Latarcins: versatile spider venom peptides

Abstract

Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

AMP:

Antimicrobial peptides

CBF:

Carboxyfluorescein

CD:

Circular dichroism

CL:

Cardiolipin

CSA:

Chemical shift anisotropy

CT:

Cobra venom cytotoxins (cardiotoxins)

DOPC:

Dioleoylphosphatidylcholine

DOPE:

Dioleoylphosphatidylethanolamine

DOPG:

Dioleoylphosphatidylglycerol

DPhPC:

Diphytanoylphosphatidylcholine

EC50 :

Effective concentration producing a half-maximal effect

EST:

Expressed sequence tags

GAG:

Glycosaminoglycan

iPQM:

Inverted PQM

LP:

Linear peptides

LPS:

Lipopolysaccharide

Ltc:

Latarcins

MC:

Monte Carlo method

MD:

Molecular dynamics

MHP:

Molecular hydrophobicity potential

MIC:

Minimal inhibitory concentration

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

P/L:

Peptide to lipid molar ratio

PQM:

Processing quadruplet motif

PS:

Phosphatidylserine

PTG:

Peptidoglycan

RPE:

Repetitive polypeptide elements

SDS:

Sodium dodecyl sulfate

TFE:

Trifluoroethanol

TI:

Therapeutic index

n.d.:

Not determined

References

  1. 1.

    Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10:483–511

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Casewell NR, Wuster W, Vonk FJ, Harrison RA, Fry BG (2013) Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol 28(4):219–229

    PubMed  Article  Google Scholar 

  3. 3.

    von Reumont BM, Campbell LI, Jenner RA (2014) Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins (Basel) 6(12):3488–3551

    Article  CAS  Google Scholar 

  4. 4.

    Sanggaard KW, Bechsgaard JS, Fang X, Duan J, Dyrlund TF, Gupta V, Jiang X, Cheng L, Fan D, Feng Y, Han L, Huang Z, Wu Z, Liao L, Settepani V, Thogersen IB, Vanthournout B, Wang T, Zhu Y, Funch P, Enghild JJ, Schauser L, Andersen SU, Villesen P, Schierup MH, Bilde T, Wang J (2014) Spider genomes provide insight into composition and evolution of venom and silk. Nat Commun 5:3765

    PubMed Central  CAS  PubMed  Google Scholar 

  5. 5.

    Escoubas P, Diochot S, Corzo G (2000) Structure and pharmacology of spider venom neurotoxins. Biochimie 82(9–10):893–907

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Vassilevski AA, Kozlov SA, Grishin EV (2009) Molecular diversity of spider venom. Biochemistry (Moscow) 74(13):1505–1534

    CAS  Article  Google Scholar 

  7. 7.

    King GF, Hardy MC (2013) Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol 58:475–496

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Terlau H, Shon KJ, Grilley M, Stocker M, Stuhmer W, Olivera BM (1996) Strategy for rapid immobilization of prey by a fish-hunting marine snail. Nature 381(6578):148–151

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Rash LD, Hodgson WC (2002) Pharmacology and biochemistry of spider venoms. Toxicon 40(3):225–254

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Estrada G, Villegas E, Corzo G (2007) Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep 24(1):145–161

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Gremski LH, Trevisan-Silva D, Ferrer VP, Matsubara FH, Meissner GO, Wille AC, Vuitika L, Dias-Lopes C, Ullah A, de Moraes FR, Chavez-Olortegui C, Barbaro KC, Murakami MT, Arni RK, Senff-Ribeiro A, Chaim OM, Veiga SS (2014) Recent advances in the understanding of brown spider venoms: from the biology of spiders to the molecular mechanisms of toxins. Toxicon 83:91–120

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Kuhn-Nentwig L (2003) Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci 60(12):2651–2668

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Bode F, Sachs F, Franz MR (2001) Tarantula peptide inhibits atrial fibrillation. Nature 409(6816):35–36

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Sp Mouhat, Jouirou B, Mosbah A, De Waard M, Sabatier J-M (2004) Diversity of folds in animal toxins acting on ion channels. Biochem J 378(Pt 3):717–726

    Google Scholar 

  15. 15.

    Dutertre S, Lewis RJ (2010) Use of venom peptides to probe ion channel structure and function. J Biol Chem 285(18):13315–13320

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  16. 16.

    King GF (2011) Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 11(11):1469–1484

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Saez NJ, Senff S, Jensen JE, Er SY, Herzig V, Rash LD, King GF (2010) Spider-venom peptides as therapeutics. Toxins (Basel) 2(12):2851–2871

    CAS  Article  Google Scholar 

  18. 18.

    Fitches E, Edwards MG, Mee C, Grishin E, Gatehouse AM, Edwards JP, Gatehouse JA (2004) Fusion proteins containing insect-specific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J Insect Physiol 50(1):61–71

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Bonning BC, Pal N, Liu S, Wang Z, Sivakumar S, Dixon PM, King GF, Miller WA (2014) Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids. Nat Biotechnol 32(1):102–105

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Kourie JI, Shorthouse AA (2000) Properties of cytotoxic peptide-formed ion channels. Am J Physiol Cell Physiol 278(6):C1063–C1087

    CAS  PubMed  Google Scholar 

  21. 21.

    Habermann E (1972) Bee and wasp venoms. Science (New York, NY) 177(46):314–322

    CAS  Article  Google Scholar 

  22. 22.

