Ala) in the treatment of acute renal allograft rejection. Transplantation 68:608–616
Steffens S, Burger F, Pelli G et al (2006) Short-term treatment with anti-CD3 antibody reduces the development and progression of atherosclerosis in mice. Circulation 114:1977–1984. doi:10.1161/CIRCULATIONAHA.106.627430
Belghith M, Bluestone JA, Barriot S et al (2003) TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9:1202–1208. doi:10.1038/nm924
Penaranda C, Tang Q, Bluestone JA (2011) Anti-CD3 therapy promotes tolerance by selectively depleting pathogenic cells while preserving regulatory T cells. J Immunol 187:2015–2022. doi:10.4049/jimmunol.1100713
Chatenoud L, Bluestone JA (2007) CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol 7:622–632. doi:10.1038/nri2134
Smith JA, Tso JY, Clark MR et al (1997) Nonmitogenic anti-CD3 monoclonal antibodies deliver a partial T cell receptor signal and induce clonal anergy. J Exp Med 185:1413–1422
Smith JA, Tang Q, Bluestone JA (1998) Partial TCR signals delivered by FcR-nonbinding anti-CD3 monoclonal antibodies differentially regulate individual Th subsets. J Immunol 160:4841–4849
Kita T, Yamashita T, Sasaki N et al (2014) Regression of atherosclerosis with anti-CD3 antibody via augmenting a regulatory T-cell response in mice. Cardiovasc Res 102:107–117. doi:10.1093/cvr/cvu002
Ilan Y, Zigmond E, Lalazar G et al (2010) Oral administration of OKT3 monoclonal antibody to human subjects induces a dose-dependent immunologic effect in T cells and dendritic cells. J Clin Immunol 30:167–177. doi:10.1007/s10875-009-9323-7.Oral
Upadhya S, Mooteri S, Peckham N, Pai RG (2004) Atherogenic effect of interleukin-2 and antiatherogenic effect of interleukin-2 antibody in apo-E-deficient mice. Angiology 55:289–294
Brandenburg S, Takahashi T, de la Rosa M et al (2008) IL-2 induces in vivo suppression by CD4(+)CD25(+)Foxp3(+) regulatory T cells. Eur J Immunol 38:1643–1653. doi:10.1002/eji.200737791
Webster KE, Walters S, Kohler RE et al (2009) In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J Exp Med 206:751–760. doi:10.1084/jem.20082824
Dinh TN, Kyaw TS, Kanellakis P et al (2012) Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal antibody complexes expands CD4+CD25+Foxp3+ regulatory T cells and attenuates development and progression of atherosclerosis. Circulation 126:1256–1266. doi:10.1161/CIRCULATIONAHA.112.099044
Tomala J, Chmelova H, Mrkvan T et al (2009) In vivo expansion of activated naive CD8+ T cells and NK cells driven by complexes of IL-2 and anti-IL-2 monoclonal antibody as novel approach of cancer immunotherapy. J Immunol 183:4904–4912. doi:10.4049/jimmunol.0900284
Foks A, Frodermann V, ter Borg M et al (2011) Differential effects of regulatory T cells on the initiation and regression of atherosclerosis. Atherosclerosis 218:53–60. doi:10.1016/j.atherosclerosis.2011.04.029
Dietrich T, Hucko T, Schneemann C et al (2012) Local delivery of IL-2 reduces atherosclerosis via expansion of regulatory T cells. Atherosclerosis 220:329–336. doi:10.1016/j.atherosclerosis.2011.09.050
Bäck M, Hansson GK (2015) Anti-inflammatory therapies for atherosclerosis. Nat Rev Cardiol. doi:10.1038/nrcardio.2015.5
Shah PK, Chyu K-Y, Dimayuga PC, Nilsson J (2014) Vaccine for atherosclerosis. J Am Coll Cardiol 64:2779–2791. doi:10.1016/j.jacc.2014.10.018
Van Puijvelde GHM, Hauer AD, De Vos P et al (2006) Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation 114:1968–1976. doi:10.1161/CIRCULATIONAHA.106.615609
Van Puijvelde GHM, van Es T, van Wanrooij EJA et al (2007) Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 27:2677–2683. doi:10.1161/ATVBAHA.107.151274
Herbin O, Ait-Oufella H, Yu W et al (2012) Regulatory T-cell response to apolipoprotein B100-derived peptides reduces the development and progression of atherosclerosis in mice. Arterioscler Thromb Vasc Biol 32:605–612. doi:10.1161/ATVBAHA.111.242800
