Cellular and Molecular Life Sciences

, Volume 72, Issue 15, pp 2823–2851 | Cite as

Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology?

  • Elke Decrock
  • Marijke De Bock
  • Nan Wang
  • Geert Bultynck
  • Christian Giaume
  • Christian C. Naus
  • Colin R. Green
  • Luc Leybaert
Multi-author review


The central nervous system (CNS) is composed of a highly heterogeneous population of cells. Dynamic interactions between different compartments (neuronal, glial, and vascular systems) drive CNS function and allow to integrate and process information as well as to respond accordingly. Communication within this functional unit, coined the neuro-glio-vascular unit (NGVU), typically relies on two main mechanisms: direct cell–cell coupling via gap junction channels (GJCs) and paracrine communication via the extracellular compartment, two routes to which channels composed of transmembrane connexin (Cx) or pannexin (Panx) proteins can contribute. Multiple isoforms of both protein families are present in the CNS and each CNS cell type is characterized by a unique Cx/Panx portfolio. Over the last two decades, research has uncovered a multilevel platform via which Cxs and Panxs can influence different cellular functions within a tissue: (1) Cx GJCs enable a direct cell–cell communication of small molecules, (2) Cx hemichannels and Panx channels can contribute to autocrine/paracrine signaling pathways, and (3) different structural domains of these proteins allow for channel-independent functions, such as cell–cell adhesion, interactions with the cytoskeleton, and the activation of intracellular signaling pathways. In this paper, we discuss current knowledge on their multifaceted contribution to brain development and to specific processes in the NGVU, including synaptic transmission and plasticity, glial signaling, vasomotor control, and blood–brain barrier integrity in the mature CNS. By highlighting both physiological and pathological conditions, it becomes evident that Cxs and Panxs can play a dual role in the CNS and that an accurate fine-tuning of each signaling mechanism is crucial for normal CNS physiology.


Central nervous system Connexin Pannexin Glia Neuron Blood–brain barrier Physiology Pathology 



Adenosine triphosphate




Blood–brain barrier


Extracellular calcium concentration


Cytoplasmic calcium concentration




Central nervous system


Cortical plate


C-terminal tail




Gamma-aminobutyric acid


Gap junction channel


Gap junctional intercellular communication




Intercellular calcium wave




Inositol 1,4,5-trisphosphate


Intermediate zone


Extracellular potassium concentration




(Metabotropic) glutamate receptor


Long-term depression


Long-term potentiation


Molecular weight


Neuro-glio-vascular unit


N-Methyl-d-aspartate receptor


Neural progenitor cell




Rostral migratory stream


Subgranular zone




Subventricular zone


Tumor necrosis factor-α


Ventricular zone



This work is supported by the Fund for Scientific Research Flanders (FWO-Vlaanderen), Belgium (Grants G.0298.11, G.0571.12, G.0A54.13 and G.0320.15) and the Interuniversity Attraction Poles Program (Belgian Science Policy, project P7/10 and P7/13) granted to L.L. C.C.N holds a Canada Research Chair. The work was also supported by the New Zealand Marsden Fund, The CatWalk Trust, the New Zealand Neurological Foundation, and the Health Research Council of New Zealand (C.R.G).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest. C.R.G is a founding scientist of CoDa Therapeutics, Inc. which has intellectual property related to connexin channel modulation for therapeutic purposes.