    Bernheimer AW, Rudy B (1986) Interactions between membranes and cytolytic peptides. Biochim Biophys Acta 864(1):123–141

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Pluzhnikov KA, Kozlov SA, Vassilevski AA, Vorontsova OV, Feofanov AV, Grishin EV (2014) Linear antimicrobial peptides from Ectatomma quadridens ant venom. Biochimie 107 Pt B:211–215

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Wanandy T, Gueven N, Davies NW, Brown SG, Wiese MD (2015) Pilosulins: a review of the structure and mode of action of venom peptides from an Australian ant Myrmecia pilosula. Toxicon 98:54–61

    Google Scholar 

  25. 25.

    Argiolas A, Pisano JJ (1985) Bombolitins, a new class of mast cell degranulating peptides from the venom of the bumblebee Megabombus pennsylvanicus. J Biol Chem 260(3):1437–1444

    CAS  PubMed  Google Scholar 

  26. 26.

    Moreau SJ (2013) “It stings a bit but it cleans well”: venoms of Hymenoptera and their antimicrobial potential. J Insect Physiol 59(2):186–204

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Herzig V, Wood DLA, Newell F, Chaumeil PA, Kaas Q, Binford GJ, Nicholson GM, Gorse D, King GF (2011) ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures. Nucleic Acids Res 39(Database):D653–D657

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  28. 28.

    Kozlov SA, Vassilevski AA, Feofanov AV, Surovoy AY, Karpunin DV, Grishin EV (2006) Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J Biol Chem 281(30):20983–20992

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Vorontsova OV, Egorova NS, Arseniev AS, Feofanov AV (2011) Haemolytic and cytotoxic action of latarcin Ltc2a. Biochimie 93(2):227–241

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Samsonova OV, Kudryashova KS, Feofanov AV (2011) N-terminal moiety of antimicrobial peptide Ltc1-K increases its toxicity for eukaryotic cells. Acta Naturae 3(2):68–78

    PubMed Central  CAS  PubMed  Google Scholar 

  31. 31.

    Dubovskii PV, Volynsky PE, Polyansky AA, Chupin VV, Efremov RG, Arseniev AS (2006) Spatial structure and activity mechanism of a novel spider antimicrobial peptide. Biochemistry 45(35):10759–10767

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Dubovskii PV, Volynsky PE, Polyansky AA, Karpunin DV, Chupin VV, Efremov RG, Arseniev AS (2008) Three-dimensional structure/hydrophobicity of latarcins specifies their mode of membrane activity. Biochemistry 47(11):3525–3533

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Vassilevski AA, Kozlov SA, Zhmak MN, Kudelina IA, Dubovskii PV, Shatursky OY, Arseniev AS, Grishin EV (2007) Synthetic analogues of antimicrobial peptides from the venom of the Central Asian spider Lachesana tarabaevi. Russ J Bioorg Chem 33(4):376–382

    CAS  Article  Google Scholar 

  34. 34.

    Kuznetsov AS, Dubovskii PV, Vorontsova OV, Feofanov AV, Efremov RG (2014) Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid. Biochemistry (Moscow) 79(5):459–468

    CAS  Article  Google Scholar 

  35. 35.

    Trachsel C, Siegemund D, Kampfer U, Kopp LS, Buhr C, Grossmann J, Luthi C, Cunningham M, Nentwig W, Kuhn-Nentwig L, Schurch S, Schaller J (2012) Multicomponent venom of the spider Cupiennius salei: a bioanalytical investigation applying different strategies. FEBS J 279(15):2683–2694

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Corzo G, Villegas E, Gomez-Lagunas F, Possani LD, Belokoneva OS, Nakajima T (2002) Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins. J Biol Chem 277(26):23627–23637

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Dubovskii PV, Vassilevski AA, Samsonova OV, Egorova NS, Kozlov SA, Feofanov AV, Arseniev AS, Grishin EV (2011) Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin. FEBS J 278(22):4382–4393

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Kuhn-Nentwig L, Schaller J, Nentwig W (2004) Biochemistry, toxicology and ecology of the venom of the spider Cupiennius salei (Ctenidae). Toxicon 43(5):543–553

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Kuhn-Nentwig L, Muller J, Schaller J, Walz A, Dathe M, Nentwig W (2002) Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). J Biol Chem 277(13):11208–11216

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Vassilevski AA, Sachkova MY, Ignatova AA, Kozlov SA, Feofanov AV, Grishin EV (2013) Spider toxins comprising disulfide-rich and linear amphipathic domains: a new class of molecules identified in the lynx spider Oxyopes takobius. FEBS J 280(23):6247–6261

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Sachkova MY, Slavokhotova AA, Grishin EV, Vassilevski AA (2014) Genes and evolution of two-domain toxins from lynx spider venom. FEBS Lett 588(5):740–745

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Kuhn-Nentwig L, Fedorova IM, Luscher BP, Kopp LS, Trachsel C, Schaller J, Vu XL, Seebeck T, Streitberger K, Nentwig W, Sigel E, Magazanik LG (2012) A venom-derived neurotoxin, CsTx-1, from the spider Cupiennius salei exhibits cytolytic activities. J Biol Chem 287(30):25640–25649

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  43. 43.

