Role of the nucleus in apoptosis: signaling and execution

Abstract

Since their establishment in the early 1970s, the nuclear changes upon apoptosis induction, such as the condensation of chromatin, disassembly of nuclear scaffold proteins and degradation of DNA, were, and still are, considered as the essential steps and hallmarks of apoptosis. These are the characteristics of the execution phase of apoptotic cell death. In addition, accumulating data clearly show that some nuclear events can lead to the induction of apoptosis. In particular, if DNA lesions resulting from deregulation during the cell cycle or DNA damage induced by chemotherapeutic drugs or viral infection cannot be efficiently eliminated, apoptotic mechanisms, which enable cellular transformation to be avoided, are activated in the nucleus. The functional heterogeneity of the nuclear organization allows the tight regulation of these signaling events that involve the movement of various nuclear proteins to other intracellular compartments (and vice versa) to initiate and govern apoptosis. Here, we discuss how these events are coordinated to execute apoptotic cell death.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Kerr JFR, Wyllie AH, Currie ARD (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  2. 2.

    Skalka M, Matyasova J, Cejkova M (1976) DNA in chromatin of irradiated lymphoid tissues degrades in vivo into regular fragments. FEBS Lett 72:271–275

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829. doi:10.1016/0092-8674(86)90004-8

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Jacobson MD, Burne JF, Raff MC (1994) Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J 13:1899–1910

    PubMed Central  CAS  PubMed  Google Scholar 

  6. 6.

    Schulze-Osthoff K, Walczak H, Dröge W, Krammer PH (1994) Cell nucleus and DNA fragmentation are not required for apoptosis. J Cell Biol 127:15–20. doi:10.1083/jcb.127.1.15

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Zhivotovsky B, Samali A, Gahm A, Orrenius S (1999) Caspases : their intracellular localization and translocation during apoptosis. Cell Death Differ 6:644–651

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263. doi:10.1038/ncb1101-e255

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Galluzzi L, Bravo-San Pedro JM, Kroemer G (2014) Organelle-specific initiation of cell death. Nat Cell Biol 16:728–736. doi:10.1038/ncb3005

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a008672

    PubMed Central  PubMed  Google Scholar 

  11. 11.

    Zamaraev AV, Kopeina GS, Zhivotovsky B, Lavrik IN (2015) Cell death controlling complexes and their potential therapeutic role. Cell Mol Life Sci 72:505–517. doi:10.1007/s00018-014-1757-2

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Gillies LA, Kuwana T (2014) Apoptosis regulation at the mitochondrial outer membrane. J Cell Biochem 115:632–640. doi:10.1002/jcb.24709

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Marabese M, Mazzoletti M, Vikhanskaya F, Broggini M (2008) HtrA2 enhances the apoptotic functions of p73 on bax. Cell Death Differ 15:849–858. doi:10.1038/cdd.2008.7

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Bouchier-Hayes L, Oberst A, McStay GP et al (2009) Characterization of cytoplasmic caspase-2 activation by induced proximity. Mol Cell 35:830–840. doi:10.1016/j.molcel.2009.07.023

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  15. 15.

    Baliga BC, Read SH, Kumar S (2004) The biochemical mechanism of caspase-2 activation. Cell Death Differ 11:1234–1241. doi:10.1038/sj.cdd.4401492

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Aksenova VI, Bylino OV, Zhivotovsky BD, Lavrik IN (2013) Caspase-2: what do we know today? Mol Biol 47:165–180. doi:10.1134/S0026893313010020

    CAS  Article  Google Scholar 

  17. 17.

    Vandenabeele P, Orrenius S, Zhivotovsky B (2005) Serine proteases and calpains fulfill important supporting roles in the apoptotic tragedy of the cellular opera. Cell Death Differ 12:1219–1224. doi:10.1038/sj.cdd.4401719

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Tang J, Xie W, Yang X (2005) Association of caspase-2 with the promyelocytic leukemia protein nuclear bodies. Cancer Biol Ther 4:645–649. doi:10.4161/cbt.4.6.1729

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Tan JAT, Sun Y, Song J et al (2008) SUMO conjugation to the matrix attachment region-binding protein, special AT-rich sequence-binding protein-1 (SATB1), targets SATB1 to promyelocytic nuclear bodies where it undergoes caspase cleavage. J Biol Chem 283:18124–18134. doi:10.1074/jbc.M800512200

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  20. 20.

