Pharmacologic overview of Withania somnifera, the Indian Ginseng

Abstract

Withania somnifera, also called ‘Indian ginseng’, is an important medicinal plant of the Indian subcontinent. It is widely used, singly or in combination, with other herbs against many ailments in Indian Systems of Medicine since time immemorial. Withania somnifera contains a spectrum of diverse phytochemicals enabling it to have a broad range of biological implications. In preclinical studies, it has shown anti-microbial, anti-inflammatory, anti-tumor, anti-stress, neuroprotective, cardioprotective, and anti-diabetic properties. Additionally, it has demonstrated the ability to reduce reactive oxygen species, modulate mitochondrial function, regulate apoptosis, and reduce inflammation and enhance endothelial function. In view of these pharmacologic properties, W. somnifera is a potential drug candidate to treat various clinical conditions, particularly related to the nervous system. In this review, we summarize the pharmacologic characteristics and discuss the mechanisms of action and potential therapeutic applications of the plant and its active constituents.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

TNF-α:

Tumor necrosis factor-α

IL-1β:

Interleukin-1β

NFκ-β:

Nuclear factor kappa-β

NO:

Nitric oxide

ROS:

Reactive oxygen species

PARP-1:

Poly(ADP-ribose) polymerase-1

pMCAO:

Permanent middle cerebral artery occlusion

GFAP:

Glial fibrillary acidic protein

6OHDA:

6-hydroxydopamine

References

  1. 1.

    Dhuley JN (1998) Effect of ashwagandha on lipid peroxidation in stress-induced animals. J Ethnopharmacol 60:173–178

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Ziauddin M, Phansalkar N, Patki P, Diwanay S, Patwardhan B (1996) Studies on the immunomodulatory effects of Ashwagandha. J Ethnopharmacol 50:69–76

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Hepper FN (1991) Old World Withania (Solanaceae): a taxonomic review and key to the species. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Gardens Kew and Linnean Society of London, London

    Google Scholar 

  4. 4.

    Purdie RW, Symon DE, Haegi L (1982) Solanaceae. Flora Aust 29:184

    Google Scholar 

  5. 5.

    Van Wyk B-E, Wink M (2004) Medicinal plants of the world. Briza Publications, Pretoria

    Google Scholar 

  6. 6.

    Uddin Q, Samiulla L, Singh V, Jamil S (2012) Phytochemical and pharmacological profile of Withania somnifera dunal: a review. J Appl Pharm Sci 02(01):170–175

    Google Scholar 

  7. 7.

    Singh N, Bhalla M, de Jager P, Gilca M (2011) An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med 8(S):208–213

    PubMed Central  PubMed  Google Scholar 

  8. 8.

    Changhadi GS (1938) Ashwagandharishta—Rastantra Sar Evam Sidhyaprayog Sangrah. Krishna-Gopal Ayurveda Bhawan (Dharmarth Trust), Nagpur, pp 743–774

    Google Scholar 

  9. 9.

    Sharma PV (1999) Ashwagandha. Dravyaguna Vijana, Chaukhambha Viashwabharti Varanasi, pp 763–765

    Google Scholar 

  10. 10.

    Bhandari CR (1970) Ashwagandha (Withania somnifera) Vanaushadhi Chandroday (An Encyclopedia of Indian Herbs), vol 1. CS Series, Varanasi Vidyavilas Press, Varanasi, India, pp 96–97

  11. 11.

    Basu KA (1935) Withania somnifera, Indian medicinal plants, 2nd edn. IIIrd Lalit Mohan Basu, Allahabad, pp 1774–1776

    Google Scholar 

  12. 12.

    Mishra B (2004) Ashwagandha—Bhavprakash Nigantu (Indian Materia Medica). Varanasi, Chaukhambha Bharti Academy, pp 393–394

    Google Scholar 

  13. 13.

    Sharma S, Dahanukar S, Karandikar S (1985) Effects of long-term administration of the roots of ashwagandha and shatavari in rats. Indian Drugs 22:133

    Google Scholar 

  14. 14.

    Machiah DK, Girish K, Gowda TV (2006) A glycoprotein from a folk medicinal plant, Withania somnifera, inhibits hyaluronidase activity of snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 143:158–161

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Machiah DK, Gowda TV (2006) Purification of a post-synaptic neurotoxic phospholipase A 2 from Naja naja venom and its inhibition by a glycoprotein from Withania somnifera. Biochimie 88:701–710

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Agarwal R, Diwanay S, Patki P, Patwardhan B (1999) Studies on immunomodulatory activity of Withania somnifera (Ashwagandha) extracts in experimental immune inflammation. J Ethnopharmacol 67:27–35

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Ali M, Shuaib M, Ansari SH (1997) Withanolides from the stem bark of Withania somnifera. Phytochemistry 44:1163–1168

    CAS  Article  Google Scholar 

  18. 18.

    Ghani N (1920) Khazain-ul-Adviyah, vol I. Munshi Nawal Kishore, Lucknow, pp 230–231

  19. 19.

    Kabiruddin M (1955) Makhzan-ul-Mufradat. Nadeem University Printers, Lahore, pp 75–76

    Google Scholar 

  20. 20.

    Nadkarni KM (1982) Indian Materia Medica, 3rd edn, vol I. Popular Prakashan Pvt Ltd, Bombay, pp 1292–1294

  21. 21.