    Kuzmenkov AI, Fedorova IM, Vassilevski AA, Grishin EV (2013) Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments. Biochim Biophys Acta 1828(2):724–731

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Vassilevski AA, Kozlov SA, Samsonova OV, Egorova NS, Karpunin DV, Pluzhnikov KA, Feofanov AV, Grishin EV (2008) Cyto-insectotoxins, a novel class of cytolytic and insecticidal peptides from spider venom. Biochem J 411(3):687–696

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Kuhn-Nentwig L, Willems J, Seebeck T, Shalaby T, Kaiser M, Nentwig W (2011) Cupiennin 1a exhibits a remarkably broad, non-stereospecific cytolytic activity on bacteria, protozoan parasites, insects, and human cancer cells. Amino Acids 40(1):69–76

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Santos DM, Verly RM, Pilo-Veloso D, de Maria M, de Carvalho MA, Cisalpino PS, Soares BM, Diniz CG, Farias LM, Moreira DF, Frezard F, Bemquerer MP, Pimenta AM, de Lima ME (2010) LyeTx I, a potent antimicrobial peptide from the venom of the spider Lycosa erythrognatha. Amino Acids 39(1):135–144

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Zeng X-C, Corzo G, Hahin R (2005) Scorpion venom peptides without disulfide bridges. IUBMB Life 57(1):13–21

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Chen Y, Cao L, Zhong M, Zhang Y, Han C, Li Q, Yang J, Zhou D, Shi W, He B, Liu F, Yu J, Sun Y, Cao Y, Li Y, Li W, Guo D, Cao Z, Yan H (2012) Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7. PLoS One 7(4):e34947

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  49. 49.

    Hong W, Li T, Song Y, Zhang R, Zeng Z, Han S, Zhang X, Wu Y, Li W, Cao Z (2014) Inhibitory activity and mechanism of two scorpion venom peptides against herpes simplex virus type 1. Antiviral Res 102:1–10

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Pukala TL, Doyle JR, Llewellyn LE, Kuhn-Nentwig L, Apponyi MA, Separovic F, Bowie JH (2007) Cupiennin 1a, an antimicrobial peptide from the venom of the neotropical wandering spider Cupiennius salei, also inhibits the formation of nitric oxide by neuronal nitric oxide synthase. FEBS J 274(7):1778–1784

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV (2005) Diversity of wheat anti-microbial peptides. Peptides 26(11):2064–2073

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Dubovskii PV, Vassilevski AA, Slavokhotova AA, Odintsova TI, Grishin EV, Egorov TA, Arseniev AS (2011) Solution structure of a defense peptide from wheat with a 10-cysteine motif. Biochem Biophys Res Commun 411(1):14–18

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Craik DJ (2012) Host-defense activities of cyclotides. Toxins (Basel) 4(2):139–156

    CAS  Article  Google Scholar 

  54. 54.

    Goyal RK, Mattoo AK (2014) Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Sci 228C:135–149

    Article  CAS  Google Scholar 

  55. 55.

    Yount NY, Yeaman MR (2006) Structural congruence among membrane-active host defense polypeptides of diverse phylogeny. Biochim Biophys Acta 1758(9):1373–1386

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Fjell CD, Jenssen H, Fries P, Aich P, Griebel P, Hilpert K, Hancock RE, Cherkasov A (2008) Identification of novel host defense peptides and the absence of alpha-defensins in the bovine genome. Proteins 73(2):420–430

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Zhang L, Falla TJ (2010) Potential therapeutic application of host defense peptides. Methods Mol Biol 618:303–327

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Diep DB, Nes IF (2002) Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr Drug Targets 3(2):107–122

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Duquesne S, Destoumieux-Garzon D, Peduzzi J, Rebuffat S (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24(4):708–734

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  61. 61.

    Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta 1758(9):1529–1539

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778(2):357–375

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  63. 63.

    Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Yount NY, Yeaman MR (2012) Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol 52:337–360

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Riedl S, Zweytick D, Lohner K (2011) Membrane-active host defense peptides–challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 164(8):766–781

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  66. 66.

    Wu D, Gao Y, Qi Y, Chen L, Ma Y, Li Y (2014) Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 351(1):13–22

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Haney E, Hancock R (2013) Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 100(6):572–583

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  68. 68.

    Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51(2):149–177

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Polyansky AA, Volynsky PE, Efremov RG (2007) Computer simulations of membrane-lytic peptides: perspectives in drug design. J Bioinform Comput Biol 5(2B):611–626

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Kozlov S, Malyavka A, McCutchen B, Lu A, Schepers E, Herrmann R, Grishin E (2005) A novel strategy for the identification of toxinlike structures in spider venom. Proteins 59(1):131–140

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Kozlov SA, Grishin EV (2007) The universal algorithm of maturation for secretory and excretory protein precursors. Toxicon 49(5):721–726

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Daly KA, Digby MR, Lefevre C, Nicholas KR, Deane EM, Williamson P (2008) Identification, characterization and expression of cathelicidin in the pouch young of tammar wallaby (Macropus eugenii). Comp Biochem Physiol B Biochem Mol Biol 149(3):524–533

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Wyman TB, Nicol F, Zelphati O, Scaria PV, Plank C, Szoka FC Jr (1997) Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry 36(10):3008–3017