Klingenberg R, Ketelhuth DFJ, Strodthoff D et al (2012) Subcutaneous immunization with heat shock protein-65 reduces atherosclerosis in Apoe−/− mice. Immunobiology 217:540–547. doi:10.1016/j.imbio.2011.06.006
Matteoli G, Mazzini E, Iliev ID et al (2010) Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59:595–604. doi:10.1136/gut.2009.185108
Braun D, Longman RS, Albert ML (2005) A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 106:2375–2381. doi:10.1182/blood-2005-03-0979
Palinski W, Rosenfeld ME, Ylä-Herttuala S et al (1989) Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 86:1372–1376
Samson S, Mundkur L, Kakkar VV (2012) Immune response to lipoproteins in atherosclerosis. Cholesterol 2012:571846. doi:10.1155/2012/571846
Habets KLL, van Puijvelde GHM, van Duivenvoorde LM et al (2010) Vaccination using oxidized low-density lipoprotein-pulsed dendritic cells reduces atherosclerosis in LDL receptor-deficient mice. Cardiovasc Res 85:622–630. doi:10.1093/cvr/cvp338
Hermansson A, Johansson DK, Ketelhuth DFJ et al (2011) Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation 123:1083–1091. doi:10.1161/CIRCULATIONAHA.110.973222
Kool M, Soullié T, van Nimwegen M et al (2008) Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med 205:869–882. doi:10.1084/jem.20071087
Fredrikson GN, Söderberg I, Lindholm M et al (2003) Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler Thromb Vasc Biol 23:879–884. doi:10.1161/01.ATV.0000067937.93716.DB
Tse K, Gonen A, Sidney J et al (2013) Atheroprotective Vaccination with MHC-II Restricted Peptides from ApoB-100. Front Immunol 4:493. doi:10.3389/fimmu.2013.00493
Pierides C, Bermudez-Fajardo A, Fredrikson GN et al (2013) Immune responses elicited by apoB-100-derived peptides in mice. Immunol Res 56:96–108. doi:10.1007/s12026-013-8383-1
Klingenberg R, Lebens M, Hermansson A et al (2010) Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 30:946–952. doi:10.1161/ATVBAHA.109.202671
Pasterkamp G, Van Keulen JK, De Kleijn DPV (2004) Role of Toll-like receptor 4 in the initiation and progression of atherosclerotic disease. Eur J Clin Invest 34:328–334. doi:10.1111/j.1365-2362.2004.01338.x
Ketelhuth DFJ, Rios FJO, Wang Y et al (2011) Identification of a danger-associated peptide from apolipoprotein B100 (ApoBDS-1) that triggers innate proatherogenic responses. Circulation 124(2433–43):1–7. doi:10.1161/CIRCULATIONAHA.111.051599
Gräbner R, Lötzer K, Döpping S et al (2009) Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J Exp Med 206:233–248. doi:10.1084/jem.20080752
Mohanta SK, Yin C, Peng L et al (2014) Artery tertiary lymphoid organs contribute to innate and adaptive immune responses in advanced mouse atherosclerosis. Circ Res 114:1772–1787. doi:10.1161/CIRCRESAHA.114.301137
Adorini L (2003) Cytokine-based immunointervention in the treatment of autoimmune diseases. Clin Exp Immunol 132:185–192
Khan O, Zabad R, Caon C et al (2002) Comparative assessment of immunomodulating therapies for relapsing-remitting multiple sclerosis. CNS Drugs 16:563–578
Ridker PM, Howard CP, Walter V et al (2012) Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation 126:2739–2748. doi:10.1161/CIRCULATIONAHA.112.122556
Shlomchik MJ (2008) Sites and stages of autoreactive B cell activation and regulation. Immunity 28:18–28. doi:10.1016/j.immuni.2007.12.004
Danke NA, Koelle DM, Yee C et al (2004) Autoreactive T cells in healthy individuals. J Immunol 172:5967–5972. doi:10.4049/jimmunol.172.10.5967
Poon M, Marx SO, Gallo R et al (1996) Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest 98:2277–2283. doi:10.1172/JCI119038
Jonasson L, Holm J, Hansson GK (1988) Cyclosporin A inhibits smooth muscle proliferation in the vascular response to injury. Proc Natl Acad Sci USA 85:2303–2306
Hansson GK, Nilsson J (2009) Vaccination against atherosclerosis? Induction of atheroprotective immunity. Semin Immunopathol 31:95–101. doi:10.1007/s00281-009-0151-x
McGraw AP, Bagley J, Chen W-S et al (2013) Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor-dependent mechanism. J Am Heart Assoc 2:e000018. doi:10.1161/JAHA.112.000018