    Tiwari R, Chakraborty S, Saminathan M, Dhama K, Singh SV (2014) Ashwagandha (Withania somnifera): role in safeguarding health, immunomodulatory effects, combating infections and therapeutic applications: a review. J Biol Sci 14(2):77–94

    Article  Google Scholar 

  22. 22.

    Ven Murthy M, Ranjekar PK, Ramassamy C, Deshpande M (2010) Scientific basis for the use of Indian Ayurvedic medicinal plants in the treatment of neurodegenerative disorders: 1. Ashwagandha. Cent Nerv Syst Agents Med Chem 10:238–246

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Seenivasagam R, Sathiyamoorthy S, Hemavathi K (2011) Therapeutic impacts of Indian and Korean ginseng on human beings—a review. Int J Immunol Stud 1:297–317

    CAS  Article  Google Scholar 

  24. 24.

    Grandhi A, Mujumdar AM, Patwardhan B (1994) A comparative pharmacological investigation of Ashwagandha and Ginseng. J Ethnopharmacol 44:131–135

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Kaur K, Rani G, Widodo N, Nagpal A, Taira K et al (2004) Evaluation of the anti-proliferative and anti-oxidative activities of leaf extract from in vivo and in vitro raised Ashwagandha. Food Chem Toxicol 42:2015–2020

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Chopra A, Lavin P, Patwardhan B, Chitre D (2004) A 32-week randomized, placebo-controlled clinical evaluation of RA-11, an Ayurvedic drug, on osteoarthritis of the knees. JCR J Clin Rheumatol 10:236–245

    PubMed  Article  Google Scholar 

  27. 27.

    Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14:2373–2393

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 5:334–346

    CAS  PubMed  Google Scholar 

  29. 29.

    Matsuda H, Murakami T, Kishi A, Yoshikawa M (2001) Structures of withanolides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera DUNAL and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg Med Chem 9:1499–1507

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Singh G, Sharma P, Dudhe R, Singh S (2010) Biological activities of Withania somnifera. Ann Biol Res 1:56–63

    CAS  Google Scholar 

  31. 31.

    Bhattacharya SK, Goel RK, Kaur R, Ghosal S (1987) Anti-stress activity of sitoindosides VII and VIII, new acylsterylglucosides from Withania somnifera. Phytother Res 1:32–37

    CAS  Article  Google Scholar 

  32. 32.

    Ghosal S, Kaur R, Srivastava R (1988) Sito-indosides IX and X, two new glycowithanolides from Withania somnifera. Indian J Nat Prod 4:12–13

    CAS  Google Scholar 

  33. 33.

    Majumdar D (1955) Withania somnifera Dunal, Part II. Alkaloidal constituents and their chemical characterization. Indian J Pharm 17:158–161

    CAS  Google Scholar 

  34. 34.

    Praveen N, Murthy H (2010) Production of withanolide-A from adventitious root cultures of Withania somnifera. Acta Physiol Plant 32:1017–1022

    CAS  Article  Google Scholar 

  35. 35.

    Misra L, Mishra P, Pandey A, Sangwan RS, Sangwan NS et al (2008) Withanolides from Withania somnifera roots. Phytochemistry 69:1000–1004

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Subbaraju GV, Vanisree M, Rao CV, Sivaramakrishna C, Sridhar P et al (2006) Ashwagandhanolide, a bioactive dimeric thiowithanolide isolated from the roots of Withania somnifera⊥. J Nat Prod 69:1790–1792

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Anjaneyulu A, Rao D, Lequesne P (1998) Withanolides, biologically active natural steroidal lactones. Struct Chem Part F 20:135

    CAS  Article  Google Scholar 

  38. 38.

    Kirson I, Glotter E, Abraham A, Lavie D (1970) Constituents of Withania somnifera dun—XI: the structure of three new withanolides. Tetrahedron 26:2209–2219

    CAS  Article  Google Scholar 

  39. 39.

    Lavie D, Glotter E, Shvo Y (1965) Constituents of Withania somnifera Dun. III. The side chain of withaferin A*, 1. J Org Chem 30:1774–1778

    CAS  Article  Google Scholar 

  40. 40.

    Lavie D, Kashman Y, Glotter E (1966) Constituents of Withania somnifera dun—V: studies on some model steroidal epoxides. Tetrahedron 22:1103–1111

    CAS  Article  Google Scholar 

  41. 41.

    Glotter E, Abraham A, Günzberg G, Kirson I (1977) Naturally occurring steroidal lactones with a 17α-oriented side chain. Structure of withanolide E and related compounds. J Chem Soc Perkin 1:341–346

    Article  Google Scholar 

  42. 42.

    Kirson I, Glotter E, Lavie D, Abraham A (1971) Constituents of Withania somnifera Dun: part XII. The withanolides of an Indian chemotype. J Chem Soc 2032–2044

  43. 43.

    Dhalla NS, Sastry MS, Malhotra CL (1961) Chemical studies of the leaves of Withania somnifera. J Pharm Sci 50:876–877

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Pramanick S, Roy A, Ghosh S, Majumder HK, Mukhopadhyay S (2008) Withanolide Z, a new chlorinated withanolide from Withania somnifera. Planta Med 74:1745–1748

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Jayaprakasam B, Zhang Y, Seeram NP, Nair MG (2003) Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci 74:125–132

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Jayaprakasam B, Nair MG (2003) Cyclooxygenase-2 enzyme inhibitory withanolides from Withania somnifera leaves. Tetrahedron 59:841–849

    CAS  Article  Google Scholar 

  47. 47.