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Wegener KL, Brinkworth CS, Bowie JH, Wallace JC, Tyler MJ (2001) Bioactive dahlein peptides from the skin secretions of the Australian aquatic frog Litoria dahlii: sequence determination by electrospray mass spectrometry. Rapid Commun Mass Spectrom 15(18):1726–1734

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Zhao H, Gan TX, Liu XD, Jin Y, Lee WH, Shen JH, Zhang Y (2008) Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides 29(10):1685–1691

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Kim SS, Shim MS, Chung J, Lim DY, Lee BJ (2007) Purification and characterization of antimicrobial peptides from the skin secretion of Rana dybowskii. Peptides 28(8):1532–1539

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Conlon JM, Demandt A, Nielsen PF, Leprince J, Vaudry H, Woodhams DC (2009) The alyteserins: two families of antimicrobial peptides from the skin secretions of the midwife toad Alytes obstetricans (Alytidae). Peptides 30(6):1069–1073

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    El Karim IA, Linden GJ, Orr DF, Lundy FT (2008) Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites. J Neuroimmunol 200(1–2):11–16

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Keil B (1992) Specificity of proteolysis. Springer-Verlag, Berlin

    Google Scholar 

  80. 80.

    Dubovskii PV, Li H, Takahashi S, Arseniev AS, Akasaka K (2000) Structure of an analog of fusion peptide from hemagglutinin. Protein Sci 9(4):786–798

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  81. 81.

    Yakimov A, Rychkov G, Petukhov M (2014) De novo design of stable alpha-helices. Methods Mol Biol 1216:1–14

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Rizo J, Blanco FJ, Kobe B, Bruch MD, Gierasch LM (1993) Conformational behavior of Escherichia coli OmpA signal peptides in membrane mimetic environments. Biochemistry 32(18):4881–4894

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Efremov RG, Alix AJ (1993) Environmental characteristics of residues in proteins: three-dimensional molecular hydrophobicity potential approach. J Biomol Struct Dyn 11(3):483–507

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Efremov RG, Nolde DE, Konshina AG, Syrtcev NP, Arseniev AS (2004) Peptides and proteins in membranes: what can we learn via computer simulations? Curr Med Chem 11(18):2421–2442

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Efremov RG, Nolde DE, Volynsky PE, Chernyavsky AA, Dubovskii PV, Arseniev AS (1999) Factors important for fusogenic activity of peptides: molecular modeling study of analogs of fusion peptide of influenza virus hemagglutinin. FEBS Lett 462(1–2):205–210

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Glaser RW, Sachse C, Durr UH, Wadhwani P, Afonin S, Strandberg E, Ulrich AS (2005) Concentration-dependent realignment of the antimicrobial peptide PGLa in lipid membranes observed by solid-state 19F-NMR. Biophys J 88(5):3392–3397

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  87. 87.

    Epand RM, Rotem S, Mor A, Berno B, Epand RF (2008) Bacterial membranes as predictors of antimicrobial potency. J Am Chem Soc 130(43):14346–14352

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Beschiaschvili G, Seelig J (1990) Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry 29(1):52–58

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47(6):451–463

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Matsuzaki K (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462(1–2):1–10

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Dennison SR, Morton LH, Harris F, Phoenix DA (2008) The impact of membrane lipid composition on antimicrobial function of an alpha-helical peptide. Chem Phys Lipids 151(2):92–102

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Cheng JT, Hale JD, Elliott M, Hancock RE, Straus SK (2011) The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Biochim Biophys Acta 1808(3):622–633

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers 80(6):717–735

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239(1–2):27–34

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  96. 96.

    Henriques ST, Craik DJ (2012) Importance of the cell membrane on the mechanism of action of cyclotides. ACS Chem Biol 7(4):626–636

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Jean-Francois F, Elezgaray J, Berson P, Vacher P, Dufourc EJ (2008) Pore formation induced by an antimicrobial peptide: electrostatic effects. Biophys J 95(12):5748–5756

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  98. 98.

    Uggerhoj LE, Poulsen TJ, Munk JK, Fredborg M, Sondergaard TE, Frimodt-Moller N, Hansen PR, Wimmer R (2015) Rational design of alpha-helical antimicrobial peptides: do’s and don’ts. ChemBioChem 16(2):242–253

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Misiewicz J, Afonin S, Grage SL, van den Berg J, Strandberg E, Wadhwani P, Ulrich AS (2015) Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR. J Biomol NMR 61(3–4):287–298

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Lee DK, Bhunia A, Kotler SA, Ramamoorthy A (2015) Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study. Biochemistry 54(10):1897–1907

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    He J, Krauson AJ, Wimley WC (2014) Toward the de novo design of antimicrobial peptides: lack of correlation between peptide permeabilization of lipid vesicles and antimicrobial, cytolytic, or cytotoxic activity in living cells. Biopolymers 102(1):1–6

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  102. 102.

    Freire JM, Gaspar D, Veiga AS, Castanho MA (2015) Shifting gear in antimicrobial and anticancer peptides biophysical studies: from vesicles to cells. J Pept Sci 21(3):178–185

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Papo N, Shai Y (2003) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24(11):1693–1703

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Silva MT, Sousa JC (1973) Ultrastructure of the cell wall and cytoplasmic membrane of Gram-negative bacteria with different fixation techniques. J Bacteriol 113(2):953–962

    PubMed Central  CAS  PubMed  Google Scholar 

  105. 105.