  1. 1.
    Allen NJ, Barres BA (2009) Neuroscience: glia—more than just brain glue. Nature 457(7230):675–677. doi: 10.1038/457675a PubMedGoogle Scholar
  2. 2.
    Min R, Santello M, Nevian T (2012) The computational power of astrocyte mediated synaptic plasticity. Front Comput Neurosci 6:93PubMedCentralPubMedGoogle Scholar
  3. 3.
    Ben Achour S, Pascual O (2010) Glia: the many ways to modulate synaptic plasticity. Neurochem Int 57(4):440–445PubMedGoogle Scholar
  4. 4.
    Perea G, Araque A (2010) GLIA modulates synaptic transmission. Brain Res Rev 63(1–2):93–102. doi: 10.1016/j.brainresrev.2009.10.005 PubMedGoogle Scholar
  5. 5.
    Ezan P, Andre P, Cisternino S, Saubamea B, Boulay AC, Doutremer S, Thomas MA, Quenech’du N, Giaume C, Cohen-Salmon M (2012) Deletion of astroglial connexins weakens the blood-brain barrier. J Cereb Blood Flow Metab 32(8):1457–1467. doi: 10.1038/jcbfm.2012.45 PubMedCentralPubMedGoogle Scholar
  6. 6.
    Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10(11):1369–1376. doi: 10.1038/nn2003 PubMedGoogle Scholar
  7. 7.
    Leybaert L (2005) Neurobarrier coupling in the brain: a partner of neurovascular and neurometabolic coupling? J Cereb Blood Flow Metab 25(1):2–16. doi: 10.1038/sj.jcbfm.9600001 PubMedGoogle Scholar
  8. 8.
    Santello M, Cali C, Bezzi P (2012) Gliotransmission and the tripartite synapse. Adv Exp Med Biol 970:307–331PubMedGoogle Scholar
  9. 9.
    Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnar Z, O’Donnell ME, Povlishock JT, Saunders NR, Sharp F, Stanimirovic D, Watts RJ, Drewes LR (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12(3):169–182PubMedCentralPubMedGoogle Scholar
  10. 10.
    Straub SV, Nelson MT (2007) Astrocytic calcium signaling: the information currency coupling neuronal activity to the cerebral microcirculation. Trends Cardiovasc Med 17(6):183–190. doi: 10.1016/j.tcm.2007.05.001 PubMedCentralPubMedGoogle Scholar
  11. 11.
    Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100(1):328–335. doi: 10.1152/japplphysiol.00966.2005 PubMedGoogle Scholar
  12. 12.
    Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12):1251–1262. doi: 10.1002/glia.20528 PubMedGoogle Scholar
  13. 13.
    Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185PubMedGoogle Scholar
  14. 14.
    De Bock M, Decrock E, Wang N, Bol M, Vinken M, Bultynck G, Leybaert L (2014) The dual face of connexin-based astroglial Ca(2+) communication: a key player in brain physiology and a prime target in pathology. Biochim Biophys Acta 1843(10):2211–2232PubMedGoogle Scholar
  15. 15.
    Sohl G, Willecke K (2003) An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10(4–6):173–180PubMedGoogle Scholar
  16. 16.
    De Bock M, Kerrebrouck M, Wang N, Leybaert L (2013) Neurological manifestations of oculodentodigital dysplasia: a Cx43 channelopathy of the central nervous system? Front Pharmacol 4:120PubMedCentralPubMedGoogle Scholar
  17. 17.
    Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32(1):29–44PubMedGoogle Scholar
  18. 18.
    Theis M, Giaume C (2012) Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res 1487:88–98PubMedGoogle Scholar
  19. 19.
    Cina C, Bechberger JF, Ozog MA, Naus CC (2007) Expression of connexins in embryonic mouse neocortical development. J Comp Neurol 504(3):298–313PubMedGoogle Scholar
  20. 20.
    Eugenin EA, Basilio D, Saez JC, Orellana JA, Raine CS, Bukauskas F, Bennett MV, Berman JW (2012) The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J Neuroimmune Pharmacol 7(3):499–518PubMedCentralPubMedGoogle Scholar
  21. 21.
    Lee IH, Lindqvist E, Kiehn O, Widenfalk J, Olson L (2005) Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury. J Comp Neurol 489(1):1–10PubMedGoogle Scholar
  22. 22.
    Volgyi B, Kovacs-Oller T, Atlasz T, Wilhelm M, Gabriel R (2013) Gap junctional coupling in the vertebrate retina: variations on one theme? Prog Retin Eye Res 34:1–18PubMedGoogle Scholar
  23. 23.
    Vogt A, Hormuzdi SG, Monyer H (2005) Pannexin1 and Pannexin2 expression in the developing and mature rat brain. Brain Res Mol Brain Res 141(1):113–120PubMedGoogle Scholar
  24. 24.
    Cone AC, Ambrosi C, Scemes E, Martone ME, Sosinsky GE (2013) A comparative antibody analysis of pannexin1 expression in four rat brain regions reveals varying subcellular localizations. Front Pharmacol 4:6PubMedCentralPubMedGoogle Scholar
  25. 25.
    Penuela S, Gehi R, Laird DW (2013) The biochemistry and function of pannexin channels. Biochim Biophys Acta 1828(1):15–22PubMedGoogle Scholar
  26. 26.
    Litvin O, Tiunova A, Connell-Alberts Y, Panchin Y, Baranova A (2006) What is hidden in the pannexin treasure trove: the sneak peek and the guesswork. J Cell Mol Med 10(3):613–634PubMedCentralPubMedGoogle Scholar
  27. 27.
    Ray A, Zoidl G, Weickert S, Wahle P, Dermietzel R (2005) Site-specific and developmental expression of pannexin1 in the mouse nervous system. Eur J Neurosci 21(12):3277–3290PubMedGoogle Scholar
  28. 28.
    Le Vasseur M, Lelowski J, Bechberger JF, Sin WC, Naus CC (2014) Pannexin 2 protein expression is not restricted to the CNS. Front Cell Neurosci 8:392PubMedCentralPubMedGoogle Scholar
  29. 29.
    Bravo D, Ibarra P, Retamal J, Pelissier T, Laurido C, Hernandez A, Constandil L (2014) Pannexin 1: a novel participant in neuropathic pain signaling in the rat spinal cord. Pain 155(10):2108–2115PubMedGoogle Scholar
  30. 30.
    Kranz K, Dorgau B, Pottek M, Herrling R, Schultz K, Bolte P, Monyer H, Penuela S, Laird DW, Dedek K, Weiler R, Janssen-Bienhold U (2013) Expression of Pannexin1 in the outer plexiform layer of the mouse retina and physiological impact of its knockout. J Comp Neurol 521(5):1119–1135PubMedGoogle Scholar
  31. 31.
    Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94(1–2):120–143PubMedCentralPubMedGoogle Scholar
  32. 32.
    Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418PubMedGoogle Scholar
  33. 33.
    Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99PubMedGoogle Scholar
  34. 34.
    Pereda AE (2014) Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci 15(4):250–263PubMedCentralPubMedGoogle Scholar
  35. 35.
    Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Vinken M, Rogiers V, Bukauskas FF, Bultynck G, Leybaert L (2013) Paracrine signaling through plasma membrane hemichannels. Biochim Biophys Acta 1828(1):35–50PubMedCentralPubMedGoogle Scholar
  36. 36.
    Saez JC, Leybaert L (2014) Hunting for connexin hemichannels. FEBS Lett 588(8):1205–1211PubMedGoogle Scholar
  37. 37.
    Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28(18):4702–4711PubMedCentralPubMedGoogle Scholar
  38. 38.
    Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23(9):3588–3596PubMedGoogle Scholar
  39. 39.
    Burnstock G, Krugel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95(2):229–274. doi: 10.1016/j.pneurobio.2011.08.006 PubMedGoogle Scholar
  40. 40.
    Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130(4S Suppl):1007S–1015SPubMedGoogle Scholar
  41. 41.
    Contreras JE, Saez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100(20):11388–11393. doi: 10.1073/pnas.1434298100 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Gomes P, Srinivas SP, Van Driessche W, Vereecke J, Himpens B (2005) ATP release through connexin hemichannels in corneal endothelial cells. Invest Ophthalmol Vis Sci 46(4):1208–1218PubMedGoogle Scholar
  43. 43.
    De Vuyst E, Decrock E, De Bock M, Yamasaki H, Naus CC, Evans WH, Leybaert L (2007) Connexin hemichannels and gap junction channels are differentially influenced by lipopolysaccharide and basic fibroblast growth factor. Mol Biol Cell 18(1):34–46. doi: 10.1091/mbc.E06-03-0182 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Contreras JE, Sanchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Saez JC (2002) Metabolic inhibition induces opening of unopposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 99(1):495–500PubMedCentralPubMedGoogle Scholar
  45. 45.
    Retamal MA, Froger N, Palacios-Prado N, Ezan P, Saez PJ, Saez JC, Giaume C (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27(50):13781–13792. doi: 10.1523/JNEUROSCI.2042-07.2007 PubMedGoogle Scholar
  46. 46.
    Ramachandran S, Xie LH, John SA, Subramaniam S, Lal R (2007) A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS One 2(8):e712PubMedCentralPubMedGoogle Scholar
  47. 47.
    De Vuyst E, Wang N, Decrock E, De Bock M, Vinken M, Van Moorhem M, Lai C, Culot M, Rogiers V, Cecchelli R, Naus CC, Evans WH, Leybaert L (2009) Ca(2+) regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium 46(3):176–187. doi: 10.1016/j.ceca.2009.07.002 PubMedGoogle Scholar
  48. 48.
    Thimm J, Mechler A, Lin H, Rhee S, Lal R (2005) Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels. J Biol Chem 280(11):10646–10654PubMedGoogle Scholar
  49. 49.
    De Vuyst E, Decrock E, Cabooter L, Dubyak GR, Naus CC, Evans WH, Leybaert L (2006) Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 25(1):34–44. doi: 10.1038/sj.emboj.7600908 PubMedCentralPubMedGoogle Scholar
  50. 50.
    Schalper KA, Palacios-Prado N, Retamal MA, Shoji KF, Martinez AD, Saez JC (2008) Connexin hemichannel composition determines the FGF-1-induced membrane permeability and free [Ca2+]i responses. Mol Biol Cell 19(8):3501–3513. doi: 10.1091/mbc.E07-12-1240 PubMedCentralPubMedGoogle Scholar
  51. 51.
    Belliveau DJ, Bani-Yaghoub M, McGirr B, Naus CC, Rushlow WJ (2006) Enhanced neurite outgrowth in PC12 cells mediated by connexin hemichannels and ATP. J Biol Chem 281(30):20920–20931. doi: 10.1074/jbc.M600026200 PubMedGoogle Scholar
  52. 52.
    Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC, Giaume C, Saez JC (2011) ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem 118(5):826–840. doi: 10.1111/j.1471-4159.2011.07210.x PubMedCentralPubMedGoogle Scholar
  53. 53.
    Sanchez HA, Orellana JA, Verselis VK, Saez JC (2009) Metabolic inhibition increases activity of connexin-32 hemichannels permeable to Ca2+  in transfected HeLa cells. Am J Physiol Cell Physiol 297(3):C665–C678PubMedCentralPubMedGoogle Scholar
  54. 54.
    Li F, Sugishita K, Su Z, Ueda I, Barry WH (2001) Activation of connexin-43 hemichannels can elevate [Ca(2+)]i and [Na(+)]i in rabbit ventricular myocytes during metabolic inhibition. J Mol Cell Cardiol 33(12):2145–2155PubMedGoogle Scholar
  55. 55.
    Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, Shagin D, Nazarenko S, Geraymovych E, Litvin O, Tiunova A, Born TL, Usman N, Staroverov D, Lukyanov S, Panchin Y (2004) The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83(4):706–716PubMedGoogle Scholar
  56. 56.
    Iwabuchi S, Kawahara K (2011) Functional significance of the negative-feedback regulation of ATP release via pannexin-1 hemichannels under ischemic stress in astrocytes. Neurochem Int 58(3):376–384PubMedGoogle Scholar
  57. 57.
    Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Saez PJ, Jiang JX, Naus CC, Saez JC, Giaume C (2011) Amyloid beta-induced death in neurons involves glial and neuronal hemichannels. J Neurosci 31(13):4962–4977. doi: 10.1523/JNEUROSCI.6417-10.2011 PubMedGoogle Scholar
  58. 58.
    Suadicani SO, Iglesias R, Wang J, Dahl G, Spray DC, Scemes E (2012) ATP signaling is deficient in cultured Pannexin1-null mouse astrocytes. Glia 60(7):1106–1116PubMedCentralPubMedGoogle Scholar
  59. 59.
    MacVicar BA, Thompson RJ (2010) Non-junction functions of pannexin-1 channels. Trends Neurosci 33(2):93–102PubMedGoogle Scholar
  60. 60.
    Ambrosi C, Gassmann O, Pranskevich JN, Boassa D, Smock A, Wang J, Dahl G, Steinem C, Sosinsky GE (2010) Pannexin1 and Pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other. J Biol Chem 285(32):24420–24431PubMedCentralPubMedGoogle Scholar
  61. 61.
    Wicki-Stordeur LE, Boyce AK, Swayne LA (2013) Analysis of a pannexin 2-pannexin 1 chimeric protein supports divergent roles for pannexin C-termini in cellular localization. Cell Commun Adhes 20(3–4):73–79PubMedGoogle Scholar
  62. 62.
    Swayne LA, Sorbara CD, Bennett SA (2010) Pannexin 2 is expressed by postnatal hippocampal neural progenitors and modulates neuronal commitment. J Biol Chem 285(32):24977–24986PubMedCentralPubMedGoogle Scholar
  63. 63.
    Penuela S, Bhalla R, Nag K, Laird DW (2009) Glycosylation regulates pannexin intermixing and cellular localization. Mol Biol Cell 20(20):4313–4323PubMedCentralPubMedGoogle Scholar
  64. 64.
    Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, MacVicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5(3):193–197Google Scholar
  65. 65.
    Dahl G, Muller KJ (2014) Innexin and pannexin channels and their signaling. FEBS Lett 588(8):1396–1402PubMedGoogle Scholar
  66. 66.
    Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312(5775):924–927PubMedGoogle Scholar
  67. 67.
    Orellana JA, Montero TD, von Bernhardi R (2013) Astrocytes inhibit nitric oxide-dependent Ca(2+) dynamics in activated microglia: involvement of ATP released via pannexin 1 channels. Glia 61(12):2023–2037PubMedGoogle Scholar
  68. 68.
    Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E (2009) Pannexin 1: the molecular substrate of astrocyte “hemichannels”. J Neurosci 29(21):7092–7097PubMedCentralPubMedGoogle Scholar
  69. 69.
    Huang Y, Grinspan JB, Abrams CK, Scherer SS (2007) Pannexin1 is expressed by neurons and glia but does not form functional gap junctions. Glia 55(1):46–56PubMedGoogle Scholar
  70. 70.
    Wei H, Deng F, Chen Y, Qin Y, Hao Y, Guo X (2014) Ultrafine carbon black induces glutamate and ATP release by activating connexin and pannexin hemichannels in cultured astrocytes. Toxicology 323:32–41PubMedGoogle Scholar
  71. 71.
    Santiago MF, Veliskova J, Patel NK, Lutz SE, Caille D, Charollais A, Meda P, Scemes E (2011) Targeting pannexin1 improves seizure outcome. PLoS One 6(9):e25178PubMedCentralPubMedGoogle Scholar
  72. 72.
    Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572(1–3):65–68PubMedGoogle Scholar
  73. 73.
    Weilinger NL, Tang PL, Thompson RJ (2012) Anoxia-induced NMDA receptor activation opens pannexin channels via Src family kinases. J Neurosci 32(36):12579–12588PubMedGoogle Scholar
  74. 74.
    Sridharan M, Adderley SP, Bowles EA, Egan TM, Stephenson AH, Ellsworth ML, Sprague RS (2010) Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes. Am J Physiol Heart Circ Physiol 299(4):H1146–H1152PubMedCentralPubMedGoogle Scholar
  75. 75.
    Locovei S, Wang J, Dahl G (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580(1):239–244PubMedGoogle Scholar
  76. 76.
    Ma W, Hui H, Pelegrin P, Surprenant A (2009) Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J Pharmacol Exp Ther 328(2):409–418PubMedCentralPubMedGoogle Scholar
  77. 77.
    Sandilos JK, Chiu YH, Chekeni FB, Armstrong AJ, Walk SF, Ravichandran KS, Bayliss DA (2012) Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region. J Biol Chem 287(14):11303–11311PubMedCentralPubMedGoogle Scholar
  78. 78.
    Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25(21):5071–5082PubMedCentralPubMedGoogle Scholar
  79. 79.
    Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett 581(3):483–488PubMedCentralPubMedGoogle Scholar
  80. 80.
    Thompson RJ, Jackson MF, Olah ME, Rungta RL, Hines DJ, Beazely MA, MacDonald JF, MacVicar BA (2008) Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322(5907):1555–1559PubMedGoogle Scholar
  81. 81.
    Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100(23):13644–13649PubMedCentralPubMedGoogle Scholar
  82. 82.
    Bodendiek SB, Raman G (2010) Connexin modulators and their potential targets under the magnifying glass. Curr Med Chem 17(34):4191–4230PubMedGoogle Scholar
  83. 83.
    D’Hondt C, Ponsaerts R, De Smedt H, Bultynck G, Himpens B (2009) Pannexins, distant relatives of the connexin family with specific cellular functions? Bioessays 31(9):953–974PubMedGoogle Scholar
  84. 84.
    Iyyathurai J, D’Hondt C, Wang N, De Bock M, Himpens B, Retamal MA, Stehberg J, Leybaert L, Bultynck G (2013) Peptides and peptide-derived molecules targeting the intracellular domains of Cx43: Gap junctions versus hemichannels. Neuropharmacology 75:491–505PubMedGoogle Scholar
  85. 85.
    Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Bultynck G, Leybaert L (2013) Connexin targeting peptides as inhibitors of voltage- and intracellular Ca-triggered Cx43 hemichannel opening. Neuropharmacology 75:506–516Google Scholar
  86. 86.
    Evans WH, Bultynck G, Leybaert L (2012) Manipulating connexin communication channels: use of peptidomimetics and the translational outputs. J Membr Biol 245(8):437–449PubMedCentralPubMedGoogle Scholar
  87. 87.
    Wang N, De Bock M, Antoons G, Gadicherla AK, Bol M, Decrock E, Evans WH, Sipido KR, Bukauskas FF, Leybaert L (2012) Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation. Basic Res Cardiol 107(6):304PubMedCentralPubMedGoogle Scholar
  88. 88.
    O’Carroll SJ, Alkadhi M, Nicholson LF, Green CR (2008) Connexin 43 mimetic peptides reduce swelling, astrogliosis, and neuronal cell death after spinal cord injury. Cell Commun Adhes 15(1):27–42PubMedGoogle Scholar
  89. 89.
    De Bock M, Culot M, Wang N, Bol M, Decrock E, De Vuyst E, da Costa A, Dauwe I, Vinken M, Simon AM, Rogiers V, De Ley G, Evans WH, Bultynck G, Dupont G, Cecchelli R, Leybaert L (2011) Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood-brain barrier permeability. J Cereb Blood Flow Metab 31(9):1942–1957PubMedCentralPubMedGoogle Scholar
  90. 90.
    Decrock E, De Vuyst E, Vinken M, Van Moorhem M, Vranckx K, Wang N, Van Laeken L, De Bock M, D’Herde K, Lai CP, Rogiers V, Evans WH, Naus CC, Leybaert L (2009) Connexin 43 hemichannels contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model. Cell Death Differ 16(1):151–163. doi: 10.1038/cdd.2008.138 PubMedGoogle Scholar
  91. 91.
    Ponsaerts R, De Vuyst E, Retamal M, D’Hondt C, Vermeire D, Wang N, De Smedt H, Zimmermann P, Himpens B, Vereecke J, Leybaert L, Bultynck G (2010) Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. Faseb J 24(11):4378–4395PubMedGoogle Scholar
  92. 92.
    Wang N, De Vuyst E, Ponsaerts R, Boengler K, Palacios-Prado N, Wauman J, Lai CP, De Bock M, Decrock E, Bol M, Vinken M, Rogiers V, Tavernier J, Evans WH, Naus CC, Bukauskas FF, Sipido KR, Heusch G, Schulz R, Bultynck G, Leybaert L (2012) Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res Cardiol 108(1):309PubMedCentralPubMedGoogle Scholar
  93. 93.
    Elias LA, Wang DD, Kriegstein AR (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448(7156):901–907. doi: 10.1038/nature06063 PubMedGoogle Scholar
  94. 94.
    Olk S, Zoidl G, Dermietzel R (2009) Connexins, cell motility, and the cytoskeleton. Cell Motil Cytoskeleton 66(11):1000–1016PubMedGoogle Scholar
  95. 95.
    Matsuuchi L, Naus CC (2013) Gap junction proteins on the move: connexins, the cytoskeleton and migration. Biochim Biophys Acta 1828(1):94–108PubMedGoogle Scholar
  96. 96.
    Wicki-Stordeur LE, Swayne LA (2014) The emerging Pannexin 1 signalome: a new nexus revealed? Front Cell Neurosci 7:287PubMedCentralPubMedGoogle Scholar
  97. 97.
    Vinken M, Decrock E, Leybaert L, Bultynck G, Himpens B, Vanhaecke T, Rogiers V (2012) Non-channel functions of connexins in cell growth and cell death. Biochim Biophys Acta 1818(8):2002–2008PubMedGoogle Scholar
  98. 98.
    Danesh-Meyer HV, Kerr NM, Zhang J, Eady EK, O’Carroll SJ, Nicholson LF, Johnson CS, Green CR (2012) Connexin-43 mimetic peptide reduces vascular leak and retinal ganglion cell death following retinal ischaemia. Brain 135(Pt 2):506–520PubMedGoogle Scholar
  99. 99.
    Davidson JO, Green CR, Bennet L, Nicholson LF, Danesh-Meyer H, O’Carroll SJ, Gunn AJ (2013) A key role for connexin hemichannels in spreading ischemic brain injury. Curr Drug Targets 14(1):36–46PubMedGoogle Scholar
  100. 100.
    Davidson JO, Drury PP, Green CR, Nicholson LF, Bennet L, Gunn AJ (2014) Connexin hemichannel blockade is neuroprotective after asphyxia in preterm fetal sheep. PLoS One 9(5):e96558PubMedCentralPubMedGoogle Scholar
  101. 101.
    Mallard C, Davidson JO, Tan S, Green CR, Bennet L, Robertson NJ, Gunn AJ (2014) Astrocytes and microglia in acute cerebral injury underlying cerebral palsy associated with preterm birth. Pediatr Res 75(1–2):234–240PubMedGoogle Scholar
  102. 102.
    Peinado A, Yuste R, Katz LC (1993) Gap junctional communication and the development of local circuits in neocortex. Cereb Cortex 3(5):488–498PubMedGoogle Scholar
  103. 103.
    Hamzei-Sichani F, Davidson KG, Yasumura T, Janssen WG, Wearne SL, Hof PR, Traub RD, Gutierrez R, Ottersen OP, Rash JE (2012) Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36. Front Neuroanat 6:13PubMedCentralPubMedGoogle Scholar
  104. 104.
    Belousov AB, Fontes JD (2013) Neuronal gap junctions: making and breaking connections during development and injury. Trends Neurosci 36(4):227–236PubMedCentralPubMedGoogle Scholar