Buchman AL (2001) Side effects of corticosteroid therapy. J Clin Gastroenterol 33:289–294
Najafian N, Sayegh MH (2000) CTLA4-Ig : a novel immunosuppressive agent. Expert Opin Investig Drugs 9:2147–2157
McKellar GE, McCarey DW, Sattar N, McInnes IB (2009) Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol 6:410–417. doi:10.1038/nrcardio.2009.57
Maini RN, Breedveld FC, Kalden JR et al (1998) Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 41:1552–1563. doi:10.1002/1529-0131(199809)41:9<1552:AID-ART5>3.0.CO;2-W
Schiopu A, Bengtsson J, Söderberg I et al (2004) Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 110:2047–2052. doi:10.1161/01.CIR.0000143162.56057.B5
Zhou X, Caligiuri G, Hamsten A et al (2001) LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler Thromb Vasc Biol 21:108–114. doi:10.1161/01.ATV.21.1.108
Nilsson J, Björkbacka H, Fredrikson GN (2012) Apolipoprotein B100 autoimmunity and atherosclerosis—disease mechanisms and therapeutic potential. Curr Opin Lipidol 23:422–428. doi:10.1097/MOL.0b013e328356ec7c
Klingenberg R, Hansson GK (2009) Treating inflammation in atherosclerotic cardiovascular disease: emerging therapies. Eur Heart J 30:2838–2844. doi:10.1093/eurheartj/ehp477
De Jager SC, Kuiper J (2011) Vaccination strategies in atherosclerosis. Thromb Haemost 106:796–803. doi:10.1160/TH11-05-0369
Hauer AD, Uyttenhove C, de Vos P et al (2005) Blockade of interleukin-12 function by protein vaccination attenuates atherosclerosis. Circulation 112:1054–1062. doi:10.1161/CIRCULATIONAHA.104.533463
Mundkur L, Mukhopadhyay R, Samson S et al (2013) Mucosal tolerance to a combination of ApoB and HSP60 peptides controls plaque progression and stabilizes vulnerable plaque in Apob(tm2Sgy)Ldlr(tm1Her)/J mice. PLoS One 8:e58364. doi:10.1371/journal.pone.0058364
Laurat E, Poirier B, Tupin E et al (2001) In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 104:197–202. doi:10.1161/01.CIR.104.2.197
Dardalhon V, Awasthi A, Kwon H et al (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and together with TGF-beta, generates IL-9+IL-10+ Foxp3(−) effector T cells. Nat Immunol 9:1347–1355. doi:10.1038/ni.1677
Veldhoen M, Uyttenhove C, van Snick J et al (2008) Transforming growth factor-beta “reprograms” the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346. doi:10.1038/ni.1659
Lin Y, Wu B, Lu Z et al (2013) Circulating Th22 and Th9 levels in patients with acute coronary syndrome. Mediators Inflamm 2013:635672. doi:10.1155/2013/635672
Roark CL, Simonian PL, Fontenot AP et al (2008) gammadelta T cells: an important source of IL-17. Curr Opin Immunol 20:353–357. doi:10.1016/j.coi.2008.03.006
Vu DM, Tai A, Tatro JB et al (2014) γδT cells are prevalent in the proximal aorta and drive nascent atherosclerotic lesion progression and neutrophilia in hypercholesterolemic mice. PLoS One 9:e109416. doi:10.1371/journal.pone.0109416
Battaglia M, Roncarolo MG (2009) The Tregs’ world according to GARP. Eur J Immunol 39:3296–3300. doi:10.1002/eji.200940117
Acknowledgments
Research of the authors is supported by the Netherlands Cardiovascular Research Initiative (CVON-GENIUS), the Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development, the Royal Netherlands Academy of Sciences, the Humboldt Foundation (Sofia Kovalevskaja grant) (all to EL), the Netherlands Organization for Scientific Research (NWO) (VICI grant to EL, VICI grant to CW), the Netherlands Heart Foundation (Dr E. Dekker established investigator grant to EL), and the Deutsche Forschungsgemeinschaft (SFB 1054-B04 to EL and SFB 1123-A05 to EL and NG).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Spitz, C., Winkels, H., Bürger, C. et al. Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential. Cell. Mol. Life Sci. 73, 901–922 (2016). https://doi.org/10.1007/s00018-015-2080-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-015-2080-2