    Goodsell DS (1991) Inside a living cell. Trends Biochem Sci 16(6):203–206

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G (2000) High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16(6):2789–2796

    CAS  Article  Google Scholar 

  107. 107.

    Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  108. 108.

    Dubovskii PV, Vorontsova OV, Utkin YN, Arseniev AS, Efremov RG, Feofanov AV (2015) Cobra cytotoxins: determinants of antibacterial activity. Mendeleev Commun 21(1):70–71

    Article  CAS  Google Scholar 

  109. 109.

    Konshina AG, Dubovskii PV, Efremov RG (2012) Structure and dynamics of cardiotoxins. Curr Protein Pept Sci 13(6):570–584

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Dubovskii PV, Konshina AG, Efremov RG (2014) Cobra cardiotoxins: membrane interactions and pharmacological potential. Curr Med Chem 21(3):270–287

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Epand RM, Epand RF (2009) Domains in bacterial membranes and the action of antimicrobial agents. Mol BioSyst 5(6):580–587

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Dubovskii PV, Utkin YN (2014) Cobra cytotoxins: structural organization and antibacterial activity. Acta Naturae 6(3):11–18

    PubMed Central  CAS  PubMed  Google Scholar 

  113. 113.

    Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, Greenberg EP, McCray PB Jr, Lehrer RI, Welsh MJ, Tack BF (2000) Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68(5):2748–2755

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  114. 114.

    Won A, Pripotnev S, Ruscito A, Ianoul A (2011) Effect of point mutations on the secondary structure and membrane interaction of antimicrobial peptide anoplin. J Phys Chem B 115(10):2371–2379

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Beven L, Castano S, Dufourcq J, Wieslander A, Wroblewski H (2003) The antibiotic activity of cationic linear amphipathic peptides: lessons from the action of leucine/lysine copolymers on bacteria of the class Mollicutes. Eur J Biochem 270(10):2207–2217

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Ma Q, Jiao W, Lv Y, Dong N, Zhu X, Shan A (2014) Structure-function relationship of Val/Arg-rich peptides: effects of net charge and pro on activity. Chem Biol Drug Des 84(3):348–353

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Vollmer W, Blanot D, de Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32(2):149–167

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Domadia PN, Bhunia A, Ramamoorthy A, Bhattacharjya S (2010) Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization. J Am Chem Soc 132(51):18417–18428

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Mohanram H, Bhattacharjya S (2014) Resurrecting inactive antimicrobial peptides from the lipopolysaccharide trap. Antimicrob Agents Chemother 58(4):1987–1996

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  120. 120.

    Bai Y, Liu S, Jiang P, Zhou L, Li J, Tang C, Verma C, Mu Y, Beuerman RW, Pervushin K (2009) Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin. Biochemistry 48(30):7229–7239

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Chai H, Allen WE, Hicks RP (2014) Spectroscopic investigations of the binding mechanisms between antimicrobial peptides and membrane models of Pseudomonas aeruginosa and Klebsiella pneumoniae. Bioorg Med Chem 22(15):4210–4222

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Cujova S, Slaninova J, Monincova L, Fucik V, Bednarova L, Stokrova J, Hovorka O, Voburka Z, Straka J, Cerovsky V (2013) Panurgines, novel antimicrobial peptides from the venom of communal bee Panurgus calcaratus (Hymenoptera: andrenidae). Amino Acids 45(1):143–157

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Hwang H, Hyun S, Kim Y, Yu J (2013) Reduction of helical content by insertion of a disulfide bond leads to an antimicrobial peptide with decreased hemolytic activity. ChemMedChem 8(1):59–62

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Mohanram H, Bhattacharjya S (2014) Beta-boomerang antimicrobial and antiendotoxic peptides: lipidation and disulfide bond effects on activity and structure. Pharmaceuticals (Basel) 7(4):482–501

    CAS  Article  Google Scholar 

  125. 125.

    Velkov T, Thompson PE, Nation RL, Li J (2010) Structure–activity relationships of polymyxin antibiotics. J Med Chem 53(5):1898–1916

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  126. 126.

    Velkov T, Roberts KD, Nation RL, Thompson PE, Li J (2013) Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol 8(6):711–724

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Clifton LA, Skoda MW, Le Brun AP, Ciesielski F, Kuzmenko I, Holt SA, Lakey JH (2015) Effect of divalent cation removal on the structure of Gram-negative bacterial outer membrane models. Langmuir 31(1):404–412

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  128. 128.

    Bhattacharjya S, Ramamoorthy A (2009) Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. FEBS J 276(22):6465–6473

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Ladokhin AS, White SH (1999) Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. J Mol Biol 285(4):1363–1369

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Ladokhin AS, White SH (2001) ‘Detergent-like’ permeabilization of anionic lipid vesicles by melittin. Biochim Biophys Acta 1514(2):253–260

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Almeida PF, Pokorny A (2009) Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: from kinetics to thermodynamics. Biochemistry 48(34):8083–8093

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  132. 132.

    McKeown AN, Naro JL, Huskins LJ, Almeida PF (2011) A thermodynamic approach to the mechanism of cell-penetrating peptides in model membranes. Biochemistry 50(5):654–662

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  133. 133.

    Snider C, Jayasinghe S, Hristova K, White SH (2009) MPEx: a tool for exploring membrane proteins. Protein Sci 18(12):2624–2628

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  134. 134.