  105. 105.
    Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci 22(16):7055–7064PubMedGoogle Scholar
  106. 106.
    Alvarez-Maubecin V, Garcia-Hernandez F, Williams JT, Van Bockstaele EJ (2000) Functional coupling between neurons and glia. J Neurosci 20(11):4091–4098PubMedGoogle Scholar
  107. 107.
    Pakhotin P, Verkhratsky A (2005) Electrical synapses between Bergmann glial cells and Purkinje neurones in rat cerebellar slices. Mol Cell Neurosci 28(1):79–84PubMedGoogle Scholar
  108. 108.
    Traub RD, Kopell N, Bibbig A, Buhl EH, LeBeau FE, Whittington MA (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J Neurosci 21(23):9478–9486PubMedGoogle Scholar
  109. 109.
    Lee SC, Patrick SL, Richardson KA, Connors BW (2014) Two functionally distinct networks of gap junction-coupled inhibitory neurons in the thalamic reticular nucleus. J Neurosci 34(39):13170–13182PubMedCentralPubMedGoogle Scholar
  110. 110.
    Bautista W, Nagy JI, Dai Y, McCrea DA (2012) Requirement of neuronal connexin-36 in pathways mediating presynaptic inhibition of primary afferents in functionally mature mouse spinal cord. J Physiol 590(Pt 16):3821–3839PubMedCentralPubMedGoogle Scholar
  111. 111.
    Rash JE, Dillman RK, Bilhartz BL, Duffy HS, Whalen LR, Yasumura T (1996) Mixed synapses discovered and mapped throughout mammalian spinal cord. Proc Natl Acad Sci USA 93(9):4235–4239PubMedCentralPubMedGoogle Scholar
  112. 112.
    Condorelli DF, Belluardo N, Trovato-Salinaro A, Mudo G (2000) Expression of Cx36 in mammalian neurons. Brain Res Brain Res Rev 32(1):72–85PubMedGoogle Scholar
  113. 113.
    Rash JE, Staines WA, Yasumura T, Patel D, Furman CS, Stelmack GL, Nagy JI (2000) Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Proc Natl Acad Sci USA 97(13):7573–7578PubMedCentralPubMedGoogle Scholar
  114. 114.
    Gajda Z, Szupera Z, Blazso G, Szente M (2005) Quinine, a blocker of neuronal cx36 channels, suppresses seizure activity in rat neocortex in vivo. Epilepsia 46(10):1581–1591PubMedGoogle Scholar
  115. 115.
    Medina-Ceja L, Ventura-Mejia C (2010) Differential effects of trimethylamine and quinine on seizures induced by 4-aminopyridine administration in the entorhinal cortex of vigilant rats. Seizure 19(8):507–513PubMedGoogle Scholar
  116. 116.
    Bostanci MO, Bagirici F (2007) Anticonvulsive effects of quinine on penicillin-induced epileptiform activity: an in vivo study. Seizure 16(2):166–172PubMedGoogle Scholar
  117. 117.
    Carlen PL (2012) Curious and contradictory roles of glial connexins and pannexins in epilepsy. Brain Res 1487:54–60PubMedGoogle Scholar
  118. 118.
    Jacobson GM, Voss LJ, Melin SM, Mason JP, Cursons RT, Steyn-Ross DA, Steyn-Ross ML, Sleigh JW (2010) Connexin-36 knockout mice display increased sensitivity to pentylenetetrazol-induced seizure-like behaviors. Brain Res 1360:198–204PubMedGoogle Scholar
  119. 119.
    Arumugam H, Liu X, Colombo PJ, Corriveau RA, Belousov AB (2005) NMDA receptors regulate developmental gap junction uncoupling via CREB signaling. Nat Neurosci 8(12):1720–1726PubMedGoogle Scholar
  120. 120.
    Hatton GI (1998) Synaptic modulation of neuronal coupling. Cell Biol Int 22(11–12):765–780PubMedGoogle Scholar
  121. 121.
    Park WM, Wang Y, Park S, Denisova JV, Fontes JD, Belousov AB (2011) Interplay of chemical neurotransmitters regulates developmental increase in electrical synapses. J Neurosci 31(16):5909–5920PubMedCentralPubMedGoogle Scholar
  122. 122.
    de Rivero Vaccari JC, Corriveau RA, Belousov AB (2007) Gap junctions are required for NMDA receptor dependent cell death in developing neurons. J Neurophysiol 98(5):2878–2886PubMedGoogle Scholar
  123. 123.
    Pereda AE, Faber DS (1996) Activity-dependent short-term enhancement of intercellular coupling. J Neurosci 16(3):983–992PubMedGoogle Scholar
  124. 124.
    Frantseva MV, Kokarovtseva L, Perez Velazquez JL (2002) Ischemia-induced brain damage depends on specific gap-junctional coupling. J Cereb Blood Flow Metab 22(4):453–462PubMedGoogle Scholar
  125. 125.
    de Pina-Benabou MH, Szostak V, Kyrozis A, Rempe D, Uziel D, Urban-Maldonado M, Benabou S, Spray DC, Federoff HJ, Stanton PK, Rozental R (2005) Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia. Stroke 36(10):2232–2237. doi: 10.1161/01.STR.0000182239.75969.d8 PubMedGoogle Scholar
  126. 126.
    Beheshti S, Sayyah M, Golkar M, Sepehri H, Babaie J, Vaziri B (2010) Changes in hippocampal connexin 36 mRNA and protein levels during epileptogenesis in the kindling model of epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 34(3):510–515PubMedGoogle Scholar
  127. 127.
    Wang Y, Song JH, Denisova JV, Park WM, Fontes JD, Belousov AB (2012) Neuronal gap junction coupling is regulated by glutamate and plays critical role in cell death during neuronal injury. J Neurosci 32(2):713–725PubMedCentralPubMedGoogle Scholar
  128. 128.
    Chang Q, Balice-Gordon RJ (2000) Gap junctional communication among developing and injured motor neurons. Brain Res Brain Res Rev 32(1):242–249PubMedGoogle Scholar
  129. 129.
    Belousov AB, Fontes JD (2014) Neuronal gap junction coupling as the primary determinant of the extent of glutamate-mediated excitotoxicity. J Neural Transm 121(8):837–846PubMedGoogle Scholar
  130. 130.
    Striedinger K, Petrasch-Parwez E, Zoidl G, Napirei M, Meier C, Eysel UT, Dermietzel R (2005) Loss of connexin-36 increases retinal cell vulnerability to secondary cell loss. Eur J Neurosci 22(3):605–616PubMedGoogle Scholar
  131. 131.
    Oguro K, Jover T, Tanaka H, Lin Y, Kojima T, Oguro N, Grooms SY, Bennett MV, Zukin RS (2001) Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice. J Neurosci 21(19):7534–7542PubMedGoogle Scholar
  132. 132.
    Wang Y, Denisova JV, Kang KS, Fontes JD, Zhu BT, Belousov AB (2010) Neuronal gap junctions are required for NMDA receptor-mediated excitotoxicity: implications in ischemic stroke. J Neurophysiol 104(6):3551–3556PubMedCentralPubMedGoogle Scholar
  133. 133.
    Kilb W, Kirischuk S, Luhmann HJ (2011) Electrical activity patterns and the functional maturation of the neocortex. Eur J Neurosci 34(10):1677–1686PubMedGoogle Scholar
  134. 134.
    Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22(8):3161–3173PubMedGoogle Scholar
  135. 135.
    Moore AR, Zhou WL, Sirois CL, Belinsky GS, Zecevic N, Antic SD (2014) Connexin hemichannels contribute to spontaneous electrical activity in the human fetal cortex. Proc Natl Acad Sci USA 111(37):E3919–E3928PubMedCentralPubMedGoogle Scholar
  136. 136.
    Hoerder-Suabedissen A, Molnar Z (2015) Development, evolution and pathology of neocortical subplate neurons. Nat Rev Neurosci 16(3):133–146PubMedGoogle Scholar
  137. 137.
    Moore AR, Zhou WL, Jakovcevski I, Zecevic N, Antic SD (2011) Spontaneous electrical activity in the human fetal cortex in vitro. J Neurosci 31(7):2391–2398PubMedCentralPubMedGoogle Scholar
  138. 138.
    Singh M, Antik S (2015) Mechanisms of spontaneous electrical activity in the developing cerebral cortex—subplate zone. Faseb J 29(1 Supplement):657–665Google Scholar
  139. 139.
    Schock SC, Leblanc D, Hakim AM, Thompson CS (2008) ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro. Biochem Biophys Res Commun 368(1):138–144PubMedGoogle Scholar
  140. 140.
    Zoidl G, Petrasch-Parwez E, Ray A, Meier C, Bunse S, Habbes HW, Dahl G, Dermietzel R (2007) Localization of the pannexin1 protein at postsynaptic sites in the cerebral cortex and hippocampus. Neuroscience 146(1):9–16PubMedGoogle Scholar
  141. 141.
    Bargiotas P, Krenz A, Monyer H, Schwaninger M (2012) Functional outcome of pannexin-deficient mice after cerebral ischemia. Channels (Austin) 6(6):453–456Google Scholar
  142. 142.
    Thompson RJ (2014) Pannexin channels and ischaemia. J Physiol. doi: 10.1113/jphysiol.2014.282426
  143. 143.
    Zhang L, Deng T, Sun Y, Liu K, Yang Y, Zheng X (2008) Role for nitric oxide in permeability of hippocampal neuronal hemichannels during oxygen glucose deprivation. J Neurosci Res 86(10):2281–2291PubMedGoogle Scholar
  144. 144.
    Mylvaganam S, Zhang L, Wu C, Zhang ZJ, Samoilova M, Eubanks J, Carlen PL, Poulter MO (2010) Hippocampal seizures alter the expression of the pannexin and connexin transcriptome. J Neurochem 112(1):92–102PubMedGoogle Scholar
  145. 145.
    Jiang T, Long H, Ma Y, Long L, Li Y, Li F, Zhou P, Yuan C, Xiao B (2013) Altered expression of pannexin proteins in patients with temporal lobe epilepsy. Mol Med Rep 8(6):1801–1806PubMedGoogle Scholar
  146. 146.
    Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284(27):18143–18151PubMedCentralPubMedGoogle Scholar
  147. 147.
    Kawamura M Jr, Ruskin DN, Geiger JD, Boison D, Masino SA (2014) Ketogenic diet sensitizes glucose control of hippocampal excitability. J Lipid Res 55(11):2254–2260PubMedGoogle Scholar
  148. 148.
    Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R (2014) Engineering a memory with LTD and LTP. Nature 511(7509):348–352PubMedCentralPubMedGoogle Scholar
  149. 149.
    Escobar ML, Derrick B (2007) Long-term potentiation and depression as putative mechanisms for memory formation. In: Bermúdez-Rattoni F (ed) Neural Plasticity and Memory: From Genes to Brain Imaging, chap. 2. CRC press, Boca RatonGoogle Scholar
  150. 150.
    Frisch C, De Souza-Silva MA, Sohl G, Guldenagel M, Willecke K, Huston JP, Dere E (2005) Stimulus complexity dependent memory impairment and changes in motor performance after deletion of the neuronal gap junction protein connexin-36 in mice. Behav Brain Res 157(1):177–185PubMedGoogle Scholar
  151. 151.
    Buhl DL, Harris KD, Hormuzdi SG, Monyer H, Buzsaki G (2003) Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J Neurosci 23(3):1013–1018PubMedGoogle Scholar
  152. 152.
    Allen K, Fuchs EC, Jaschonek H, Bannerman DM, Monyer H (2011) Gap junctions between interneurons are required for normal spatial coding in the hippocampus and short-term spatial memory. J Neurosci 31(17):6542–6552PubMedCentralPubMedGoogle Scholar
  153. 153.
    Maier N, Guldenagel M, Sohl G, Siegmund H, Willecke K, Draguhn A (2002) Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. J Physiol 541(Pt 2):521–528PubMedCentralPubMedGoogle Scholar
  154. 154.
    Wang Y, Belousov AB (2011) Deletion of neuronal gap junction protein connexin 36 impairs hippocampal LTP. Neurosci Lett 502(1):30–32PubMedCentralPubMedGoogle Scholar
  155. 155.