    Menssen H, Stapel G (1973) Uber ein C28-Steroidlacton aus der Wurzel von Withania Somnifera. Plant Med

  48. 48.

    Abou-Douh AM (2002) New withanolides and other constituents from the fruit of Withania somnifera. Arch Pharm 335(6):267–276

    CAS  Article  Google Scholar 

  49. 49.

    Kundu AB, Mukherjee A, Dey A (1976) New Withanolide from seeds of Withania-somnifera dunal. Indian J Chem 14:434–435

    Google Scholar 

  50. 50.

    Jayaprakasam B, Strasburg GA, Nair MG (2004) Potent lipid peroxidation inhibitors from Withania somnifera fruits. Tetrahedron 60:3109–3121

    CAS  Article  Google Scholar 

  51. 51.

    Xu Y-M, Marron MT, Seddon E, McLaughlin SP, Ray DT et al (2009) 2, 3-Dihydrowithaferin A-3β-O-sulfate, a new potential prodrug of withaferin A from aeroponically grown Withania somnifera. Bioorg Med Chem 17:2210–2214

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Khan F, Saeed M, Alam M, Chaudhry A (1993) Biological studies of indigenous medicinal plants III. Phytochemical and antimicrobial studies on the non-alkaloidal constituents of some solanaceous fruits. Eczacilik Fakultesi Dergisi-Gazi Universitesi 10:105

    CAS  Google Scholar 

  53. 53.

    Prabu PC, Panchapakesan S, Raj CD (2013) Acute and sub-acute oral toxicity assessment of the hydroalcoholic extract of Withania somnifera roots in Wistar rats. Phytother Res 27:1169–1178

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Prabu PC, Panchapakesan S (2015) Prenatal developmental toxicity evaluation of Withania somnifera root extract in Wistar rats. Drug Chem Toxicol 38:50–56

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Sharada A, Solomon FE, Devi PU (1993) Toxicity of Withania somnifera root extract in rats and mice. Pharm Biol 31:205–212

    CAS  Article  Google Scholar 

  56. 56.

    Patil D, Gautam M, Mishra S, Karupothula S, Gairola S et al (2013) Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: application to pharmacokinetics after oral administration of Withania somnifera aqueous extract. J Pharm Biomed Anal 80:203–212

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Thaiparambil JT, Bender L, Ganesh T, Kline E, Patel P et al (2011) Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer 129:2744–2755

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Dahikar PR, Kumar N, Sahni Y (2012) Pharmacokinetics of Withania somnifera (ashwagandha) in healthy buffalo calves. Buffalo Bull 31:219

    Google Scholar 

  59. 59.

    Sumanth M, Nedunuri S (2014) Comparison of bioavailability and bioequivalence of herbal anxiolytic drugs with marketed drug alprazolam. World J Pharm Res 3:1358–1366

    CAS  Google Scholar 

  60. 60.

    Bisht P, Rawat V (2014) Antibacterial activity of Withania somnifera against Gram-positive isolates from pus samples. Ayu 35:330

    PubMed Central  PubMed  Article  Google Scholar 

  61. 61.

    Singh G, Kumar P (2011) Evaluation of antimicrobial efficacy of flavonoids of Withania somnifera L. Indian J Pharm Sci 73:473

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  62. 62.

    Alam N, Hossain M, Mottalib MA, Sulaiman SA, Gan SH et al (2012) Methanolic extracts of Withania somnifera leaves, fruits and roots possess antioxidant properties and antibacterial activities. BMC Complement Altern Med 12:175

    PubMed Central  PubMed  Article  Google Scholar 

  63. 63.

    Mwitari PG, Ayeka PA, Ondicho J, Matu EN, Bii CC (2013) Antimicrobial activity and probable mechanisms of action of medicinal plants of Kenya: Withania somnifera, Warbugia ugandensis, Prunus africana and Plectrunthus barbatus. PLoS One 8(6):e65619

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  64. 64.

    Owais M, Sharad K, Shehbaz A, Saleemuddin M (2005) Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine 12:229–235

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Arora S, Dhillon S, Rani G, Nagpal A (2004) The in vitro antibacterial/synergistic activities of Withania somnifera extracts. Fitoterapia 75:385–388

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Pandit S, Chang K-W, Jeon J-G (2013) Effects of Withania somnifera on the growth and virulence properties of Streptococcus mutans and Streptococcus sobrinus at sub-MIC levels. Anaerobe 19:1–8

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Chandrasekaran S, Dayakar A, Veronica J, Sundar S, Maurya R (2013) An in vitro study of apoptotic like death in Leishmania donovani promastigotes by withanolides. Parasitol Int 62:253–261

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Grover A, Katiyar SP, Jeyakanthan J, Dubey VK, Sundar D (2012) Blocking Protein kinase C signaling pathway: mechanistic insights into the anti-leishmanial activity of prospective herbal drugs from Withania somnifera. BMC Genom 13:S20

    Article  Google Scholar 

  69. 69.