    Polyansky AA, Ramaswamy R, Volynsky PE, Sbalzarini IF, Marrink SJ, Efremov RG (2010) Antimicrobial peptides induce growth of phosphatidylglycerol domains in a model bacterial membrane. J Phys Chem Lett 1(20):3108–3111

    CAS  Article  Google Scholar 

  135. 135.

    Epand RF, Maloy WL, Ramamoorthy A, Epand RM (2010) Probing the “charge cluster mechanism” in amphipathic helical cationic antimicrobial peptides. Biochemistry 49(19):4076–4084

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  136. 136.

    Conn HJ, Dimmick I (1947) Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 54(3):291–303

    PubMed Central  CAS  PubMed  Google Scholar 

  137. 137.

    Shaw N, Stead D (1971) Lipid composition of some species of Arthrobacter. J Bacteriol 107(1):130–133

    PubMed Central  CAS  PubMed  Google Scholar 

  138. 138.

    Wang G, Mishra B, Epand RF, Epand RM (2014) High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim Biophys Acta 1838(9):2160–2172

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  139. 139.

    Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788(8):1687–1692

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Jin Y, Mozsolits H, Hammer J, Zmuda E, Zhu F, Zhang Y, Aguilar MI, Blazyk J (2003) Influence of tryptophan on lipid binding of linear amphipathic cationic antimicrobial peptides. Biochemistry 42(31):9395–9405

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Lee KH, Shin SY, Hong JE, Yang ST, Kim JI, Hahm KS, Kim Y (2003) Solution structure of termite-derived antimicrobial peptide, spinigerin, as determined in SDS micelle by NMR spectroscopy. Biochem Biophys Res Commun 309(3):591–597

    CAS  PubMed  Article  Google Scholar 

  142. 142.

    Lee K, Shin SY, Kim K, Lim SS, Hahm KS, Kim Y (2004) Antibiotic activity and structural analysis of the scorpion-derived antimicrobial peptide IsCT and its analogs. Biochem Biophys Res Commun 323(2):712–719

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Nguyen LT, Schibli DJ, Vogel HJ (2005) Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. J Pept Sci 11(7):379–389

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Konno K, Hisada M, Naoki H, Itagaki Y, Fontana R, Rangel M, Oliveira JS, Cabrera MP, Neto JR, Hide I, Nakata Y, Yasuhara T, Nakajima T (2006) Eumenitin, a novel antimicrobial peptide from the venom of the solitary eumenine wasp Eumenes rubronotatus. Peptides 27(11):2624–2631

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Zhu WL, Nan YH, Hahm KS, Shin SY (2007) Cell selectivity of an antimicrobial peptide melittin diastereomer with D-amino acid in the leucine zipper sequence. J Biochem Mol Biol 40(6):1090–1094

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Won A, Khan M, Gustin S, Akpawu A, Seebun D, Avis TJ, Leung BO, Hitchcock AP, Ianoul A (2011) Investigating the effects of L- to D-amino acid substitution and deamidation on the activity and membrane interactions of antimicrobial peptide anoplin. Biochim Biophys Acta 1808(6):1592–1600

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Rangel M, Cabrera MP, Kazuma K, Ando K, Wang X, Kato M, Nihei K, Hirata IY, Cross TJ, Garcia AN, Faquim-Mauro EL, Franzolin MR, Fuchino H, Mori-Yasumoto K, Sekita S, Kadowaki M, Satake M, Konno K (2011) Chemical and biological characterization of four new linear cationic alpha-helical peptides from the venoms of two solitary eumenine wasps. Toxicon 57(7–8):1081–1092

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Lin CH, Tzen JT, Shyu CL, Yang MJ, Tu WC (2011) Structural and biological characterization of mastoparans in the venom of Vespa species in Taiwan. Peptides 32(10):2027–2036

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Jin F, Sun Q, Xu X, Li L, Gao G, Xu Y, Yu X, Ren S (2012) cDNA cloning and characterization of the antibacterial peptide cecropin 1 from the diamondback moth, Plutella xylostella L. Protein Expr Purif 85(2):230–238

    CAS  PubMed  Article  Google Scholar 

  150. 150.

    Rifflet A, Gavalda S, Tene N, Orivel J, Leprince J, Guilhaudis L, Genin E, Vetillard A, Treilhou M (2012) Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum. Peptides 38(2):363–370

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Kim SJ, Kim JS, Lee YS, Sim DW, Lee SH, Bahk YY, Lee KH, Kim EH, Park SJ, Lee BJ, Won HS (2013) Structural characterization of de novo designed L5K5 W model peptide isomers with potent antimicrobial and varied hemolytic activities. Molecules 18(1):859–876

    PubMed  Article  CAS  Google Scholar 

  152. 152.

    Kleinig H, Zentgraf H, Comes P, Stadler J (1971) Nuclear membranes and plasma membranes from hen erythrocytes. II. Lipid composition. J Biol Chem 246(9):2996–3000

    CAS  PubMed  Google Scholar 

  153. 153.

    Jay AW, Burton AC (1969) Direct measurement of potential difference across the human red blood cell membrane. Biophys J 9(2):115–121

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  154. 154.