    Hayashi N, Shirakura H, Uehara T, Nomura Y (2006) Relationship between SUMO-1 modification of caspase-7 and its nuclear localization in human neuronal cells. Neurosci Lett 397:5–9. doi:10.1016/j.neulet.2005.11.057

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Houde C, Banks KG, Coulombe N et al (2004) Caspase-7 expanded function and intrinsic expression level underlies strain-specific brain phenotype of caspase-3-null mice. J Neurosci 24:9977–9984. doi:10.1523/JNEUROSCI.3356-04.2004

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–7326. doi:10.1074/jbc.M008363200

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Napirei M, Karsunky H, Zevnik B et al (2000) Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat Genet 25:177–181. doi:10.1038/76032

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Kawane K, Fukuyama H, Yoshida H et al (2003) Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nat Immunol 4:138–144. doi:10.1038/ni881

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Croft DR, Coleman ML, Li S et al (2005) Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J Cell Biol 168:245–255. doi:10.1083/jcb.200409049

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  26. 26.

    Martelli AM, Zweyer M, Ochs RL et al (2001) Nuclear apoptotic changes : an overview. J Cell Biochem 82:634–646

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Lu CR, Shi Y, Luo Y et al (2010) MAPKs and Mst1/Caspase-3 pathways contribute to H2B phosphorylation during UVB-induced apoptosis. Sci China Life Sci 53:663–668. doi:10.1007/s11427-010-4015-3

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Cheung WL, Ajiro K, Samejima K et al (2003) Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113:507–517. doi:10.1016/S0092-8674(03)00355-6

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Graves JD, Draves KE, Gotoh Y et al (2001) Both phosphorylation and caspase-mediated cleavage contribute to regulation of the Ste20-like protein kinase Mst1 during CD95/Fas-induced apoptosis. J Biol Chem 276:14909–14915. doi:10.1074/jbc.M010905200

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Hu Y, Liu Z, Yang S-J, Ye K (2007) Acinus-provoked protein kinase C delta isoform activation is essential for apoptotic chromatin condensation. Cell Death Differ 14:2035–2046. doi:10.1038/sj.cdd.4402214

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Basu A, Akkaraju GR (1999) Regulation of caspase activation and cis-diamminedichloroplatinum(II)-induced cell death by protein kinase C. Biochemistry 38:4245–4251. doi:10.1021/bi982854q

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Lee KK, Ohyama T, Yajima N et al (2001) MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation. J Biol Chem 276:19276–19285. doi:10.1074/jbc.M005109200

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Sahara S, Aoto M, Eguchi Y et al (1999) Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401:168–173. doi:10.1038/43678

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Joselin AP, Schulze-Osthoff K, Schwerk C (2006) Loss of Acinus inhibits oligonucleosomal DNA fragmentation but not chromatin condensation during apoptosis. J Biol Chem 281:12475–12484. doi:10.1074/jbc.M509859200

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Schwerk C, Prasad J, Degenhardt K et al (2003) ASAP, a novel protein complex involved in RNA processing and apoptosis. Mol Cell Biol 23:2981–2990. doi:10.1128/MCB.23.8.2981

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  36. 36.

    Vucetic Z, Zhang Z, Zhao J et al (2008) Acinus-S’ represses retinoic acid receptor (RAR)-regulated gene expression through interaction with the B domains of RARs. Mol Cell Biol 28:2549–2558. doi:10.1128/MCB.01199-07

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  37. 37.

    Haberman AS, Akbar MA, Ray S, Krämer H (2010) Drosophila acinus encodes a novel regulator of endocytic and autophagic trafficking. Development 137:2157–2166. doi:10.1242/dev.044230

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  38. 38.

    Liu X, Li P, Widlak P et al (1998) The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA 95:8461–8466. doi:10.1073/pnas.95.15.8461

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  39. 39.

    Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184. doi:10.1016/S0092-8674(00)80197-X

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Widlak P, Lanuszewska J, Cary RB, Garrard WT (2003) Subunit structures and stoichiometries of human DNA fragmentation factor proteins before and after induction of apoptosis. J Biol Chem 278:26915–26922. doi:10.1074/jbc.M303807200

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Enari M, Sakahira H, Yokoyama H et al (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50. doi:10.1038/34112

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Widlak P, Li LY, Wang X, Garrard WT (2001) Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I. J Biol Chem 276:48404–48409. doi:10.1074/jbc.M108461200

    CAS  PubMed  Google Scholar 

  43. 43.