    El-On J, Ozer L, Gopas J, Sneir R, Enav H et al (2009) Antileishmanial activity in Israeli plants. Ann Trop Med Parasitol 103:297–306

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Sachdeva H, Sehgal R, Kaur S (2013) Studies on the protective and immunomodulatory efficacy of Withania somnifera along with cisplatin against experimental visceral leishmaniasis. Parasitol Res 112:2269–2280

    PubMed  Article  Google Scholar 

  71. 71.

    Dikasso D, Makonnen E, Debella A, Abebe D, Urga K et al (2006) Anti-malarial activity of Withania somnifera L. Dunal extracts in mice. Ethiop Med J 44:279–285

    PubMed  Google Scholar 

  72. 72.

    Muregi FW, Ishih A, Suzuki T, Kino H, Amano T et al (2007) In Vivo antimalarial activity of aqueous extracts from Kenyan medicinal plants and their Chloroquine (CQ) potentiation effects against a blood-induced CQ-resistant rodent parasite in mice. Phytother Res 21:337–343

    PubMed  Article  Google Scholar 

  73. 73.

    Girish K, Machiah K, Ushanandini S, Harish Kumar K, Nagaraju S et al (2006) Antimicrobial properties of a non-toxic glycoprotein (WSG) from Withania somnifera (Ashwagandha). J Basic Microbiol 46:365–374

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Pawar P, Gilda S, Sharma S, Jagtap S, Paradkar A et al (2011) Rectal gel application of Withania somnifera root extract expounds anti-inflammatory and muco-restorative activity in TNBS-induced inflammatory bowel disease. BMC Complement Altern Med 11:34

    PubMed Central  PubMed  Article  Google Scholar 

  75. 75.

    Minhas U, Minz R, Bhatnagar A (2011) Prophylactic effect of Withania somnifera on inflammation in a non-autoimmune prone murine model of lupus. Drug Discov Ther 5:195–201

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Minhas U, Minz R, Das P, Bhatnagar A (2012) Therapeutic effect of Withania somnifera on pristane-induced model of SLE. Inflammopharmacology 20:195–205

    PubMed  Article  Google Scholar 

  77. 77.

    Ku SK, Han MS, Bae JS (2014) Withaferin A is an inhibitor of endothelial protein C receptor shedding in vitro and in vivo. Food Chem Toxicol 68:23–29

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Lee W, Kim TH, Ku SK, Min KJ, Lee HS et al (2012) Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models. Toxicol Appl Pharmacol 262:91–98

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Kaileh M, Vanden Berghe W, Heyerick A, Horion J, Piette J et al (2007) Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282:4253–4264

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Oh JH, Kwon TK (2009) Withaferin A inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules by inactivation of Akt and NF-kappaB in human pulmonary epithelial cells. Int Immunopharmacol 9:614–619

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Heyninck K, Lahtela-Kakkonen M, Van der Veken P, Haegeman G, Vanden Berghe W (2014) Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKbeta. Biochem Pharmacol 91:501–509

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Maitra R, Porter MA, Huang S, Gilmour BP (2009) Inhibition of NFkappaB by the natural product Withaferin A in cellular models of Cystic Fibrosis inflammation. J Inflamm (Lond) 6:15

    Article  Google Scholar 

  83. 83.

    Sumantran VN, Kulkarni A, Boddul S, Chinchwade T, Koppikar SJ et al (2007) Chondroprotective potential of root extracts of Withania somnifera in osteoarthritis. J Biosci 32:299–307

    PubMed  Article  Google Scholar 

  84. 84.

    Sumantran VN, Chandwaskar R, Joshi AK, Boddul S, Patwardhan B et al (2008) The relationship between chondroprotective and antiinflammatory effects of Withania somnifera root and glucosamine sulphate on human osteoarthritic cartilage in vitro. Phytother Res 22:1342–1348

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Singh D, Aggarwal A, Maurya R, Naik S (2007) Withania somnifera inhibits NF-kappaB and AP-1 transcription factors in human peripheral blood and synovial fluid mononuclear cells. Phytother Res 21:905–913

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Rasool M, Varalakshmi P (2007) Protective effect of Withania somnifera root powder in relation to lipid peroxidation, antioxidant status, glycoproteins and bone collagen on adjuvant-induced arthritis in rats. Fundam Clin Pharmacol 21:157–164

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Khan MA, Subramaneyaan M, Arora VK, Banerjee BD, Ahmed RS (2015) Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic rats. J Complement Integr Med 12:117–125

    PubMed  Article  Google Scholar 

  88. 88.

    Gupta A, Singh S (2014) Evaluation of anti-inflammatory effect of Withania somnifera root on collagen-induced arthritis in rats. Pharm Biol 52:308–320

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Dey D, Chaskar S, Athavale N, Chitre D (2014) Inhibition of LPS-induced TNF-alpha and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238. Phytother Res 28:1479–1485

    PubMed  Article  Google Scholar 

  90. 90.

    Ganesan K, Sehgal PK, Mandal AB, Sayeed S (2011) Protective effect of Withania somnifera and Cardiospermum halicacabum extracts against collagenolytic degradation of collagen. Appl Biochem Biotechnol 165:1075–1091

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Kim JH, Kim SJ (2014) Overexpression of microRNA-25 by withaferin A induces cyclooxygenase-2 expression in rabbit articular chondrocytes. J Pharmacol Sci 125:83–90

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Yu SM, Kim SJ (2013) Production of reactive oxygen species by withaferin A causes loss of type collagen expression and COX-2 expression through the PI3 K/Akt, p38, and JNK pathways in rabbit articular chondrocytes. Exp Cell Res 319:2822–2834

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Yu SM, Kim SJ (2014) Withaferin A-caused production of intracellular reactive oxygen species modulates apoptosis via PI3K/Akt and JNKinase in rabbit articular chondrocytes. J Korean Med Sci 29:1042–1053

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  94. 94.