    Polyansky AA, Vassilevski AA, Volynsky PE, Vorontsova OV, Samsonova OV, Egorova NS, Krylov NA, Feofanov AV, Arseniev AS, Grishin EV, Efremov RG (2009) N-terminal amphipathic helix as a trigger of hemolytic activity in antimicrobial peptides: a case study in latarcins. FEBS Lett 583(14):2425–2428

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37(Database issue):D933–D937

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  156. 156.

    Pyrkov TV, Chugunov AO, Krylov NA, Nolde DE, Efremov RG (2009) PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes. Bioinformatics (Oxford, England) 25(9):1201–1202

    CAS  Article  Google Scholar 

  157. 157.

    Idiong G, Won A, Ruscito A, Leung BO, Hitchcock AP, Ianoul A (2011) Investigating the effect of a single glycine to alanine substitution on interactions of antimicrobial peptide latarcin 2a with a lipid membrane. Eur Biophys J 40(9):1087–1100

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Won A, Ruscito A, Ianoul A (2012) Imaging the membrane lytic activity of bioactive peptide latarcin 2a. Biochim Biophys Acta 1818(12):3072–3080

    CAS  PubMed  Article  Google Scholar 

  159. 159.

    Baker MA, Maloy WL, Zasloff M, Jacob LS (1993) Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res 53(13):3052–3057

    CAS  PubMed  Google Scholar 

  160. 160.

    Mader JS, Hoskin DW (2006) Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 15(8):933–946

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Schweizer F (2009) Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol 625(1–3):190–194

    CAS  PubMed  Article  Google Scholar 

  162. 162.

    Gaspar D, Veiga AS, Castanho MA (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4:294

    PubMed Central  PubMed  Article  Google Scholar 

  163. 163.

    Guo X, Ma C, Du Q, Wei R, Wang L, Zhou M, Chen T, Shaw C (2013) Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities. Biochimie 95(9):1784–1794

    CAS  PubMed  Article  Google Scholar 

  164. 164.

    Savelyeva A, Ghavami S, Davoodpour P, Asoodeh A, Los MJ (2014) An overview of Brevinin superfamily: structure, function and clinical perspectives. Adv Exp Med Biol 818:197–212

    CAS  PubMed  Article  Google Scholar 

  165. 165.

    Yin CM, Wong JH, Xia J, Ng TB (2013) Studies on anticancer activities of lactoferrin and lactoferricin. Curr Protein Pept Sci 14(6):492–503

    CAS  PubMed  Article  Google Scholar 

  166. 166.

    Lemeshko VV (2010) Potential-dependent membrane permeabilization and mitochondrial aggregation caused by anticancer polyarginine-KLA peptides. Arch Biochem Biophys 493(2):213–220

    CAS  PubMed  Article  Google Scholar 

  167. 167.

    Lemeshko VV (2013) Electrical potentiation of the membrane permeabilization by new peptides with anticancer properties. Biochim Biophys Acta 1828(3):1047–1056

    CAS  PubMed  Article  Google Scholar 

  168. 168.

    Yao L, Daniels J, Moshnikova A, Kuznetsov S, Ahmed A, Engelman DM, Reshetnyak YK, Andreev OA (2013) pHLIP peptide targets nanogold particles to tumors. Proc Natl Acad Sci USA 110(2):465–470

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  169. 169.

    Weerakkody D, Moshnikova A, Thakur MS, Moshnikova V, Daniels J, Engelman DM, Andreev OA, Reshetnyak YK (2013) Family of pH (low) insertion peptides for tumor targeting. Proc Natl Acad Sci USA 110(15):5834–5839

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  170. 170.

    Viola-Villegas NT, Carlin SD, Ackerstaff E, Sevak KK, Divilov V, Serganova I, Kruchevsky N, Anderson M, Blasberg RG, Andreev OA, Engelman DM, Koutcher JA, Reshetnyak YK, Lewis JS (2014) Understanding the pharmacological properties of a metabolic PET tracer in prostate cancer. Proc Natl Acad Sci USA 111(20):7254–7259

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  171. 171.

    Karabadzhak AG, An M, Yao L, Langenbacher R, Moshnikova A, Adochite RC, Andreev OA, Reshetnyak YK, Engelman DM (2014) pHLIP-FIRE, a cell insertion-triggered fluorescent probe for imaging tumors demonstrates targeted cargo delivery in vivo. ACS Chem Biol 9(11):2545–2553

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  172. 172.

    Maccarrone M, Nieuwenhuizen WE, Dullens HF, Catani MV, Melino G, Veldink GA, Vliegenthart JF, Finazzo Agro A (1996) Membrane modifications in human erythroleukemia K562 cells during induction of programmed cell death by transforming growth factor beta 1 or cisplatin. Eur J Biochem 241(1):297–302

    CAS  PubMed  Article  Google Scholar 

  173. 173.

    Feofanov AV, Sharonov GV, Dubinnyi MA, Astapova MV, Kudelina IA, Dubovskii PV, Rodionov DI, Utkin YN, Arseniev AS (2004) Comparative study of structure and activity of cytotoxins from venom of the cobras Naja oxiana, Naja kaouthia, and Naja haje. Biochemistry (Moscow) 69(10):1148–1157

    CAS  Article  Google Scholar 

  174. 174.

    Wang C-H, W-g Wu (2005) Amphiphilic beta-sheet cobra cardiotoxin targets mitochondria and disrupts its network. FEBS Lett 579(14):3169–3174

    CAS  PubMed  Article  Google Scholar 

  175. 175.