    Zhang J, Liu X, Scherer DC et al (1998) Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. Proc Natl Acad Sci USA 95:12480–12485. doi:10.1073/pnas.95.21.12480

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  44. 44.

    McIlroy D, Tanaka M, Sakahira H et al (2000) An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev 14:549–558. doi:10.1101/gad.14.5.549

    PubMed Central  CAS  PubMed  Google Scholar 

  45. 45.

    Krieser RJ, MacLea KS, Longnecker DS et al (2002) Deoxyribonuclease IIalpha is required during the phagocytic phase of apoptosis and its loss causes perinatal lethality. Cell Death Differ 9:956–962. doi:10.1038/sj.cdd.4401056

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Kawane K, Ohtani M, Miwa K et al (2006) Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443:998–1002. doi:10.2492/inflammregen.29.204

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99. doi:10.1038/35083620

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Jayaraj R, Gupta N, Rao PVL (2009) Multiple signal transduction pathways in okadaic acid induced apoptosis in HeLa cells. Toxicology 256:118–127. doi:10.1016/j.tox.2008.11.013

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Saelens X, Festjens N, Vande Walle L et al (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–2874. doi:10.1038/sj.onc.1207523

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Arnoult D, Gaume B, Karbowski M et al (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22:4385–4399. doi:10.1093/emboj/cdg423

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  51. 51.

    Kalinowska M, Garncarz W, Pietrowska M et al (2005) Regulation of the human apoptotic DNase/RNase endonuclease G: involvement of Hsp70 and ATP. Apoptosis 10:821–830. doi:10.1007/s10495-005-0410-9

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Irvine RA, Adachi N, Shibata DK et al (2005) Generation and characterization of endonuclease G null mice. Mol Cell Biol 25:294–302. doi:10.1128/MCB.25.1.294-302.2005

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  53. 53.

    David KK, Sasaki M, Yu S-W et al (2006) EndoG is dispensable in embryogenesis and apoptosis. Cell Death Differ 13:1147–1155. doi:10.1038/sj.cdd.4401787

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446. doi:10.1038/17135

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Baritaud M, Boujrad H, Lorenzo HK et al (2010) Histone H2AX: the missing link in AIF-mediated caspase-independent programmed necrosis. Cell Cycle 9:3166–3173. doi:10.4161/cc.9.16.12552

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Liu KC, Huang YAT, Wu PP et al (2011) The roles of AIF and Endo G in the apoptotic effects of benzyl isothiocyanate on DU 145 human prostate cancer cells via the mitochondrial signaling pathway. Int J Oncol 38:787–796. doi:10.3892/ijo.2010.894

    CAS  PubMed  Google Scholar 

  57. 57.

    Joza N, Susin SA, Daugas E et al (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–554. doi:10.1038/35069004

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Miramar MD, Costantini P, Ravagnan L et al (2001) NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 276:16391–16398. doi:10.1074/jbc.M010498200

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Yuste VJ, Sánchez-López I, Solé C et al (2005) The contribution of apoptosis-inducing factor, caspase-activated DNase, and inhibitor of caspase-activated DNase to the nuclear phenotype and DNA degradation during apoptosis. J Biol Chem 280:35670–35683. doi:10.1074/jbc.M504015200

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078. doi:10.1038/nature08467

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  61. 61.

    Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204. doi:10.1016/j.molcel.2010.09.019

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  62. 62.

    Lou Z, Minter-Dykhouse K, Franco S et al (2006) MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21:187–200. doi:10.1016/j.molcel.2005.11.025

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Dimitrova N, De Lange T (2006) MDC1 accelerates nonhomologous end-joining of dysfunctional telomeres. Genes Dev 20:3238–3243. doi:10.1101/gad.1496606

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  64. 64.

    Goldberg M, Stucki M, Falck J et al (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421:952–956. doi:10.1038/nature01445

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Jazayeri A, Falck J, Lukas C et al (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8:37–45. doi:10.1038/ncb1337

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Khoronenkova SV, Dianov GL (2015) ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc Natl Acad Sci USA 112:3997–4002. doi:10.1073/pnas.1416031112

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  67. 67.

    Reinhardt HC, Yaffe MB (2009) Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 21:245–255. doi:10.1016/j.ceb.2009.01.018

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  68. 68.

    Batchelor E, Mock CS, Bhan I et al (2008) Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. Mol Cell 30:277–289. doi:10.1016/j.molcel.2008.03.016

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  69. 69.