    Prochnow N, Abdulazim A, Kurtenbach S, Wildforster V, Dvoriantchikova G, Hanske J, Petrasch-Parwez E, Shestopalov VI, Dermietzel R, Manahan-Vaughan D, Zoidl G (2012) Pannexin1 stabilizes synaptic plasticity and is needed for learning. PLoS One 7(12):e51767PubMedCentralPubMedGoogle Scholar
  156. 156.
    Ardiles AO, Flores-Munoz C, Toro-Ayala G, Cardenas AM, Palacios AG, Munoz P, Fuenzalida M, Saez JC, Martinez AD (2014) Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice. Front Cell Neurosci 8:326PubMedCentralPubMedGoogle Scholar
  157. 157.
    Foster TC (1999) Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Res Brain Res Rev 30(3):236–249PubMedGoogle Scholar
  158. 158.
    Klaassen LJ, Sun Z, Steijaert MN, Bolte P, Fahrenfort I, Sjoerdsma T, Klooster J, Claassen Y, Shields CR, Ten Eikelder HM, Janssen-Bienhold U, Zoidl G, McMahon DG, Kamermans M (2011) Synaptic transmission from horizontal cells to cones is impaired by loss of connexin hemichannels. PLoS Biol 9(7):e1001107PubMedCentralPubMedGoogle Scholar
  159. 159.
    Klaassen LJ, Fahrenfort I, Kamermans M (2012) Connexin hemichannel mediated ephaptic inhibition in the retina. Brain Res 1487:25–38PubMedGoogle Scholar
  160. 160.
    Vroman R, Klaassen LJ, Howlett MH, Cenedese V, Klooster J, Sjoerdsma T, Kamermans M (2014) Extracellular ATP hydrolysis inhibits synaptic transmission by increasing ph buffering in the synaptic cleft. PLoS Biol 12(5):e1001864PubMedCentralPubMedGoogle Scholar
  161. 161.
    Kamermans M, Fahrenfort I (2004) Ephaptic interactions within a chemical synapse: hemichannel-mediated ephaptic inhibition in the retina. Curr Opin Neurobiol 14(5):531–541PubMedGoogle Scholar
  162. 162.
    Fahrenfort I, Steijaert M, Sjoerdsma T, Vickers E, Ripps H, van Asselt J, Endeman D, Klooster J, Numan R, ten Eikelder H, von Gersdorff H, Kamermans M (2009) Hemichannel-mediated and pH-based feedback from horizontal cells to cones in the vertebrate retina. PLoS One 4(6):e6090PubMedCentralPubMedGoogle Scholar
  163. 163.
    Kemmler R, Schultz K, Dedek K, Euler T, Schubert T (2014) Differential regulation of cone calcium signals by different horizontal cell feedback mechanisms in the mouse retina. J Neurosci 34(35):11826–11843PubMedGoogle Scholar
  164. 164.
    Cina C, Maass K, Theis M, Willecke K, Bechberger JF, Naus CC (2009) Involvement of the cytoplasmic C-terminal domain of connexin-43 in neuronal migration. J Neurosci 29(7):2009–2021PubMedGoogle Scholar
  165. 165.
    Fushiki S, Perez Velazquez JL, Zhang L, Bechberger JF, Carlen PL, Naus CC (2003) Changes in neuronal migration in neocortex of connexin-43 null mutant mice. J Neuropathol Exp Neurol 62(3):304–314PubMedGoogle Scholar
  166. 166.
    Santiago MF, Alcami P, Striedinger KM, Spray DC, Scemes E (2010) The carboxyl-terminal domain of connexin-43 is a negative modulator of neuronal differentiation. J Biol Chem 285(16):11836–11845PubMedCentralPubMedGoogle Scholar
  167. 167.
    Qi GJ, Chen Q, Chen LJ, Shu Y, Bu LL, Shao XY, Zhang P, Jiao FJ, Shi J, Tian B (2015) Phosphorylation of connexin 43 by Cdk5 modulates neuronal migration during embryonic brain development. Mol Neurobiol. doi: 10.1007/s12035-015-9190-6
  168. 168.
    Bani-Yaghoub M, Bechberger JF, Naus CC (1997) Reduction of connexin-43 expression and dye-coupling during neuronal differentiation of human NTera2/clone D1 cells. J Neurosci Res 49(1):19–31PubMedGoogle Scholar
  169. 169.
    Kandler K, Katz LC (1995) Neuronal coupling and uncoupling in the developing nervous system. Curr Opin Neurobiol 5(1):98–105PubMedGoogle Scholar
  170. 170.
    Lo Turco JJ, Kriegstein AR (1991) Clusters of coupled neuroblasts in embryonic neocortex. Science 252(5005):563–566PubMedGoogle Scholar
  171. 171.
    Rozental R, Morales M, Mehler MF, Urban M, Kremer M, Dermietzel R, Kessler JA, Spray DC (1998) Changes in the properties of gap junctions during neuronal differentiation of hippocampal progenitor cells. J Neurosci 18(5):1753–1762PubMedGoogle Scholar
  172. 172.
    Duval N, Gomes D, Calaora V, Calabrese A, Meda P, Bruzzone R (2002) Cell coupling and Cx43 expression in embryonic mouse neural progenitor cells. J Cell Sci 115(Pt 16):3241–3251PubMedGoogle Scholar
  173. 173.
    Iacobas DA, Iacobas S, Spray DC (2007) Connexin-dependent transcellular transcriptomic networks in mouse brain. Prog Biophys Mol Biol 94(1–2):169–185. doi: 10.1016/j.pbiomolbio.2007.03.015 PubMedGoogle Scholar
  174. 174.
    Scemes E, Duval N, Meda P (2003) Reduced expression of P2Y1 receptors in connexin-43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci 23(36):11444–11452PubMedCentralPubMedGoogle Scholar
  175. 175.
    Rinaldi F, Hartfield EM, Crompton LA, Badger JL, Glover CP, Kelly CM, Rosser AE, Uney JB, Caldwell MA (2014) Cross-regulation of Connexin-43 and beta-catenin influences differentiation of human neural progenitor cells. Cell Death Dis 5:e1017PubMedCentralPubMedGoogle Scholar
  176. 176.
    Hartfield EM, Rinaldi F, Glover CP, Wong LF, Caldwell MA, Uney JB (2011) Connexin 36 expression regulates neuronal differentiation from neural progenitor cells. PLoS One 6(3):e14746PubMedCentralPubMedGoogle Scholar
  177. 177.
    Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43(5):647–661. doi: 10.1016/j.neuron.2004.08.015 PubMedGoogle Scholar
  178. 178.
    Pearson RA, Luneborg NL, Becker DL, Mobbs P (2005) Gap junctions modulate interkinetic nuclear movement in retinal progenitor cells. J Neurosci 25(46):10803–10814PubMedGoogle Scholar
  179. 179.
    Elias LA, Turmaine M, Parnavelas JG, Kriegstein AR (2010) Connexin 43 mediates the tangential to radial migratory switch in ventrally derived cortical interneurons. J Neurosci 30(20):7072–7077PubMedCentralPubMedGoogle Scholar
  180. 180.
    Kunze A, Congreso MR, Hartmann C, Wallraff-Beck A, Huttmann K, Bedner P, Requardt R, Seifert G, Redecker C, Willecke K, Hofmann A, Pfeifer A, Theis M, Steinhauser C (2009) Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 106(27):11336–11341PubMedCentralPubMedGoogle Scholar
  181. 181.
    Liebmann M, Stahr A, Guenther M, Witte OW, Frahm C (2013) Astrocytic Cx43 and Cx30 differentially modulate adult neurogenesis in mice. Neurosci Lett 545:40–45PubMedGoogle Scholar
  182. 182.
    Marins M, Xavier AL, Viana NB, Fortes FS, Froes MM, Menezes JR (2009) Gap junctions are involved in cell migration in the early postnatal subventricular zone. Dev Neurobiol 69(11):715–730PubMedGoogle Scholar
  183. 183.
    Freitas AS, Xavier AL, Furtado CM, Hedin-Pereira C, Froes MM, Menezes JR (2012) Dye coupling and connexin expression by cortical radial glia in the early postnatal subventricular zone. Dev Neurobiol 72(12):1482–1497PubMedGoogle Scholar
  184. 184.
    Khodosevich K, Zuccotti A, Kreuzberg MM, Le Magueresse C, Frank M, Willecke K, Monyer H (2012) Connexin-45 modulates the proliferation of transit-amplifying precursor cells in the mouse subventricular zone. Proc Natl Acad Sci USA 109(49):20107–20112PubMedCentralPubMedGoogle Scholar
  185. 185.
    Wicki-Stordeur LE, Dzugalo AD, Swansburg RM, Suits JM, Swayne LA (2012) Pannexin 1 regulates postnatal neural stem and progenitor cell proliferation. Neural Dev 7:11PubMedCentralPubMedGoogle Scholar
  186. 186.
    Wicki-Stordeur LE, Swayne LA (2013) Panx1 regulates neural stem and progenitor cell behaviours associated with cytoskeletal dynamics and interacts with multiple cytoskeletal elements. Cell Commun Signal 11:62PubMedCentralPubMedGoogle Scholar
  187. 187.
    Bhalla-Gehi R, Penuela S, Churko JM, Shao Q, Laird DW (2010) Pannexin1 and pannexin3 delivery, cell surface dynamics, and cytoskeletal interactions. J Biol Chem 285(12):9147–9160PubMedCentralPubMedGoogle Scholar
  188. 188.
    Winner B, Winkler J (2015) Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb Perspect Biol 7(4):a021287PubMedGoogle Scholar
  189. 189.
    Jun H, Mohammed Qasim Hussaini S, Rigby MJ, Jang MH (2012) Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders. Neural Plast 2012:854285PubMedCentralPubMedGoogle Scholar
  190. 190.
    Dallerac G, Chever O, Rouach N (2013) How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front Cell Neurosci 7:159PubMedCentralPubMedGoogle Scholar
  191. 191.
    Dermietzel R, Hertberg EL, Kessler JA, Spray DC (1991) Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci 11(5):1421–1432PubMedGoogle Scholar
  192. 192.
    Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907):1551–1555. doi: 10.1126/science.1164022 PubMedGoogle Scholar
  193. 193.
    Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23(27):9254–9262PubMedGoogle Scholar
  194. 194.
    Koulakoff A, Ezan P, Giaume C (2008) Neurons control the expression of connexin 30 and connexin 43 in mouse cortical astrocytes. Glia 56(12):1299–1311. doi: 10.1002/glia.20698 PubMedGoogle Scholar
  195. 195.
    Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26(20):5438–5447. doi: 10.1523/JNEUROSCI.0037-06.2006 PubMedGoogle Scholar
  196. 196.
    Nagy JI, Lynn BD, Tress O, Willecke K, Rash JE (2011) Connexin-26 expression in brain parenchymal cells demonstrated by targeted connexin ablation in transgenic mice. Eur J Neurosci 34(2):263–271. doi: 10.1111/j.1460-9568.2011.07741.x PubMedCentralPubMedGoogle Scholar
  197. 197.
    Dermietzel R, Gao Y, Scemes E, Vieira D, Urban M, Kremer M, Bennett MV, Spray DC (2000) Connexin-43 null mice reveal that astrocytes express multiple connexins. Brain Res Brain Res Rev 32(1):45–56PubMedGoogle Scholar
  198. 198.
    Scemes E, Dermietzel R, Spray DC (1998) Calcium waves between astrocytes from Cx43 knockout mice. Glia 24(1):65–73PubMedCentralPubMedGoogle Scholar
  199. 199.
    Nagy JI, Patel D, Ochalski PA, Stelmack GL (1999) Connexin-30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin-43 at gap junctions and late developmental appearance. Neuroscience 88(2):447–468PubMedGoogle Scholar
  200. 200.
    Pannasch U, Vargova L, Reingruber J, Ezan P, Holcman D, Giaume C, Sykova E, Rouach N (2011) Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci USA 108(20):8467–8472PubMedCentralPubMedGoogle Scholar
  201. 201.
    Lutz SE, Zhao Y, Gulinello M, Lee SC, Raine CS, Brosnan CF (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J Neurosci 29(24):7743–7752PubMedCentralPubMedGoogle Scholar
  202. 202.
    Giaume C (2010) Astroglial wiring is adding complexity to neuroglial networking. Front Neuroenergetics. doi: 10.3389/fnene.2010.00129 PubMedCentralPubMedGoogle Scholar
  203. 203.
    Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J Neurosci 21(7):2215–2223PubMedCentralPubMedGoogle Scholar
  204. 204.
    Scemes E, Suadicani SO, Spray DC (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J Neurosci 20(4):1435–1445PubMedCentralPubMedGoogle Scholar
  205. 205.
    Giaume C, Theis M (2010) Pharmacological and genetic approaches to study connexin-mediated channels in glial cells of the central nervous system. Brain Res Rev 63(1–2):160–176. doi: 10.1016/j.brainresrev.2009.11.005 PubMedGoogle Scholar
  206. 206.
    Blomstrand F, Aberg ND, Eriksson PS, Hansson E, Ronnback L (1999) Extent of intercellular calcium wave propagation is related to gap junction permeability and level of connexin-43 expression in astrocytes in primary cultures from four brain regions. Neuroscience 92(1):255–265PubMedGoogle Scholar
  207. 207.
    Rouach N, Glowinski J, Giaume C (2000) Activity-dependent neuronal control of gap-junctional communication in astrocytes. The Journal of cell biology 149(7):1513–1526PubMedCentralPubMedGoogle Scholar
  208. 208.
    Roux L, Benchenane K, Rothstein JD, Bonvento G, Giaume C (2011) Plasticity of astroglial networks in olfactory glomeruli. Proc Natl Acad Sci USA 108(45):18442–18446PubMedCentralPubMedGoogle Scholar
  209. 209.
    Giaume C, Tabernero A, Medina JM (1997) Metabolic trafficking through astrocytic gap junctions. Glia 21(1):114–123PubMedGoogle Scholar
  210. 210.
    Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263(5154):1768–1771PubMedGoogle Scholar
  211. 211.
    Leybaert L, Paemeleire K, Strahonja A, Sanderson MJ (1998) Inositol-trisphosphate-dependent intercellular calcium signaling in and between astrocytes and endothelial cells. Glia 24(4):398–407PubMedGoogle Scholar
  212. 212.
    Froes MM, Correia AH, Garcia-Abreu J, Spray DC, Campos de Carvalho AC, Neto MV (1999) Gap-junctional coupling between neurons and astrocytes in primary central nervous system cultures. Proc Natl Acad Sci USA 96(13):7541–7546PubMedCentralPubMedGoogle Scholar
  213. 213.
    Rash JE, Yasumura T, Davidson KG, Furman CS, Dudek FE, Nagy JI (2001) Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord. Cell Commun Adhes 8(4–6):315–320PubMedCentralPubMedGoogle Scholar
  214. 214.
    Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51(4):439–455PubMedGoogle Scholar
  215. 215.
    Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483):744–747. doi: 10.1038/369744a0 PubMedGoogle Scholar
  216. 216.
    Newman EA (2001) Calcium signaling in retinal glial cells and its effect on neuronal activity. Prog Brain Res 132:241–254. doi: 10.1016/S0079-6123(01)32080-0 PubMedGoogle Scholar
  217. 217.
    Fiacco TA, McCarthy KD (2006) Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54(7):676–690. doi: 10.1002/glia.20396 PubMedGoogle Scholar
  218. 218.
    Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391(6664):281–285. doi: 10.1038/34651 PubMedGoogle Scholar
  219. 219.
    Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43(5):729–743. doi: 10.1016/j.neuron.2004.08.011 PubMedGoogle Scholar
  220. 220.
    Angulo MC, Kozlov AS, Charpak S, Audinat E (2004) Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 24(31):6920–6927. doi: 10.1523/JNEUROSCI.0473-04.2004 PubMedGoogle Scholar
  221. 221.
    Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86(3):1009–1031. doi: 10.1152/physrev.00049.2005 PubMedGoogle Scholar
  222. 222.
    Parpura V, Baker BJ, Jeras M, Zorec R (2010) Regulated exocytosis in astrocytic signal integration. Neurochem Int 57(4):451–459. doi: 10.1016/j.neuint.2010.02.007 PubMedCentralPubMedGoogle Scholar
  223. 223.
    Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81(4):728–739PubMedCentralPubMedGoogle Scholar
  224. 224.
    Di Castro MA, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D, Tiret P, Volterra A (2011) Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 14(10):1276–1284PubMedGoogle Scholar
  225. 225.
    Gordon GR, Iremonger KJ, Kantevari S, Ellis-Davies GC, MacVicar BA, Bains JS (2009) Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64(3):391–403. doi: 10.1016/j.neuron.2009.10.021 PubMedCentralPubMedGoogle Scholar
  226. 226.
    Bonansco C, Couve A, Perea G, Ferradas CA, Roncagliolo M, Fuenzalida M (2011) Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity. Eur J Neurosci 33(8):1483–1492PubMedGoogle Scholar
  227. 227.
    Lin JH, Lou N, Kang N, Takano T, Hu F, Han X, Xu Q, Lovatt D, Torres A, Willecke K, Yang J, Kang J, Nedergaard M (2008) A central role of connexin 43 in hypoxic preconditioning. J Neurosci 28(3):681–695PubMedGoogle Scholar
  228. 228.
    Li D, Agulhon C, Schmidt E, Oheim M, Ropert N (2013) New tools for investigating astrocyte-to-neuron communication. Front Cell Neurosci 7:193PubMedCentralPubMedGoogle Scholar
  229. 229.
    Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9(2):260–267. doi: 10.1038/nn1623 PubMedGoogle Scholar
  230. 230.
    Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6(1):43–50. doi: 10.1038/nn980 PubMedGoogle Scholar
  231. 231.
    Filosa JA, Bonev AD, Nelson MT (2004) Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ Res 95(10):e73–e81. doi: 10.1161/01.RES.0000148636.60732.2e PubMedGoogle Scholar
  232. 232.
    Koehler RC, Gebremedhin D, Harder DR (2006) Role of astrocytes in cerebrovascular regulation. J Appl Physiol 100(1):307–317. doi: 10.1152/japplphysiol.00938.2005 PubMedCentralPubMedGoogle Scholar
  233. 233.
    Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320(5883):1638–1643. doi: 10.1126/science.1156120 PubMedGoogle Scholar
  234. 234.
    Lind BL, Brazhe AR, Jessen SB, Tan FC, Lauritzen MJ (2013) Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc Natl Acad Sci USA 110(48):E4678–E4687PubMedCentralPubMedGoogle Scholar
  235. 235.
    Otsu Y, Couchman K, Lyons DG, Collot M, Agarwal A, Mallet JM, Pfrieger FW, Bergles DE, Charpak S (2015) Calcium dynamics in astrocyte processes during neurovascular coupling. Nat Neurosci 18(2):210–218PubMedGoogle Scholar
  236. 236.
    Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26(5):1378–1385PubMedCentralPubMedGoogle Scholar
  237. 237.
    Leybaert L, Sanderson MJ (2001) Intercellular calcium signaling and flash photolysis of caged compounds. A sensitive method to evaluate gap junctional coupling. Methods Mol Biol 154:407–430PubMedGoogle Scholar
  238. 238.
    Scemes E (2008) Modulation of astrocyte P2Y1 receptors by the carboxyl terminal domain of the gap junction protein Cx43. Glia 56(2):145–153. doi: 10.1002/glia.20598 PubMedCentralPubMedGoogle Scholar
  239. 239.
    Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941):470–473PubMedGoogle Scholar
  240. 240.
    Smith SJ (1992) Do astrocytes process neural information? Prog Brain Res 94:119–136PubMedGoogle Scholar
  241. 241.
    Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6(6):983–992PubMedGoogle Scholar
  242. 242.
    Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci USA 99(15):9840–9845. doi: 10.1073/pnas.152588599 PubMedCentralPubMedGoogle Scholar
  243. 243.
    Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA 95(26):15735–15740PubMedCentralPubMedGoogle Scholar
  244. 244.
    Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277(12):10482–10488. doi: 10.1074/jbc.M109902200 PubMedGoogle Scholar
  245. 245.
    Zanotti S, Charles A (1997) Extracellular calcium sensing by glial cells: low extracellular calcium induces intracellular calcium release and intercellular signaling. J Neurochem 69(2):594–602PubMedGoogle Scholar
  246. 246.
    Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19(2):520–528PubMedGoogle Scholar
  247. 247.
    Harris-White ME, Zanotti SA, Frautschy SA, Charles AC (1998) Spiral intercellular calcium waves in hippocampal slice cultures. J Neurophysiol 79(2):1045–1052PubMedGoogle Scholar
  248. 248.
    Peters O, Schipke CG, Hashimoto Y, Kettenmann H (2003) Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J Neurosci 23(30):9888–9896PubMedGoogle Scholar
  249. 249.
    Schipke CG, Haas B, Kettenmann H (2008) Astrocytes discriminate and selectively respond to the activity of a subpopulation of neurons within the barrel cortex. Cereb Cortex 18(10):2450–2459. doi: 10.1093/cercor/bhn009 PubMedGoogle Scholar
  250. 250.
    Willmott NJ, Wong K, Strong AJ (2000) Intercellular Ca(2+) waves in rat hippocampal slice and dissociated glial-neuron cultures mediated by nitric oxide. FEBS Lett 487(2):239–247PubMedGoogle Scholar
  251. 251.
    Hoogland TM, Kuhn B, Gobel W, Huang W, Nakai J, Helmchen F, Flint J, Wang SS (2009) Radially expanding transglial calcium waves in the intact cerebellum. Proc Natl Acad Sci USA 106(9):3496–3501. doi: 10.1073/pnas.0809269106 PubMedCentralPubMedGoogle Scholar
  252. 252.
    Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1(1):31–37. doi: 10.1038/nmeth706 PubMedGoogle Scholar
  253. 253.
    Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823PubMedGoogle Scholar
  254. 254.
    Kuga N, Sasaki T, Takahara Y, Matsuki N, Ikegaya Y (2011) Large-scale calcium waves traveling through astrocytic networks in vivo. J Neurosci 31(7):2607–2614PubMedGoogle Scholar
  255. 255.
    Mathiesen C, Brazhe A, Thomsen K, Lauritzen M (2013) Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen. J Cereb Blood Flow Metab 33(2):161–169PubMedCentralPubMedGoogle Scholar
  256. 256.
    Kurth-Nelson ZL, Mishra A, Newman EA (2009) Spontaneous glial calcium waves in the retina develop over early adulthood. J Neurosci 29(36):11339–11346PubMedCentralPubMedGoogle Scholar
  257. 257.
    Ding S, Wang T, Cui W, Haydon PG (2009) Photothrombosis ischemia stimulates a sustained astrocytic Ca2+ signaling in vivo. Glia 57(7):767–776PubMedCentralPubMedGoogle Scholar
  258. 258.
    Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323(5918):1211–1215. doi: 10.1126/science.1169096 PubMedCentralPubMedGoogle Scholar
  259. 259.
    Crowe SE, Kantevari S, Ellis-Davies GC (2010) Photochemically initiated intracellular astrocytic calcium waves in living mice using two-photon uncaging of IP(3). ACS Chem Neurosci 1(8):575–585PubMedCentralPubMedGoogle Scholar
  260. 260.
    Sieger D, Moritz C, Ziegenhals T, Prykhozhij S, Peri F (2012) Long-range Ca2+ waves transmit brain-damage signals to microglia. Dev Cell 22(6):1138–1148PubMedGoogle Scholar
  261. 261.
    Choo AM, Miller WJ, Chen YC, Nibley P, Patel TP, Goletiani C, Morrison B 3rd, Kutzing MK, Firestein BL, Sul JY, Haydon PG, Meaney DF (2013) Antagonism of purinergic signalling improves recovery from traumatic brain injury. Brain 136(Pt 1):65–80PubMedCentralPubMedGoogle Scholar