    Vaishnavi K, Saxena N, Shah N, Singh R, Manjunath K et al (2012) Differential activities of the two closely related withanolides, Withaferin A and Withanone: bioinformatics and experimental evidences. PLoS One 7:e44419

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  95. 95.

    Widodo N, Takagi Y, Shrestha BG, Ishii T, Kaul SC et al (2008) Selective killing of cancer cells by leaf extract of Ashwagandha: components, activity and pathway analyses. Cancer Lett 262:37–47

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Mayola E, Gallerne C, Esposti DD, Martel C, Pervaiz S et al (2011) Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis 16:1014–1027

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Malik F, Kumar A, Bhushan S, Khan S, Bhatia A et al (2007) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis 12:2115–2133

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Yang ES, Choi MJ, Kim JH, Choi KS, Kwon TK (2011) Combination of withaferin A and X-ray irradiation enhances apoptosis in U937 cells. Toxicol In Vitro 25:1803–1810

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Hahm ER, Lee J, Singh SV (2014) Role of mitogen-activated protein kinases and Mcl-1 in apoptosis induction by withaferin A in human breast cancer cells. Mol Carcinog 53:907–916

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  100. 100.

    Yang ES, Choi MJ, Kim JH, Choi KS, Kwon TK (2011) Withaferin A enhances radiation-induced apoptosis in Caki cells through induction of reactive oxygen species, Bcl-2 downregulation and Akt inhibition. Chem Biol Interact 190:9–15

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Choi MJ, Park EJ, Min KJ, Park JW, Kwon TK (2011) Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells. Toxicol In Vitro 25:692–698

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Kim SH, Singh SV (2014) Mammary cancer chemoprevention by withaferin A is accompanied by in vivo suppression of self-renewal of cancer stem cells. Cancer Prev Res (Phila) 7:738–747

    CAS  Article  Google Scholar 

  103. 103.

    Hahm ER, Lee J, Kim SH, Sehrawat A, Arlotti JA et al (2013) Metabolic alterations in mammary cancer prevention by withaferin A in a clinically relevant mouse model. J Natl Cancer Inst 105:1111–1122

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  104. 104.

    Hahm ER, Moura MB, Kelley EE, Van Houten B, Shiva S et al (2011) Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS One 6:e23354

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  105. 105.

    Hahm ER, Singh SV (2013) Autophagy fails to alter withaferin A-mediated lethality in human breast cancer cells. Curr Cancer Drug Targets 13:640–650

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  106. 106.

    Lee J, Sehrawat A, Singh SV (2012) Withaferin A causes activation of Notch2 and Notch4 in human breast cancer cells. Breast Cancer Res Treat 136:45–56

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  107. 107.

    Stan SD, Zeng Y, Singh SV (2008) Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr Cancer 60(Suppl 1):51–60

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  108. 108.

    Nagalingam A, Kuppusamy P, Singh SV, Sharma D, Saxena NK (2014) Mechanistic elucidation of the antitumor properties of withaferin a in breast cancer. Cancer Res 74:2617–2629

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  109. 109.

    Lee JH, Kim JE, Jang YJ, Lee CC, Lim TG et al (2015) Dehydroglyasperin C suppresses TPA-induced cell transformation through direct inhibition of MKK4 and PI3K. Mol Carcinog. doi:10.1002/mc.22302

    Google Scholar 

  110. 110.

    Antony ML, Lee J, Hahm ER, Kim SH, Marcus AI et al (2014) Growth arrest by the antitumor steroidal lactone withaferin A in human breast cancer cells is associated with down-regulation and covalent binding at cysteine 303 of beta-tubulin. J Biol Chem 289:1852–1865

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  111. 111.

    Mathur R, Gupta SK, Singh N, Mathur S, Kochupillai V et al (2006) Evaluation of the effect of Withania somnifera root extracts on cell cycle and angiogenesis. J Ethnopharmacol 105:336–341

    PubMed  Article  Google Scholar 

  112. 112.

    Mohan R, Hammers HJ, Bargagna-Mohan P, Zhan XH, Herbstritt CJ et al (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7:115–122

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Yang H, Wang Y, Cheryan VT, Wu W, Cui CQ et al (2012) Withaferin A inhibits the proteasome activity in mesothelioma in vitro and in vivo. PLoS One 7:e41214

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  114. 114.

    Um HJ, Min KJ, Kim DE, Kwon TK (2012) Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells. Biochem Biophys Res Commun 427:24–29

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Das PK, Malhotra CL, Prasad K (1964) Cardiotonic activity of Ashwagandhine and Ashwagandhinine, two alkaloids from Withania ashwagandha, Kaul. Arch Int Pharmacodyn Ther 150:356–362

    CAS  PubMed  Google Scholar 

  116. 116.

    Ojha SK, Arya DS (2009) Withania somnifera Dunal (Ashwagandha): a promising remedy for cardiovascular diseases. World J Med Sci 4:156–158

    Google Scholar 

  117. 117.

