Skip to main content

Advertisement

Log in

Protease nexin-1 regulates retinal vascular development

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

We recently identified protease nexin-1 (PN-1) or serpinE2, as a possibly underestimated player in maintaining angiogenic balance. Here, we used the well-characterized postnatal vascular development of newborn mouse retina to further investigate the role and the mechanism of action of PN-1 in physiological angiogenesis. The development of retinal vasculature was analysed by endothelial cell staining with isolectin B4. PN-1-deficient (PN-1−/−) retina displayed increased vascularization in the postnatal period, with elevated capillary thickness and density, compared to their wild-type littermate (WT). Moreover, PN-1−/− retina presented more veins/arteries than WT retina. The kinetics of retinal vasculature development, retinal VEGF expression and overall retinal structure were similar in WT and PN-1−/− mice, but we observed a hyperproliferation of vascular cells in PN-1−/− retina. Expression of PN-1 was analysed by immunoblotting and X-Gal staining of retinas from mice expressing beta-galactosidase under a PN-1 promoter. PN-1 was highly expressed in the first week following birth and then progressively decreased to a low level in adult retina where it localized on the retinal arteries. PCR arrays performed on mouse retinal RNA identified two angiogenesis-related factors, midkine and Smad5, that were overexpressed in PN-1−/− newborn mice and this was confirmed by RT-PCR. Both the higher vascularization and the overexpression of midkine and Smad5 mRNA were also observed in gastrocnemius muscle of PN-1−/− mice, suggesting that PN-1 interferes with these pathways. Together, our results demonstrate that PN-1 strongly limits physiological angiogenesis and suggest that modulation of PN-1 expression could represent a new way to regulate angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Reilly MS, Pirie-Shepherd S, Lane WS, Folkman J (1999) Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 285(5435):1926–1928

    Article  PubMed  Google Scholar 

  2. Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285(5425):245–248

    Article  CAS  PubMed  Google Scholar 

  3. Devy L, Blacher S, Grignet-Debrus C, Bajou K, Masson V, Gerard RD, Gils A, Carmeliet G, Carmeliet P, Declerck PJ, Noel A, Foidart JM (2002) The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB J 16(2):147–154

    Article  CAS  PubMed  Google Scholar 

  4. Becerra SP, Notario V (2013) The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential. Nat Rev Cancer 13(4):258–271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Selbonne S, Azibani F, Iatmanen S, Boulaftali Y, Richard B, Jandrot-Perrus M, Bouton MC, Arocas V (2012) In vitro and in vivo antiangiogenic properties of the serpin protease nexin-1. Mol Cell Biol 32(8):1496–1505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Scott RW, Bergman BL, Bajpai A, Hersh RT, Rodriguez H, Jones BN, Barreda C, Watts S, Baker JB (1985) Protease nexin. Properties and a modified purification procedure. J Biol Chem 260(11):7029–7034

    CAS  PubMed  Google Scholar 

  7. Evans DL, McGrogan M, Scott RW, Carrell RW (1991) Protease specificity and heparin binding and activation of recombinant protease nexin I. J Biol Chem 266(33):22307–22312

    CAS  PubMed  Google Scholar 

  8. Bouton MC, Boulaftali Y, Richard B, Arocas V, Michel JB, Jandrot-Perrus M (2012) Emerging role of serpinE2/protease nexin-1 in hemostasis and vascular biology. Blood 119(11):2452–2457

    Article  CAS  PubMed  Google Scholar 

  9. Murer V, Spetz JF, Hengst U, Altrogge LM, de Agostini A, Monard D (2001) Male fertility defects in mice lacking the serine protease inhibitor protease nexin-1. Proc Natl Acad Sci USA 98(6):3029–3033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lino MM, Atanasoski S, Kvajo M, Fayard B, Moreno E, Brenner HR, Suter U, Monard D (2007) Mice lacking protease nexin-1 show delayed structural and functional recovery after sciatic nerve crush. J Neurosci 27(14):3677–3685