    Orsolic N (2012) Bee venom in cancer therapy. Cancer Metastasis Rev 31(1–2):173–194

    CAS  PubMed  Article  Google Scholar 

  176. 176.

    Heinen TE, da Veiga AB (2011) Arthropod venoms and cancer. Toxicon 57(4):497–511

    CAS  PubMed  Article  Google Scholar 

  177. 177.

    Jones S, Martel C, Belzacq-Casagrande AS, Brenner C, Howl J (2008) Mitoparan and target-selective chimeric analogues: membrane translocation and intracellular redistribution induces mitochondrial apoptosis. Biochim Biophys Acta 1783(5):849–863

    CAS  PubMed  Article  Google Scholar 

  178. 178.

    Liu Z, Deng M, Xiang J, Ma H, Hu W, Zhao Y, Li DW, Liang S (2012) A novel spider peptide toxin suppresses tumor growth through dual signaling pathways. Curr Mol Med 12(10):1350–1360

    CAS  PubMed  Article  Google Scholar 

  179. 179.

    Raynor RL, Bin Z, Kuo JF (1991) Membrane interactions of amphiphilic polypeptides mastoparan, melittin, polymyxin B, and cardiotoxin. Differential inhibition of protein kinase C, Ca2+/calmodulin-dependent protein kinase II and synaptosomal membrane Na, K-ATPase, and Na+ pump and differentiation of HL60 cells. J Biol Chem 266(5):2753–2758

    CAS  PubMed  Google Scholar 

  180. 180.

    Tsai P-C, Hsieh C-Y, Chiu C-C, Wang C-K, Chang L-S, Lin S-R (2012) Cardiotoxin III suppresses MDA-MB-231 cell metastasis through the inhibition of EGF/EGFR-mediated signaling pathway. Toxicon 60(5):734–743

    CAS  PubMed  Article  Google Scholar 

  181. 181.

    Lazarev VN, Polina NF, Shkarupeta MM, Kostrjukova ES, Vassilevski AA, Kozlov SA, Grishin EV, Govorun VM (2011) Spider venom peptides for gene therapy of Chlamydia infection. Antimicrob Agents Chemother 55(11):5367–5369

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  182. 182.

    Lazarev VN, Shkarupeta MM, Polina NF, Kostrjukova ES, Vassilevski AA, Kozlov SA, Grishin EV, Govorun VM (2013) Antimicrobial peptide from spider venom inhibits Chlamydia trachomatis infection at an early stage. Arch Microbiol 195(3):173–179

    CAS  PubMed  Article  Google Scholar 

  183. 183.

    Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22(4):582–610

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  184. 184.

    Dawson RM, Fox MA, Atkins HS, Liu C-Q (2011) Potent antimicrobial peptides with selectivity for Bacillus anthracis over human erythrocytes. Int J Antimicrob Agents 38(3):237–242

    CAS  PubMed  Article  Google Scholar 

  185. 185.

    Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32(Database issue):D590–D592

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  186. 186.

    Wang G, Watson KM, Peterkofsky A, Buckheit RW Jr (2010) Identification of novel human immunodeficiency virus type 1-inhibitory peptides based on the antimicrobial peptide database. Antimicrob Agents Chemother 54(3):1343–1346

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  187. 187.

    Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14(1):51–55

    CAS  PubMed  Article  Google Scholar 

  188. 188.

    Dubinnyi MA, Lesovoy DM, Dubovskii PV, Chupin VV, Arseniev AS (2006) Modeling of 31P-NMR spectra of magnetically oriented phospholipid liposomes: a new analytical solution. Solid State Nucl Magn Reson 29(4):305–311

    CAS  PubMed  Article  Google Scholar 

  189. 189.

    Kuhn-Nentwig L, Schaller J, Schürch S, Nentwig W (2016) The Venom of Cupiennius salei (Ctenidae). In: Gopalakrishnakone P, Corzo GA, de Lima ME, Diego-Garcia E (eds) Spider Venoms. Toxinology. Springer, in press

  190. 190.

    Dubovskii PV (2012) Unusual titration of the membrane-bound artificial hemagglutinin fusion peptide. Eur Biophys J 41(12):1077–1084

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grants 13-04-02128 awarded to P.V.D. and 13-04-00825 awarded to R.G.E.), the Program “Molecular and Cellular Biology” of the Russian Academy of Sciences, the grant NSh-1924.2014.4 from the President of the Russian Federation, and grant 14-24-00118 of the Russian Science Foundation awarded to E.V.G. Access to computational facilities of the Joint Supercomputer Center of the Russian Academy of Sciences (Moscow) is appreciated. P.V.D. expresses sincere gratitude to Maria Astapova, Lidiya Baryshnikova, and Stella Yevstigneyeva for providing valuable microbiological information. We thank Lucia Kuhn-Nentwig for advice on the cupiennin classification.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter V. Dubovskii.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dubovskii, P.V., Vassilevski, A.A., Kozlov, S.A. et al. Latarcins: versatile spider venom peptides. Cell. Mol. Life Sci. 72, 4501–4522 (2015). https://doi.org/10.1007/s00018-015-2016-x

Download citation

Keywords

  • Biologically active compounds
  • Mechanism of action
  • Cytolytic toxin
  • Correlation analysis
  • Antimicrobial peptide
  • Structure–function relationship