    Allocati N, Di Ilio C, De Laurenzi V (2012) P63/p73 in the control of cell cycle and cell death. Exp Cell Res 318:1285–1290. doi:10.1016/j.yexcr.2012.01.023

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Gurley KE, Kemp CJ (2001) Synthetic lethality between mutation in Atm and DNA-PKcs during murine embryogenesis. Curr Biol 11:191–194. doi:10.1016/S0960-9822(01)00048-3

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Stiff T, O’Driscoll M, Rief N et al (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64:2390–2396. doi:10.1158/0008-5472.CAN-03-3207

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB (2007) p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11:175–189. doi:10.1016/j.ccr.2006.11.024

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  73. 73.

    Donehower LA, Harvey M, Slagle BL et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221. doi:10.1038/356215a0

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Murray-Zmijewski F, Slee EA, Lu X (2008) A complex barcode underlies the heterogeneous response of p53 to stress. Nat Rev Mol Cell Biol 9:702–712. doi:10.1038/nrm2451

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Candeias MM, Malbert-Colas L, Powell DJ et al (2008) P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 10:1098–1105. doi:10.1038/ncb1770

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Huang L, Yan Z, Liao X et al (2011) The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. Proc Natl Acad Sci USA 108:12001–12006. doi:10.1073/pnas.1102309108

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  77. 77.

    Hock AK, Vousden KH (2014) The role of ubiquitin modification in the regulation of p53. Biochim Biophys Acta 1843:137–149. doi:10.1016/j.bbamcr.2013.05.022

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Lambert PF, Kashanchi F, Radonovich MF et al (1998) Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem 273:33048–33053. doi:10.1074/jbc.273.49.33048

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Hu W, Feng Z, Levine AJ (2012) The regulation of multiple p53 stress responses is mediated through MDM2. Genes Cancer 3:199–208. doi:10.1177/1947601912454734

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  80. 80.

    Espinosa JM (2008) Mechanisms of regulatory diversity within the p53 transcriptional network. Oncogene 27:4013–4023. doi:10.1038/onc.2008.37

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  81. 81.

    Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24:827–839. doi:10.1016/j.molcel.2006.11.021

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Reed SM, Quelle DE (2015) p53 acetylation: regulation and consequences. Cancers (Basel) 7:30–69. doi:10.3390/cancers7010030

    Article  Google Scholar 

  83. 83.

    Le Guezennec X, Bulavin DV (2010) WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem Sci 35:109–114. doi:10.1016/j.tibs.2009.09.005

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Ling H, Peng L, Seto E, Fukasawa K (2012) Suppression of centrosome duplication and amplifcation by deacetylases. Cell Cycle 11:3779–3791. doi:10.4161/cc.21985

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  85. 85.

    Kon N, Kobayashi Y, Li M et al (2010) Inactivation of HAUSP in vivo modulates p53 function. Oncogene 29:1270–1279. doi:10.1038/onc.2009.427

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  86. 86.

    Bhattacharya S, Ghosh MK (2014) Cell death and deubiquitinases: perspectives in cancer. Biomed Res Int 2014:435197. doi:10.1155/2014/435197

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  87. 87.

    Zhang Y, Gao Y, Zhang G et al (2011) DNMT3a plays a role in switches between doxorubicin-induced senescence and apoptosis of colorectal cancer cells. Int J Cancer 128:551–561. doi:10.1002/ijc.25365

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Muñoz-Espín D, Cañamero M, Maraver A et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118. doi:10.1016/j.cell.2013.10.019

    PubMed  Article  CAS  Google Scholar 

  89. 89.

    Storer M, Mas A, Robert-Moreno A et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. doi:10.1016/j.cell.2013.10.041

    PubMed  Google Scholar 

  90. 90.

    Hayward RL, Macpherson JS, Cummings J et al (2003) Antisense Bcl-xl down-regulation switches the response to topoisomerase I inhibition from senescence to apoptosis in colorectal cancer cells, enhancing global cytotoxicity. Clin Cancer Res 9:2856–2865

    CAS  PubMed  Google Scholar 

  91. 91.

    Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040. doi:10.1038/sj.onc.1207116

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    He L, He X, Lim LP et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134. doi:10.1038/nature05939

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  93. 93.

    Olivier M, Eeles R, Hollstein M et al (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19:607–614. doi:10.1002/humu.10081

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Marchenko ND, Wolff S, Erster S et al (2007) Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 26:923–934. doi:10.1038/sj.emboj.7601560

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  95. 95.