  262. 262.
    Ding S, Fellin T, Zhu Y, Lee SY, Auberson YP, Meaney DF, Coulter DA, Carmignoto G, Haydon PG (2007) Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J Neurosci 27(40):10674–10684. doi: 10.1523/JNEUROSCI.2001-07.2007 PubMedCentralPubMedGoogle Scholar
  263. 263.
    Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J, Oberheim N, Lou N, Wang X, Zielke HR, Kang J, Nedergaard M (2005) An astrocytic basis of epilepsy. Nat Med 11(9):973–981PubMedCentralPubMedGoogle Scholar
  264. 264.
    Chuquet J, Hollender L, Nimchinsky EA (2007) High-resolution in vivo imaging of the neurovascular unit during spreading depression. J Neurosci 27(15):4036–4044PubMedGoogle Scholar
  265. 265.
    Sahlender DA, Savtchouk I, Volterra A (2014) What do we know about gliotransmitter release from astrocytes? Philos Trans R Soc Lond B Biol Sci 369(1654):20130592PubMedCentralPubMedGoogle Scholar
  266. 266.
    Montero TD, Orellana JA (2015) Hemichannels: new pathways for gliotransmitter release. Neuroscience 286:45–59PubMedGoogle Scholar
  267. 267.
    Allard C, Carneiro L, Grall S, Cline BH, Fioramonti X, Chretien C, Baba-Aissa F, Giaume C, Penicaud L, Leloup C (2014) Hypothalamic astroglial connexins are required for brain glucose sensing-induced insulin secretion. J Cereb Blood Flow Metab 34(2):339–346PubMedCentralPubMedGoogle Scholar
  268. 268.
    Orellana JA, Saez PJ, Cortes-Campos C, Elizondo RJ, Shoji KF, Contreras-Duarte S, Figueroa V, Velarde V, Jiang JX, Nualart F, Saez JC, Garcia MA (2012) Glucose increases intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels. Glia 60(1):53–68PubMedCentralPubMedGoogle Scholar
  269. 269.
    Stehberg J, Moraga-Amaro R, Salazar C, Becerra A, Echeverria C, Orellana JA, Bultynck G, Ponsaerts R, Leybaert L, Simon F, Saez JC, Retamal MA (2011) Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. Faseb J 26(9):3649–3657Google Scholar
  270. 270.
    Huckstepp RT, id Bihi R, Eason R, Spyer KM, Dicke N, Willecke K, Marina N, Gourine AV, Dale N (2010) Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity. J Physiol 588(Pt 20):3901–3920PubMedCentralPubMedGoogle Scholar
  271. 271.
    Torres A, Wang F, Xu Q, Fujita T, Dobrowolski R, Willecke K, Takano T, Nedergaard M (2012) Extracellular Ca(2)(+) acts as a mediator of communication from neurons to glia. Sci Signal 5 (208):ra8. doi: 10.1126/scisignal.2002160
  272. 272.
    Chever O, Lee CY, Rouach N (2014) Astroglial connexin-43 hemichannels tune basal excitatory synaptic transmission. J Neurosci 34(34):11228–11232PubMedGoogle Scholar
  273. 273.
    Chever O, Pannasch U, Ezan P, Rouach N (2014) Astroglial connexin 43 sustains glutamatergic synaptic efficacy. Philos Trans R Soc Lond B Biol Sci 369(1654):20130596PubMedGoogle Scholar
  274. 274.
    Heinrich A, Ando RD, Turi G, Rozsa B, Sperlagh B (2012) K + depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study. Br J Pharmacol 167(5):1003–1020PubMedCentralPubMedGoogle Scholar
  275. 275.
    Pan HC, Chou YC, Sun SH (2015) P2X7 R-mediated Ca(2+) -independent d-serine release via pannexin-1 of the P2X7 R-pannexin-1 complex in astrocytes. Glia 63(5):877–893PubMedGoogle Scholar
  276. 276.
    Theis M, Jauch R, Zhuo L, Speidel D, Wallraff A, Doring B, Frisch C, Sohl G, Teubner B, Euwens C, Huston J, Steinhauser C, Messing A, Heinemann U, Willecke K (2003) Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin-43. J Neurosci 23(3):766–776PubMedGoogle Scholar
  277. 277.
    Frisch C, Theis M, De Souza Silva MA, Dere E, Sohl G, Teubner B, Namestkova K, Willecke K, Huston JP (2003) Mice with astrocyte-directed inactivation of connexin-43 exhibit increased exploratory behaviour, impaired motor capacities, and changes in brain acetylcholine levels. Eur J Neurosci 18(8):2313–2318PubMedGoogle Scholar
  278. 278.
    Han Y, Yu HX, Sun ML, Wang Y, Xi W, Yu YQ (2014) Astrocyte-restricted disruption of connexin-43 impairs neuronal plasticity in mouse barrel cortex. Eur J Neurosci 39(1):35–45PubMedGoogle Scholar
  279. 279.
    Pannasch U, Freche D, Dallerac G, Ghezali G, Escartin C, Ezan P, Cohen-Salmon M, Benchenane K, Abudara V, Dufour A, Lubke JH, Deglon N, Knott G, Holcman D, Rouach N (2014) Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci 17(4):549–558PubMedGoogle Scholar
  280. 280.
    Qu C, Gardner P, Schrijver I (2009) The role of the cytoskeleton in the formation of gap junctions by Connexin 30. Exp Cell Res 315(10):1683–1692PubMedGoogle Scholar
  281. 281.
    Unger T, Bette S, Zhang J, Theis M, Engele J (2012) Connexin-deficiency affects expression levels of glial glutamate transporters within the cerebrum. Neurosci Lett 506(1):12–16PubMedGoogle Scholar
  282. 282.
    May D, Tress O, Seifert G, Willecke K (2013) Connexin-47 protein phosphorylation and stability in oligodendrocytes depend on expression of Connexin-43 protein in astrocytes. J Neurosci 33(18):7985–7996PubMedGoogle Scholar
  283. 283.
    Iacobas S, Iacobas DA (2010) Astrocyte proximity modulates the myelination gene fabric of oligodendrocytes. Neuron Glia Biol 6(3):157–169PubMedGoogle Scholar
  284. 284.
    Magnotti LM, Goodenough DA, Paul DL (2011) Functional heterotypic interactions between astrocyte and oligodendrocyte connexins. Glia 59(1):26–34PubMedCentralPubMedGoogle Scholar
  285. 285.
    Li T, Giaume C, Xiao L (2014) Connexins-mediated glia networking impacts myelination and remyelination in the central nervous system. Mol Neurobiol 49(3):1460–1471PubMedGoogle Scholar
  286. 286.
    Domercq M, Perez-Samartin A, Aparicio D, Alberdi E, Pampliega O, Matute C (2010) P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 58(6):730–740PubMedGoogle Scholar
  287. 287.
    Sun JD, Liu Y, Yuan YH, Li J, Chen NH (2011) Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology 37(5):1305–1320PubMedCentralPubMedGoogle Scholar
  288. 288.
    Xu HL, Mao L, Ye S, Paisansathan C, Vetri F, Pelligrino DA (2008) Astrocytes are a key conduit for upstream signaling of vasodilation during cerebral cortical neuronal activation in vivo. Am J Physiol Heart Circ Physiol 294(2):H622–H632. doi: 10.1152/ajpheart.00530.2007 PubMedGoogle Scholar
  289. 289.
    Jiang H, Zhu AG, Mamczur M, Falck JR, Lerea KM, McGiff JC (2007) Stimulation of rat erythrocyte P2X7 receptor induces the release of epoxyeicosatrienoic acids. Br J Pharmacol 151(7):1033–1040PubMedCentralPubMedGoogle Scholar
  290. 290.
    Olk S, Turchinovich A, Grzendowski M, Stuhler K, Meyer HE, Zoidl G, Dermietzel R (2010) Proteomic analysis of astroglial connexin-43 silencing uncovers a cytoskeletal platform involved in process formation and migration. Glia 58(4):494–505PubMedGoogle Scholar
  291. 291.
    Boulay AC, Saubamea B, Cisternino S, Mignon V, Mazeraud A, Jourdren L, Blugeon C, Cohen-Salmon M (2015) The Sarcoglycan complex is expressed in the cerebrovascular system and is specifically regulated by astroglial Cx30 channels. Front Cell Neurosci 9:9PubMedCentralPubMedGoogle Scholar
  292. 292.
    Boulay AC, Mazeraud A, Cisternino S, Saubamea B, Mailly P, Jourdren L, Blugeon C, Mignon V, Smirnova M, Cavallo A, Ezan P, Ave P, Dingli F, Loew D, Vieira P, Chretien F, Cohen-Salmon M (2015) Immune quiescence of the brain is set by astroglial connexin 43. J Neurosci 35(10):4427–4439PubMedGoogle Scholar
  293. 293.
    Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431(7005):195–199. doi: 10.1038/nature02827 PubMedGoogle Scholar
  294. 294.
    Hansen DB, Braunstein TH, Nielsen MS, MacAulay N (2014) Distinct permeation profiles of the connexin 30 and 43 hemichannels. FEBS Lett 588(8):1446–1457PubMedGoogle Scholar
  295. 295.
    Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318PubMedGoogle Scholar
  296. 296.
    Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145PubMedGoogle Scholar
  297. 297.
    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553PubMedGoogle Scholar
  298. 298.
    Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394PubMedGoogle Scholar
  299. 299.
    Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201PubMedGoogle Scholar
  300. 300.
    Murugan M, Ling EA, Kaur C (2013) Glutamate receptors in microglia. CNS Neurol Disord: Drug Targets 12(6):773–784Google Scholar
  301. 301.
    Farber K, Kettenmann H (2006) Purinergic signaling and microglia. Pflugers Arch 452(5):615–621PubMedGoogle Scholar
  302. 302.
    Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467(7317):863–867PubMedCentralPubMedGoogle Scholar
  303. 303.
    Qu Y, Misaghi S, Newton K, Gilmour LL, Louie S, Cupp JE, Dubyak GR, Hackos D, Dixit VM (2011) Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol 186(11):6553–6561PubMedGoogle Scholar
  304. 304.
    Ohsawa K, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S (2012) Adenosine A3 receptor is involved in ADP-induced microglial process extension and migration. J Neurochem 121(2):217–227PubMedGoogle Scholar
  305. 305.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758PubMedGoogle Scholar
  306. 306.
    Kim JV, Dustin ML (2006) Innate response to focal necrotic injury inside the blood-brain barrier. J Immunol 177(8):5269–5277PubMedGoogle Scholar
  307. 307.
    Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H (2002) Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. Faseb J 16(2):255–257. doi: 10.1096/fj.01-0514fje PubMedGoogle Scholar
  308. 308.
    Verderio C, Matteoli M (2001) ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma. J Immunol 166(10):6383–6391PubMedGoogle Scholar
  309. 309.
    Samuels SE, Lipitz JB, Dahl G, Muller KJ (2010) Neuroglial ATP release through innexin channels controls microglial cell movement to a nerve injury. The Journal of general physiology 136(4):425–442PubMedCentralPubMedGoogle Scholar
  310. 310.
    Mika T, Prochnow N (2012) Functions of connexins and large pore channels on microglial cells: the gates to environment. Brain Res 1487:16–24PubMedGoogle Scholar
  311. 311.
    Maezawa I, Jin LW (2010) Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J Neurosci 30(15):5346–5356PubMedGoogle Scholar
  312. 312.
    Dobrenis K, Chang HY, Pina-Benabou MH, Woodroffe A, Lee SC, Rozental R, Spray DC, Scemes E (2005) Human and mouse microglia express connexin-36, and functional gap junctions are formed between rodent microglia and neurons. J Neurosci Res 82(3):306–315PubMedCentralPubMedGoogle Scholar