    Prince PSM, Suman S, Devika PT, Vaithianathan M (2008) Cardioprotective effect of ‘Marutham’a polyherbal formulation on isoproterenol induced myocardial infarction in Wistar rats. Fitoterapia 79:433–438

    PubMed  Article  Google Scholar 

  118. 118.

    Thirunavukkarasu M, Penumathsa S, Juhasz B, Zhan L, Bagchi M et al (2006) Enhanced cardiovascular function and energy level by a novel chromium (III)-supplement. BioFactors 27:53–67

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Mohan IK, Kumar KV, Naidu MU, Khan M, Sundaram C (2006) Protective effect of CardiPro against doxorubicin-induced cardiotoxicity in mice. Phytomedicine 13:222–229

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Reuland DJ, Khademi S, Castle CJ, Irwin DC, McCord JM et al (2013) Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress. Free Radic Biol Med 56:102–111

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Aphale AA, Chhibba AD, Kumbhakarna NR, Mateenuddin M, Dahat SH (1998) Subacute toxicity study of the combination of ginseng (Panax ginseng) and ashwagandha (Withania somnifera) in rats: a safety assessment. Indian J Physiol Pharmacol 42:299–302

    CAS  PubMed  Google Scholar 

  122. 122.

    Mohanty IR, Arya DS, Gupta SK (2008) Withania somnifera provides cardioprotection and attenuates ischemia-reperfusion induced apoptosis. Clin Nutr 27:635–642

    PubMed  Article  Google Scholar 

  123. 123.

    Gupta SK, Mohanty I, Talwar KK, Dinda A, Joshi S et al (2004) Cardioprotection from ischemia and reperfusion injury by Withania somnifera: a hemodynamic, biochemical and histopathological assessment. Mol Cell Biochem 260:39–47

    PubMed  Article  Google Scholar 

  124. 124.

    Mohanty I, Arya DS, Dinda A, Talwar KK, Joshi S et al (2004) Mechanisms of cardioprotective effect of Withania somnifera in experimentally induced myocardial infarction. Basic Clin Pharmacol Toxicol 94:184–190

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Ashour OM, Abdel-Naim AB, Abdallah HM, Nagy AA, Mohamadin AM et al (2012) Evaluation of the potential cardioprotective activity of some Saudi plants against doxorubicin toxicity. Z Naturforsch C 67:297–307

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Hamza A, Amin A, Daoud S (2008) The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats. Cell Biol Toxicol 24:63–73

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Gauttam VK, Kalia AN (2013) Development of polyherbal antidiabetic formulation encapsulated in the phospholipids vesicle system. J Adv Pharm Technol Res 4:108–117

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  128. 128.

    Mutalik S, Chetana M, Sulochana B, Devi PU, Udupa N (2005) Effect of Dianex, a herbal formulation on experimentally induced diabetes mellitus. Phytother Res 19:409–415

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Bhattacharya SK, Satyan KS, Chakrabarti A (1997) Effect of Trasina, an Ayurvedic herbal formulation, on pancreatic islet superoxide dismutase activity in hyperglycaemic rats. Indian J Exp Biol 35:297–299

    CAS  PubMed  Google Scholar 

  130. 130.

    Andallu B, Radhika B (2000) Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian J Exp Biol 38:607–609

    CAS  PubMed  Google Scholar 

  131. 131.

    Anwer T, Sharma M, Pillai KK, Iqbal M (2008) Effect of Withania somnifera on insulin sensitivity in non-insulin-dependent diabetes mellitus rats. Basic Clin Pharmacol Toxicol 102:498–503

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Gorelick J, Rosenberg R, Smotrich A, Hanus L, Bernstein N (2015) Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochemistry

  133. 133.

    Udayakumar R, Kasthurirengan S, Mariashibu TS, Rajesh M, Anbazhagan VR, Kim SC, Ganapathi A, Choi CW (2009) Hypoglycaemic and hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. Int J Mol Sci 10(5):2367–2382. doi:10.3390/ijms10052367

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  134. 134.

    Udayakumar R, Kasthurirengan S, Vasudevan A, Mariashibu TS, Rayan JJ et al (2010) Antioxidant effect of dietary supplement Withania somnifera L. reduce blood glucose levels in alloxan-induced diabetic rats. Plant Foods Hum Nutr 65:91–98

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    SoRelle JA, Itoh T, Peng H, Kanak MA, Sugimoto K et al (2013) Withaferin A inhibits pro-inflammatory cytokine-induced damage to islets in culture and following transplantation. Diabetologia 56:814–824

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Babu PV, Gokulakrishnan A, Dhandayuthabani R, Ameethkhan D, Kumar CV et al (2007) Protective effect of Withania somnifera (Solanaceae) on collagen glycation and cross-linking. Comp Biochem Physiol B Biochem Mol Biol 147:308–313

    PubMed  Article  CAS  Google Scholar 

  137. 137.

    Bhattacharya SK, Kumar A, Ghosal S (1995) Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother Res 9:110–113

    CAS  Article  Google Scholar 

  138. 138.

    Kaur P, Mathur S, Sharma M, Tiwari M, Srivastava KK et al (2001) A biologically active constituent of Withania somnifera (ashwagandha) with antistress activity. Indian J Clin Biochem 16:195–198

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  139. 139.