    Wolff S, Erster S, Palacios G, Moll UM (2008) p53’s mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity. Cell Res 18:733–744. doi:10.1038/cr.2008.62

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  96. 96.

    Giorgi C, Bonora M, Missiroli S et al (2015) Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling. Oncotarget 6:1435–1445

    PubMed Central  PubMed  Article  Google Scholar 

  97. 97.

    Giorgi C, Bonora M, Sorrentino G et al (2015) p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci 112:1779–1784. doi:10.1073/pnas.1410723112

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  98. 98.

    Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16:369–377. doi:10.1016/j.ccr.2009.09.024

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  99. 99.

    Zhou X, Liao W, Liao J et al (2015) Ribosomal proteins : functions beyond the ribosome. J Mol Cell Biol 7:92–104. doi:10.1093/jmcb/mjv014

    PubMed Central  PubMed  Article  Google Scholar 

  100. 100.

    Zhou X, Liao J-M, Liao W-J, Lu H (2012) Scission of the p53-MDM2 loop by ribosomal proteins. Genes Cancer 3:298–310. doi:10.1177/1947601912455200

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  101. 101.

    Cui D, Li L, Lou H et al (2014) The ribosomal protein S26 regulates p53 activity in response to DNA damage. Oncogene 33:2225–2235. doi:10.1038/onc.2013.170

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Ono W, Hayashi Y, Yokoyama W et al (2014) The nucleolar protein Myb-binding protein 1A (MYBBP1A) enhances p53 tetramerization and acetylation in response to nucleolar disruption. J Biol Chem 289:4928–4940. doi:10.1074/jbc.M113.474049

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  103. 103.

    Sasaki M, Kawahara K, Nishio M et al (2011) Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 17:944–951. doi:10.1038/nm.2392

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  104. 104.

    Lee S, Kim J-Y, Kim Y-J et al (2012) Nucleolar protein GLTSCR2 stabilizes p53 in response to ribosomal stresses. Cell Death Differ 19:1613–1622. doi:10.1038/cdd.2012.40

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  105. 105.

    Donati G, Peddigari S, Mercer CA, Thomas G (2013) 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep 4:87–98. doi:10.1016/j.celrep.2013.05.045

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  106. 106.

    Sloan KE, Bohnsack MT, Watkins NJ (2013) The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep 5:237–247. doi:10.1016/j.celrep.2013.08.049

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  107. 107.

    Kim J-Y, Cho Y-E, An Y-M et al (2015) GLTSCR2 is an upstream negative regulator of nucleophosmin in cervical cancer. J Cell Mol Med 19:1245–1252. doi:10.1111/jcmm.12474

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  108. 108.

    Kim T, Leslie P, Zhang Y (2014) Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability. Oncotarget 5:860–871

    PubMed Central  PubMed  Article  Google Scholar 

  109. 109.

    Chakraborty A, Uechi T, Higa S et al (2009) Loss of ribosomal protein L11 affects zebrafish embryonic development through a p53-dependent apoptotic response. PLoS ONE 4(1):e4152. doi:10.1371/journal.pone.0004152

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  110. 110.

    Barna M, Pusic A, Zollo O et al (2008) Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456:971–975. doi:10.1038/nature07449

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  111. 111.

    Bernardi R, Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8:1006–1016. doi:10.1038/nrm2277

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Wang ZG, Ruggero D, Ronchetti S et al (1998) PML is essential for multiple apoptotic pathways. Nat Genet 20:266–272. doi:10.1038/3073

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Lallemand-Breitenbach V, de Thé H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a000661

    PubMed Central  PubMed  Google Scholar 

  114. 114.

    Van Damme E, Laukens K, Dang TH, van Ostade X (2010) A manually curated network of the pml nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 6:51–67. doi:10.7150/ijbs.6.51

    PubMed Central  PubMed  Article  Google Scholar 

  115. 115.

    De Stanchina E, Querido E, Narita M et al (2004) PML is a direct p53 target that modulates p53 effector functions. Mol Cell 13:523–535. doi:10.1016/S1097-2765(04)00062-0

    PubMed  Article  Google Scholar 

  116. 116.