    Article  CAS  PubMed  Google Scholar 

  11. Boulaftali Y, Adam F, Venisse L, Ollivier V, Richard B, Taieb S, Monard D, Favier R, Alessi MC, Bryckaert M, Arocas V, Jandrot-Perrus M, Bouton MC (2010) Anticoagulant and antithrombotic properties of platelet protease nexin-1. Blood 115(1):97–106

    Article  CAS  PubMed  Google Scholar 

  12. Fruttiger M (2002) Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest Ophthalmol Vis Sci 43(2):522–527

    PubMed  Google Scholar 

  13. Fruttiger M (2007) Development of the retinal vasculature. Angiogenesis 10(2):77–88

    Article  PubMed  Google Scholar 

  14. Luthi A, Van der Putten H, Botteri FM, Mansuy IM, Meins M, Frey U, Sansig G, Portet C, Schmutz M, Schroder M, Nitsch C, Laurent JP, Monard D (1997) Endogenous serine protease inhibitor modulates epileptic activity and hippocampal long-term potentiation. J Neurosci 17(12):4688–4699

    CAS  PubMed  Google Scholar 

  15. Kvajo M, Albrecht H, Meins M, Hengst U, Troncoso E, Lefort S, Kiss JZ, Petersen CC, Monard D (2004) Regulation of brain proteolytic activity is necessary for the in vivo function of NMDA receptors. J Neurosci 24(43):9734–9743

    Article  CAS  PubMed  Google Scholar 

  16. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Claxton S, Fruttiger M (2005) Oxygen modifies artery differentiation and network morphogenesis in the retinal vasculature. Dev Dyn 233(3):822–828

    Article  CAS  PubMed  Google Scholar 

  18. Boulaftali Y, Francois D, Venisse L, Jandrot-Perrus M, Arocas V, Bouton MC (2013) Endothelial protease nexin-1 is a novel regulator of A disintegrin and metalloproteinase 17 maturation and endothelial protein C receptor shedding via furin inhibition. Arterioscler Thromb Vasc Biol 33(7):1647–1654

    Article  CAS  PubMed  Google Scholar 

  19. Bouton MC, Venisse L, Richard B, Pouzet C, Arocas V, Jandrot-Perrus M (2007) Protease nexin-1 interacts with thrombomodulin and modulates its anticoagulant effect. Circ Res 100(8):1174–1181

    Article  CAS  PubMed  Google Scholar 

  20. Chen LM, Zhang X, Chai KX (2004) Regulation of prostasin expression and function in the prostate. Prostate 59(1):1–12

    Article  CAS  PubMed  Google Scholar 

  21. Richard B, Arocas V, Guillin MC, Michel JB, Jandrot-Perrus M, Bouton MC (2004) Protease nexin-1: a cellular serpin down-regulated by thrombin in rat aortic smooth muscle cells. J Cell Physiol 201(1):138–145

    Article  CAS  PubMed  Google Scholar 

  22. Feeney SA, Simpson DA, Gardiner TA, Boyle C, Jamison P, Stitt AW (2003) Role of vascular endothelial growth factor and placental growth factors during retinal vascular development and hyaloid regression. Invest Ophthalmol Vis Sci 44(2):839–847

    Article  PubMed  Google Scholar 

  23. Baker JB, Gronke RS (1986) Protease nexins and cellular regulation. Semin Thromb Hemost 12(3):216–220

    Article  CAS  PubMed  Google Scholar 

  24. Bouton MC, Richard B, Rossignol P, Philippe M, Guillin MC, Michel JB, Jandrot-Perrus M (2003) The serpin protease-nexin 1 is present in rat aortic smooth muscle cells and is upregulated in L-NAME hypertensive rats. Arterioscler Thromb Vasc Biol 23(1):142–147

    Article  CAS  PubMed  Google Scholar 

  25. Choi BH, Suzuki M, Kim T, Wagner SL, Cunningham DD (1990) Protease nexin-1. Localization in the human brain suggests a protective role against extravasated serine proteases. Am J Pathol 137(4):741–747