    Singh B, Saxena AK, Chandan BK, Gupta DK, Bhutani KK et al (2001) Adaptogenic activity of a novel, withanolide-free aqueous fraction from the roots of Withania somnifera Dun. Phytother Res 15:311–318

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Khan B, Ahmad SF, Bani S, Kaul A, Suri KA et al (2006) Augmentation and proliferation of T lymphocytes and Th-1 cytokines by Withania somnifera in stressed mice. Int Immunopharmacol 6:1394–1403

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Chandrasekhar K, Kapoor J, Anishetty S (2012) A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. Indian J Psychol Med 34:255–262

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  142. 142.

    Bhattacharya A, Muruganandam AV, Kumar V, Bhattacharya SK (2002) Effect of poly herbal formulation, EuMil, on neurochemical perturbations induced by chronic stress. Indian J Exp Biol 40:1161–1163

    CAS  PubMed  Google Scholar 

  143. 143.

    Muruganandam AV, Kumar V, Bhattacharya SK (2002) Effect of poly herbal formulation, EuMil, on chronic stress-induced homeostatic perturbations in rats. Indian J Exp Biol 40:1151–1160

    CAS  PubMed  Google Scholar 

  144. 144.

    Ramanathan M, Balaji B, Justin A (2011) Behavioural and neurochemical evaluation of Perment an herbal formulation in chronic unpredictable mild stress induced depressive model. Indian J Exp Biol 49:269–275

    CAS  PubMed  Google Scholar 

  145. 145.

    Bhattacharya SK, Bhattacharya A, Sairam K, Ghosal S (2000) Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: an experimental study. Phytomedicine 7:463–469

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Bhattacharya A, Ghosal S, Bhattacharya SK (2001) Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J Ethnopharmacol 74:1–6

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Durg S, Dhadde SB, Vandal R, Shivakumar BS, Charan CS (2015) Withania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: a systematic review and meta-analysis. J Pharm Pharmacol

  148. 148.

    Wollen KA (2010) Alzheimer’s disease: the pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners. Altern Med Rev 15(3):223–244

    PubMed  Google Scholar 

  149. 149.

    Singh RH, Narsimhamurthy K, Singh G (2008) Neuronutrient impact of Ayurvedic Rasayana therapy in brain aging. Biogerontology 9:369–374

    PubMed  Article  Google Scholar 

  150. 150.

    Kuboyama T, Tohda C, Komatsu K (2014) Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biol Pharm Bull 37:892–897

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Konar A, Shah N, Singh R, Saxena N, Kaul SC et al (2011) Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One 6:e27265

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  152. 152.

    Kumar P, Singh R, Nazmi A, Lakhanpal D, Kataria H et al (2014) Glioprotective effects of Ashwagandha leaf extract against lead induced toxicity. Biomed Res Int 2014:182029

    PubMed Central  PubMed  Google Scholar 

  153. 153.

    Bhattacharya SK, Satyan KS (1997) Experimental methods for evaluation of psychotropic agents in rodents: I-Anti-anxiety agents. Indian J Exp Biol 35:565–575

    CAS  PubMed  Google Scholar 

  154. 154.

    Parihar MS, Hemnani T (2004) Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 11:456–467

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Jain S, Shukla SD, Sharma K, Bhatnagar M (2001) Neuroprotective effects of Withania somnifera Dunn in hippocampal sub-regions of female albino rat. Phytother Res 15:544–548

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C et al (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull (Tokyo) 50:760–765

    CAS  Article  Google Scholar 

  157. 157.

    Kuboyama T, Tohda C, Zhao J, Nakamura N, Hattori M et al (2002) Axon- or dendrite-predominant outgrowth induced by constituents from Ashwagandha. NeuroReport 13:1715–1720

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Kuboyama T, Tohda C, Komatsu K (2006) Withanoside IV and its active metabolite, sominone, attenuate Abeta(25–35)-induced neurodegeneration. Eur J Neurosci 23:1417–1426

    PubMed  Article  Google Scholar 

  159. 159.

    Kataria H, Wadhwa R, Kaul SC, Kaur G (2012) Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity. PLoS One 7:e37080

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  160. 160.

    Parihar MS, Hemnani T (2003) Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity. J Biosci 28:121–128

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Ahmad M, Saleem S, Ahmad AS, Ansari MA, Yousuf S et al (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 24:137–147

    PubMed  Article  Google Scholar 

  162. 162.

    Sankar SR, Manivasagam T, Krishnamurti A, Ramanathan M (2007) The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: an analysis of behavioral and biochemical variables. Cell Mol Biol Lett 12:473–481

    CAS  PubMed  Article  Google Scholar 

  163. 163.

    RajaSankar S, Manivasagam T, Sankar V, Prakash S, Muthusamy R et al (2009) Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson’s disease model mouse. J Ethnopharmacol 125:369–373

    CAS  PubMed  Article  Google Scholar 

  164. 164.

    Rajasankar S, Manivasagam T, Surendran S (2009) Ashwagandha leaf extract: a potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson’s disease. Neurosci Lett 454:11–15

    CAS  PubMed  Article  Google Scholar 

  165. 165.

    Manjunath MJ, Muralidhara (2015) Standardized extract of Withania somnifera (Ashwagandha) markedly offsets rotenone-induced locomotor deficits, oxidative impairments and neurotoxicity in Drosophila melanogaster. J Food Sci Technol 52:1971–1981

    CAS  PubMed  Article  Google Scholar 

  166. 166.