    Knippschild U, Gocht A, Wolff S et al (2005) The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 17:675–689. doi:10.1016/j.cellsig.2004.12.011

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Bernardi R, Papa A, Pandolfi PP (2008) Regulation of apoptosis by PML and the PML-NBs. Oncogene 27:6299–6312. doi:10.1038/onc.2008.305

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Sombroek D, Hofmann TG (2009) How cells switch HIPK2 on and off. Cell Death Differ 16:187–194. doi:10.1038/cdd.2008.154

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Li Q, He Y, Wei L et al (2011) AXIN is an essential co-activator for the promyelocytic leukemia protein in p53 activation. Oncogene 30:1194–1204. doi:10.1038/onc.2010.499

    CAS  PubMed  Article  Google Scholar 

  120. 120. 

    Li Q, Wang X, Wu X, Rui Y, Liu W, Wang J et al (2007) Daxx cooperates with the axin/HIPK2/p53 complex to induce cell death. Cancer Res 67:66–74. doi:10.1158/0008-5472.CAN-06-1671

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Li Q, Lin S, Wang X et al (2009) Axin determines cell fate by controlling the p53 activation threshold after DNA damage. Nat Cell Biol 11:1128–1134. doi:10.1038/ncb1927

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Krieghoff-Henning E, Hofmann TG (2008) Role of nuclear bodies in apoptosis signalling. Biochim Biophys Acta 1783:2185–2194. doi:10.1016/j.bbamcr.2008.07.002

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Morgan M, Thorburn J, Pandolfi PP, Thorburn A (2002) Nuclear and cytoplasmic shuttling of TRADD induces apoptosis via different mechanisms. J Cell Biol 157:975–984. doi:10.1083/jcb.200204039

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  124. 124.

    Condemine W, Takahashi Y, Zhu J et al (2006) Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res 66:6192–6198. doi:10.1158/0008-5472.CAN-05-3792

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Yang A, Schweitzer R, Sun D et al (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714–718. doi:10.1038/19539

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Levine AJ, Tomasini R, McKeon FD et al (2011) The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol 12:259–265. doi:10.1038/nrm3086

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Yoon M, Ha J, Lee M (2015) Structure and apoptotic function of p73. BMB Rep 48:81–90. doi:10.5483/BMBRep.48.2.255

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  128. 128.

    Rossi M, De Laurenzi V, Munarriz E et al (2005) The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J 24:836–848. doi:10.1038/sj.emboj.7600444

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  129. 129.

    Rossi M, Aqeilan RI, Neale M et al (2006) The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc Natl Acad Sci USA 103:12753–12758. doi:10.1073/pnas.0603449103

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  130. 130.

    Vilgelm A, El-Rifai W, Zaika A (2008) Therapeutic prospects for p73 and p63: rising from the shadow of p53. Drug Resist Updat 11:152–163. doi:10.1016/j.drup.2008.08.001

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  131. 131.

    Gressner O, Schilling T, Lorenz K et al (2005) TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J 24:2458–2471. doi:10.1038/sj.emboj.7600708

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  132. 132.

    Busuttil V, Droin N, McCormick L et al (2010) NF-kappaB inhibits T-cell activation-induced, p73-dependent cell death by induction of MDM2. Proc Natl Acad Sci USA 107:18061–18066. doi:10.1073/pnas.1006163107

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  133. 133.

    Boominathan L (2010) The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev 29:613–639. doi:10.1007/s10555-010-9257-9

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Amelio I, Grespi F, Annicchiarico-Petruzzelli M, Melino G (2012) p63 the guardian of human reproduction. Cell Cycle 11:4545–4551. doi:10.4161/cc.22819

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  135. 135.

    Bolcun-Filas E, Rinaldi VD, White ME, Schimenti JC (2014) Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway. Science 343:533–536. doi:10.1126/science.1247671

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  136. 136.

    Jones EV, Dickman MJ, Whitmarsh AJ (2007) Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase. Biochem J 405:617–623. doi:10.1042/BJ20061778

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  137. 137.

    Conforti F, Sayan AE, Sreekumar R, Sayan BS (2012) Regulation of p73 activity by post-translational modifications. Cell Death Dis 3:e285. doi:10.1038/cddis.2012.27

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  138. 138.

    Ben-Yehoyada M, Ben-Dor I, Shaul Y (2003) c-Abl tyrosine kinase selectively regulates p73 nuclear matrix association. J Biol Chem 278:34475–34482. doi:10.1074/jbc.M301051200

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Goldberg Z, Sionov RV, Berger M et al (2002) Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO J 21:3715–3727. doi:10.1093/emboj/cdf384

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  140. 140.