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Gravanis I, Tsirka SE (2005) Tissue plasminogen activator and glial function. Glia 49(2):177–183

    Article  PubMed  Google Scholar 

  27. Kim JA, Tran ND, Li Z, Yang F, Zhou W, Fisher MJ (2006) Brain endothelial hemostasis regulation by pericytes. J Cereb Blood Flow Metab 26(2):209–217

    Article  PubMed  Google Scholar 

  28. Dorrell MI, Aguilar E, Weber C, Friedlander M (2004) Global gene expression analysis of the developing postnatal mouse retina. Invest Ophthalmol Vis Sci 45(3):1009–1019

    Article  PubMed  Google Scholar 

  29. Dorrell MI, Friedlander M (2006) Mechanisms of endothelial cell guidance and vascular patterning in the developing mouse retina. Prog Retin Eye Res 25(3):277–295

    Article  PubMed  Google Scholar 

  30. Uemura A, Kusuhara S, Katsuta H, Nishikawa S (2006) Angiogenesis in the mouse retina: a model system for experimental manipulation. Exp Cell Res 312(5):676–683

    Article  CAS  PubMed  Google Scholar 

  31. Sommer J, Gloor SM, Rovelli GF, Hofsteenge J, Nick H, Meier R, Monard D (1987) cDNA sequence coding for a rat glia-derived nexin and its homology to members of the serpin superfamily. Biochemistry 26(20):6407–6410

    Article  CAS  PubMed  Google Scholar 

  32. Simonavicius N, Ashenden M, van Weverwijk A, Lax S, Huso DL, Buckley CD, Huijbers IJ, Yarwood H, Isacke CM (2012) Pericytes promote selective vessel regression to regulate vascular patterning. Blood 120(7):1516–1527

    Article  CAS  PubMed  Google Scholar 

  33. Balsara RD, Ploplis VA (2008) Plasminogen activator inhibitor-1: the double-edged sword in apoptosis. Thromb Haemost 100(6):1029–1036

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Basu A, Menicucci G, Maestas J, Das A, McGuire P (2009) Plasminogen activator inhibitor-1 (PAI-1) facilitates retinal angiogenesis in a model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 50(10):4974–4981

    Article  PubMed Central  PubMed  Google Scholar 

  35. Huang Q, Wang S, Sorenson CM, Sheibani N (2008) PEDF-deficient mice exhibit an enhanced rate of retinal vascular expansion and are more sensitive to hyperoxia-mediated vessel obliteration. Exp Eye Res 87(3):226–241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ota T, Ota K, Jono H, Fujimori H, Ueda M, Shinriki S, Sueyoshi T, Shinohara M, Ando Y (2010) Midkine expression in malignant salivary gland tumors and its role in tumor angiogenesis. Oral Oncol 46(9):657–661

    Article  CAS  PubMed  Google Scholar 

  37. Weckbach LT, Groesser L, Borgolte J, Pagel JI, Pogoda F, Schymeinsky J, Muller-Hocker J, Shakibaei M, Muramatsu T, Deindl E, Walzog B (2012) Midkine acts as proangiogenic cytokine in hypoxia-induced angiogenesis. Am J Physiol Heart Circ Physiol 303(4):H429–H438

    Article  CAS  PubMed  Google Scholar 

  38. Yang X, Castilla LH, Xu X, Li C, Gotay J, Weinstein M, Liu PP, Deng CX (1999) Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. Development 126(8):1571–1580

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Mary Osborne-Pellegrin for critical reading of the manuscript. This work was supported by the Institut National de la Santé et de la Recherche Médicale, University Paris 7 Denis Diderot and HemoFlu ANR-13-BSV3-0011. Sonia Selbonne and Deborah Francois were recipients of fellowships from the Fondation pour la Recherche Médicale (FRM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Arocas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selbonne, S., Francois, D., Raoul, W. et al. Protease nexin-1 regulates retinal vascular development. Cell. Mol. Life Sci. 72, 3999–4011 (2015). https://doi.org/10.1007/s00018-015-1972-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1972-5

Keywords

Navigation