    Manjunath MJ, Muralidhara (2013) Effect of Withania somnifera supplementation on rotenone-induced oxidative damage in cerebellum and striatum of the male mice brain. Cent Nerv Syst Agents Med Chem 13:43–56

    CAS  PubMed  Article  Google Scholar 

  167. 167.

    Prakash J, Chouhan S, Yadav SK, Westfall S, Rai SN et al (2014) Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem Res 39:2527–2536

    CAS  PubMed  Article  Google Scholar 

  168. 168.

    Prakash J, Yadav SK, Chouhan S, Singh SP (2013) Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of parkinsonism. Neurochem Res 38:972–980

    CAS  PubMed  Article  Google Scholar 

  169. 169.

    Pingali U, Pilli R, Fatima N (2014) Effect of standardized aqueous extract of Withania somnifera on tests of cognitive and psychomotor performance in healthy human participants. Pharmacognosy Res 6:12–18

    PubMed Central  PubMed  Article  Google Scholar 

  170. 170.

    Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT et al (2012) Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci USA 109:3510–3515

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  171. 171.

    Jayaprakasam B, Padmanabhan K, Nair MG (2010) Withanamides in Withania somnifera fruit protect PC-12 cells from beta-amyloid responsible for Alzheimer’s disease. Phytother Res 24:859–863

    CAS  PubMed  Google Scholar 

  172. 172.

    Grover A, Shandilya A, Agrawal V, Bisaria VS, Sundar D (2012) Computational evidence to inhibition of human acetyl cholinesterase by withanolide a for Alzheimer treatment. J Biomol Struct Dyn 29:651–662

    CAS  PubMed  Article  Google Scholar 

  173. 173.

    Yadav CS, Kumar V, Suke SG, Ahmed RS, Mediratta PK et al (2010) Propoxur-induced acetylcholine esterase inhibition and impairment of cognitive function: attenuation by Withania somnifera. Indian J Biochem Biophys 47:117–120

    CAS  PubMed  Google Scholar 

  174. 174.

    Ahmed ME, Javed H, Khan MM, Vaibhav K, Ahmad A et al (2013) Attenuation of oxidative damage-associated cognitive decline by Withania somnifera in rat model of streptozotocin-induced cognitive impairment. Protoplasma 250:1067–1078

    CAS  PubMed  Article  Google Scholar 

  175. 175.

    Kurapati KR, Atluri VS, Samikkannu T, Nair MP (2013) Ashwagandha (Withania somnifera) reverses beta-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). PLoS One 8:e77624

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  176. 176.

    Kurapati KR, Samikkannu T, Atluri VS, Kaftanovskaya E, Yndart A et al (2014) beta-Amyloid1-42, HIV-1Ba-L (clade B) infection and drugs of abuse induced degeneration in human neuronal cells and protective effects of ashwagandha (Withania somnifera) and its constituent Withanolide A. PLoS One 9:e112818

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  177. 177.

    Kumar S, Seal CJ, Howes MJ, Kite GC, Okello EJ (2010) In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxide and beta-amyloid(1-42)-induced cytotoxicity in differentiated PC12 cells. Phytother Res 24:1567–1574

    CAS  PubMed  Article  Google Scholar 

  178. 178.

    Chaudhary G, Sharma U, Jagannathan NR, Gupta YK (2003) Evaluation of Withania somnifera in a middle cerebral artery occlusion model of stroke in rats. Clin Exp Pharmacol Physiol 30:399–404

    CAS  PubMed  Article  Google Scholar 

  179. 179.

    Raghavan A, Shah ZA (2014) Withania somnifera improves ischemic stroke outcomes by attenuating PARP1-AIF-mediated caspase-independent Apoptosis. Mol Neurobiol. doi:10.1007/s12035-014-8907-2

    PubMed  Google Scholar 

  180. 180.

    Raghavan A, Shah ZA (2015) Withania somnifera: a pre-clinical study on neuroregenerative therapy for stroke. Neural Regen Res 10:183–185

    PubMed Central  PubMed  Article  Google Scholar 

  181. 181.

    Baitharu I, Jain V, Deep SN, Hota KB, Hota SK et al (2013) Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. J Ethnopharmacol 145:431–441

    PubMed  Article  Google Scholar 

  182. 182.

    Baitharu I, Jain V, Deep SN, Shroff S, Sahu JK et al (2014) Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS One 9:e105311

    PubMed Central  PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Ahmad’s work was partly supported by Ramalingaswamy Fellowship of Department of Biotechnology and financial assistance (MLP6009) as well as logistic support from Council for Scientific and Industrial Research.   Mr. Dar is thankful to University Grants Commission, India for Ph.D. research fellowship. The contents do not represent any governmental views of India. (Institutional publication number of this article is IIIM/1823/2015).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muzamil Ahmad.

Ethics declarations

Conflict of interest

Authors do not have any conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dar, N.J., Hamid, A. & Ahmad, M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell. Mol. Life Sci. 72, 4445–4460 (2015). https://doi.org/10.1007/s00018-015-2012-1

Download citation

Keywords

  • Withania somnifera
  • Anti-bacterial
  • Anti-inflammatory
  • Anti-arthritic
  • Anti-cancer
  • Cardio-protective
  • Anti-diabetic
  • Anti-stress
  • Parkinson’s disease
  • Alzheimer’s disease
  • Stroke hypoxia