    Zuckerman V, Lenos K, Popowicz GM et al (2009) c-Abl phosphorylates Hdmx and regulates its interaction with p53. J Biol Chem 284:4031–4039. doi:10.1074/jbc.M809211200

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251. doi:10.1038/onc.2008.301

    CAS  PubMed  Google Scholar 

  142. 142.

    Wang X, Zeng L, Wang J et al (2011) A positive role for c-Abl in Atm and Atr activation in DNA damage response. Cell Death Differ 18:5–15. doi:10.1038/cdd.2010.106

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  143. 143.

    Reuven N, Adler J, Porat Z et al (2015) The tyrosine kinase c-Abl promotes homeodomain-interacting protein kinase 2 (HIPK2) accumulation and activation in response to DNA damage. J Biol Chem 290:16478–16488. doi:10.1074/jbc.M114.628982

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Zhou X, Hao Q, Zhang Q et al (2014) Ribosomal proteins L11 and L5 activate TAp73 by overcoming MDM2 inhibition. Cell Death Differ 22:755–766. doi:10.1038/cdd.2014.167

    PubMed  Article  CAS  Google Scholar 

  145. 145.

    Salomoni P, Dvorkina M, Michod D (2012) Role of the promyelocytic leukaemia protein in cell death regulation. Cell Death Dis 3:e247-6. doi:10.1038/cddis.2011.122

    Article  CAS  Google Scholar 

  146. 146.

    Lapi E, Di Agostino S, Donzelli S et al (2008) PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol Cell 32:803–814. doi:10.1016/j.molcel.2008.11.019

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Joerger AC, Rajagopalan S, Natan E et al (2009) Structural evolution of p53, p63, and p73: implication for heterotetramer formation. Proc Natl Acad Sci USA 106:17705–17710. doi:10.1073/pnas.0905867106

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  148. 148.

    Haupt S, Di Agostino S, Mizrahi I et al (2009) Promyelocytic leukemia protein is required for gain of function by mutant p53. Cancer Res 69:4818–4826. doi:10.1158/0008-5472.CAN-08-4010

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Haupt S, Mitchell C, Corneille V et al (2013) Loss of PML cooperates with mutant p53 to drive more aggressive cancers in a gender-dependent manner. Cell Cycle 12:1722–1731. doi:10.4161/cc.24805

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  150. 150.

    Gurrieri C, Capodieci P, Bernardi R et al (2004) Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 96:269–279. doi:10.1093/jnci/djh043

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Bernassola F, Oberst A, Melino G, Pandolfi PP (2005) The promyelocytic leukaemia protein tumour suppressor functions as a transcriptional regulator of p63. Oncogene 24:6982–6986. doi:10.1038/sj.onc.1208843

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Tomlinson V, Gudmundsdottir K, Luong P et al (2010) JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis 1:e29. doi:10.1038/cddis.2010.7

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  153. 153.

    Yang X, Khosravi-Far R, Chang HY, Baltimore D (1997) Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89:1067–1076. doi:10.1016/S0092-8674(00)80294-9

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  154. 154.

    Torii S, Egan DA, Evans RA, Reed JC (1999) Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). EMBO J 18:6037–6049. doi:10.1093/emboj/18.21.6037

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  155. 155.

    Croxton R, Puto LA, De Belle I et al (2006) Daxx represses expression of a subset of antiapoptotic genes regulated by nuclear factor-kappaB. Cancer Res 66:9026–9035. doi:10.1158/0008-5472.CAN-06-1047

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    Lindsay CR, Morozov VM, Ishov AM (2008) PML NBs (ND10) and Daxx: from nuclear structure to protein function. Front Biosci 13:7132–7142. doi:10.2741/3216

    CAS  PubMed  Article  Google Scholar 

  157. 157.

    Lindsay CR, Giovinazzi S, Ishov AM (2009) Daxx is a predominately nuclear protein that does not translocate to the cytoplasm in response to cell stress. Cell Cycle 8:1544–1551. doi:10.4161/cc.8.10.8379

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Tanaka M, Kamitani T (2010) Cytoplasmic relocation of Daxx induced by Ro52 and FLASH. Histochem Cell Biol 134:297–306. doi:10.1007/s00418-010-0734-6

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  159. 159.

    Michaelson JS, Bader D, Frank K et al (1999) Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev 13:1918–1923. doi:10.1101/gad.13.15.1918

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  160. 160.

    Ishov AM, Vladimirova OV, Maul GG (2004) Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell Sci 117:3807–3820. doi:10.1242/jcs.01230

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Salomoni P (2013) The PML-interacting protein DAXX: histone loading gets into the picture. Front Oncol 3:152. doi:10.3389/fonc.2013.00152

    PubMed Central  PubMed  Article  Google Scholar 

  162. 162.

    Imai Y, Kimura T, Murakami A et al (1999) The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature 398:777–785. doi:10.1038/19709

    CAS  PubMed  Article  Google Scholar 

  163. 163.

    Milovic-Holm K, Krieghoff E, Jensen K et al (2007) FLASH links the CD95 signaling pathway to the cell nucleus and nuclear bodies. EMBO J 26:391–401. doi:10.1038/sj.emboj.7601504

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  164. 164.

    Chen S, Evans HG, Evans DR (2012) FLASH knockdown sensitizes cells to Fas-mediated apoptosis via down-regulation of the anti-apoptotic proteins, MCL-1 and cflip short. PLoS ONE 7(3):e32971. doi:10.1371/journal.pone.0032971

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  165. 165.

    De Cola A, Bongiorno-Borbone L, Bianchi E et al (2011) FLASH is essential during early embryogenesis and cooperates with p73 to regulate histone gene transcription. Oncogene. doi:10.1038/onc.2011.274

    PubMed  Google Scholar 

  166. 166.

    Vennemann A, Hofmann TG (2013) SUMO regulates proteasome-dependent degradation of FLASH/Casp8AP2. Cell Cycle 12:1914–1921. doi:10.4161/24943

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  167. 167.

    Wu W-S, Xu Z-X, Ran R et al (2002) Promyelocytic leukemia protein PML inhibits Nur77-mediated transcription through specific functional interactions. Oncogene 21:3925–3933. doi:10.1038/sj.onc.1205491

    CAS  PubMed  Article  Google Scholar 

  168. 168.

    Li H, Kolluri SK, Gu J et al (2000) Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289:1159–1164. doi:10.1126/science.289.5482.1159

    CAS  PubMed  Article  Google Scholar 

  169. 169.

    Kolluri SK, Zhu X, Zhou X et al (2008) A short Nur77-derived peptide converts Bcl-2 from a protector to a killer. Cancer Cell 14:285–298. doi:10.1016/j.ccr.2008.09.002

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  170. 170.

    Zhou Y, Zhao W, Xie G et al (2014) Induction of Nur77-dependent apoptotic pathway by a coumarin derivative through activation of JNK and p38 MAPK. Carcinogenesis 35:2660–2669. doi:10.1093/carcin/bgu186

    PubMed Central  PubMed  Article  Google Scholar 

  171. 171.

    Wang W, Wang Y, Chen H et al (2014) Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway. Nat Chem Biol 10:133–140. doi:10.1038/nchembio.1406

    CAS  PubMed  Article  Google Scholar 

  172. 172.

    Giorgi C, Ito K, Lin H-K et al (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330:1247–1251. doi:10.1126/science.1189157

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  173. 173.

    Ichim G, Lopez J, Ahmed SU et al (2015) Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol Cell 57:860–872. doi:10.1016/j.molcel.2015.01.018

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  174. 174.

    Liu X, He Y, Li F et al (2015) Caspase-3 promotes genetic instability and carcinogenesis. Mol Cell 58:284–296. doi:10.1016/j.molcel.2015.03.003

    CAS  PubMed  Article  Google Scholar 

  175. 175.

    Tang HL, Tang HM, Mak KH et al (2012) Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol Biol Cell 23:2240–2252. doi:10.1091/mbc.E11-11-0926

    PubMed Central  CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant from the Russian Science Foundation (14-25-0056). The work in the authors’ laboratories is also supported by Grants from the Russian Foundation for Basic Research, Russian President Fund, Dynasty Foundation, as well as the Stockholm and Swedish Cancer Societies, the Swedish Childhood Cancer Foundation, and the Swedish Research Council. We apologize to those authors whose primary works could not be cited owing to space limitations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Boris Zhivotovsky.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prokhorova, E.A., Zamaraev, A.V., Kopeina, G.S. et al. Role of the nucleus in apoptosis: signaling and execution. Cell. Mol. Life Sci. 72, 4593–4612 (2015). https://doi.org/10.1007/s00018-015-2031-y

Download citation

Keywords

  • Caspases
  • Endonucleases
  • Ribosomal stress
  • PML nuclear bodies
  • p53
  • p63
  • p73