  313. 313.
    Eugenin EA, Eckardt D, Theis M, Willecke K, Bennett MV, Saez JC (2001) Microglia at brain stab wounds express connexin 43 and in vitro form functional gap junctions after treatment with interferon-gamma and tumor necrosis factor-alpha. Proc Natl Acad Sci USA 98(7):4190–4195PubMedCentralPubMedGoogle Scholar
  314. 314.
    Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368PubMedGoogle Scholar
  315. 315.
    Ma Y, Cao W, Wang L, Jiang J, Nie H, Wang B, Wei X, Ying W (2014) Basal CD38/cyclic ADP-ribose-dependent signaling mediates ATP release and survival of microglia by modulating connexin 43 hemichannels. Glia. doi: 10.1002/glia.22651 Google Scholar
  316. 316.
    Wasseff SK, Scherer SS (2014) Activated microglia do not form functional gap junctions in vivo. J Neuroimmunol 269(1–2):90–93. doi: 10.1016/j.jneuroim.2014.02.005 PubMedCentralPubMedGoogle Scholar
  317. 317.
    Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458PubMedGoogle Scholar
  318. 318.
    Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980PubMedGoogle Scholar
  319. 319.
    Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8(11):e1000527PubMedCentralPubMedGoogle Scholar
  320. 320.
    Li Y, Du XF, Du JL (2013) Resting microglia respond to and regulate neuronal activity in vivo. Commun Integr Biol 6(4):e24493PubMedCentralPubMedGoogle Scholar
  321. 321.
    Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2012) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609Google Scholar
  322. 322.
    Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT (2011) Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 6(1):e15973PubMedCentralPubMedGoogle Scholar
  323. 323.
    Dissing-Olesen L, LeDue JM, Rungta RL, Hefendehl JK, Choi HB, MacVicar BA (2014) Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J Neurosci 34(32):10511–10527PubMedGoogle Scholar
  324. 324.
    Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7(4):494–506PubMedCentralPubMedGoogle Scholar
  325. 325.
    Tonkin RS, Mao Y, O’Carroll SJ, Nicholson LF, Green CR, Gorrie CA, Moalem-Taylor G (2015) Gap junction proteins and their role in spinal cord injury. Front Mol Neurosci 7:102PubMedCentralPubMedGoogle Scholar
  326. 326.
    Chew SS, Johnson CS, Green CR, Danesh-Meyer HV (2010) Role of connexin-43 in central nervous system injury. Exp Neurol 225(2):250–261PubMedGoogle Scholar
  327. 327.
    Bargiotas P, Monyer H, Schwaninger M (2009) Hemichannels in cerebral ischemia. Curr Mol Med 9(2):186–194PubMedGoogle Scholar
  328. 328.
    Contreras JE, Sanchez HA, Veliz LP, Bukauskas FF, Bennett MV, Saez JC (2004) Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Brain Res Rev 47(1–3):290–303PubMedCentralPubMedGoogle Scholar
  329. 329.
    Koulakoff A, Mei X, Orellana JA, Saez JC (1818) Giaume C (2012) Glial connexin expression and function in the context of Alzheimer’s disease. Biochim Biophys Acta 8:2048–2057Google Scholar
  330. 330.
    Orellana JA, von Bernhardi R, Giaume C, Saez JC (2012) Glial hemichannels and their involvement in aging and neurodegenerative diseases. Rev Neurosci 23(2):163–177PubMedGoogle Scholar
  331. 331.
    Quintanilla RA, Orellana JA, von Bernhardi R (2013) Understanding risk factors for Alzheimer’s disease: interplay of neuroinflammation, connexin-based communication and oxidative stress. Arch Med Res 43(8):632–644Google Scholar
  332. 332.
    Nakase T, Maeda T, Yoshida Y, Nagata K (2009) Ischemia alters the expression of connexins in the aged human brain. J Biomed Biotechnol 2009:147946PubMedCentralPubMedGoogle Scholar
  333. 333.
    Ashpole NM, Chawla AR, Martin MP, Brustovetsky T, Brustovetsky N, Hudmon A (2013) Loss of calcium/calmodulin-dependent protein kinase II activity in cortical astrocytes decreases glutamate uptake and induces neurotoxic release of ATP. J Biol Chem 288(20):14599–14611. doi: 10.1074/jbc.M113.466235 PubMedCentralPubMedGoogle Scholar
  334. 334.
    Perez Velazquez JL, Frantseva MV, Naus CC (2003) Gap junctions and neuronal injury: protectants or executioners? Neuroscientist 9(1):5–9PubMedGoogle Scholar
  335. 335.
    O’Connor JJ (2013) Targeting tumour necrosis factor-alpha in hypoxia and synaptic signalling. Ir J Med Sci 182(2):157–162PubMedGoogle Scholar
  336. 336.
    Froger N, Orellana JA, Calvo CF, Amigou E, Kozoriz MG, Naus CC, Saez JC, Giaume C (2010) Inhibition of cytokine-induced connexin-43 hemichannel activity in astrocytes is neuroprotective. Mol Cell Neurosci 45(1):37–46PubMedGoogle Scholar
  337. 337.
    O’Carroll SJ, Gorrie CA, Velamoor S, Green CR, Nicholson LF (2013) Connexin-43 mimetic peptide is neuroprotective and improves function following spinal cord injury. Neurosci Res 75(3):256–267. doi: 10.1016/j.neures.2013.01.004 PubMedGoogle Scholar
  338. 338.
    Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310(5745):113–116. doi: 10.1126/science.1116916 PubMedGoogle Scholar
  339. 339.
    Decrock E, Vinken M, De Vuyst E, Krysko DV, D’Herde K, Vanhaecke T, Vandenabeele P, Rogiers V, Leybaert L (2009) Connexin-related signaling in cell death: to live or let die? Cell Death Differ 16(4):524–536PubMedGoogle Scholar
  340. 340.
    Shestopalov VI, Slepak VZ (2014) Molecular pathways of pannexin1-mediated neurotoxicity. Front Physiol 5:23PubMedCentralPubMedGoogle Scholar
  341. 341.
    Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26(4):433–443PubMedGoogle Scholar
  342. 342.
    Minkiewicz J, de Rivero Vaccari JP, Keane RW (2013) Human astrocytes express a novel NLRP2 inflammasome. Glia 61(7):1113–1121. doi: 10.1002/glia.22499 PubMedGoogle Scholar
  343. 343.
    Meme W, Calvo CF, Froger N, Ezan P, Amigou E, Koulakoff A, Giaume C (2006) Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by beta-amyloid. Faseb J 20(3):494–496PubMedGoogle Scholar
  344. 344.
    Xiong J, Burkovetskaya M, Karpuk N, Kielian T (2012) IL-1RI (interleukin-1 receptor type I) signalling is essential for host defence and hemichannel activity during acute central nervous system bacterial infection. ASN Neuro 4(3):AN2012008Google Scholar
  345. 345.
    Zhang FF, Morioka N, Nakashima-Hisaoka K, Nakata Y (2013) Spinal astrocytes stimulated by tumor necrosis factor-alpha and/or interferon-gamma attenuate connexin 43-gap junction via c-jun terminal kinase activity. J Neurosci Res 91(6):745–756PubMedGoogle Scholar
  346. 346.
    Saez PJ, Shoji KF, Retamal MA, Harcha PA, Ramirez G, Jiang JX, von Bernhardi R, Saez JC (2013) ATP is required and advances cytokine-induced gap junction formation in microglia in vitro. Mediators Inflamm 2013:216402PubMedCentralPubMedGoogle Scholar
  347. 347.
    Orellana JA, Busso D, Ramirez G, Campos M, Rigotti A, Eugenin J, von Bernhardi R (2014) Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet. Front Cell Neurosci 8:403PubMedCentralPubMedGoogle Scholar
  348. 348.
    Abudara V, Roux L, Dallerac G, Matias I, Dulong J, Mothet JP, Rouach N, Giaume C (2015) Activated microglia impairs neuroglial interaction by opening Cx43 hemichannels in hippocampal astrocytes. Glia 63(5):795–811PubMedGoogle Scholar
  349. 349.
    Homkajorn B, Sims NR, Muyderman H (2010) Connexin 43 regulates astrocytic migration and proliferation in response to injury. Neurosci Lett 486(3):197–201PubMedGoogle Scholar
  350. 350.
    Theodoric N, Bechberger JF, Naus CC, Sin WC (2012) Role of gap junction protein connexin-43 in astrogliosis induced by brain injury. PLoS One 7(10):e47311. doi: 10.1371/journal.pone.0047311 PubMedCentralPubMedGoogle Scholar
  351. 351.
    Wu Z, Xu H, He Y, Yang G, Liao C, Gao W, Liang M, He X (2013) Antisense oligodeoxynucleotides targeting connexin-43 reduce cerebral astrocytosis and edema in a rat model of traumatic brain injury. Neurol Res 35(3):255–262. doi: 10.1179/1743132813Y.0000000165 PubMedGoogle Scholar
  352. 352.
    Zhang X, Cao B, Wang J, Liu J, Tung VO, Lam PK, Chan LL, Li Y (2013) Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning. Neuromol Med 15(2):310–323. doi: 10.1007/s12017-013-8220-7 Google Scholar
  353. 353.
    Ohsumi A, Nawashiro H, Otani N, Ooigawa H, Toyooka T, Yano A, Nomura N, Shima K (2006) Alteration of gap junction proteins (connexins) following lateral fluid percussion injury in rats. Acta Neurochir Suppl 96:148–150PubMedGoogle Scholar
  354. 354.
    Cronin M, Anderson PN, Cook JE, Green CR, Becker DL (2008) Blocking connexin-43 expression reduces inflammation and improves functional recovery after spinal cord injury. Mol Cell Neurosci 39(2):152–160PubMedGoogle Scholar
  355. 355.
    Theriault E, Frankenstein UN, Hertzberg EL, Nagy JI (1997) Connexin-43 and astrocytic gap junctions in the rat spinal cord after acute compression injury. J Comp Neurol 382(2):199–214PubMedGoogle Scholar
  356. 356.
    Haupt C, Witte OW, Frahm C (2007) Up-regulation of Connexin-43 in the glial scar following photothrombotic ischemic injury. Mol Cell Neurosci 35(1):89–99. doi: 10.1016/j.mcn.2007.02.005 PubMedGoogle Scholar
  357. 357.
    Kozoriz MG, Bechberger JF, Bechberger GR, Suen MW, Moreno AP, Maass K, Willecke K, Naus CC (2010) The connexin-43 C-terminal region mediates neuroprotection during stroke. J Neuropathol Exp Neurol 69(2):196–206. doi: 10.1097/NEN.0b013e3181cd44df PubMedGoogle Scholar
  358. 358.
    Mei X, Ezan P, Giaume C, Koulakoff A (2010) Astroglial connexin immunoreactivity is specifically altered at beta-amyloid plaques in beta-amyloid precursor protein/presenilin1 mice. Neuroscience 171(1):92–105PubMedGoogle Scholar
  359. 359.
    Fonseca CG, Green CR, Nicholson LF (2002) Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy. Brain Res 929(1):105–116PubMedGoogle Scholar
  360. 360.
    Takahashi DK, Vargas JR, Wilcox KS (2010) Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis 40(3):573–585. doi: 10.1016/j.nbd.2010.07.018 PubMedCentralPubMedGoogle Scholar
  361. 361.
    Kerr NM, Johnson CS, Zhang J, Eady EK, Green CR, Danesh-Meyer HV (2012) High pressure-induced retinal ischaemia reperfusion causes upregulation of gap junction protein connexin-43 prior to retinal ganglion cell loss. Exp Neurol 234(1):144–152PubMedGoogle Scholar
  362. 362.
    Frantseva MV, Kokarovtseva L, Naus CG, Carlen PL, MacFabe D, Perez Velazquez JL (2002) Specific gap junctions enhance the neuronal vulnerability to brain traumatic injury. J Neurosci 22(3):644–653PubMedGoogle Scholar
  363. 363.
    Huang C, Han X, Li X, Lam E, Peng W, Lou N, Torres A, Yang M, Garre JM, Tian GF, Bennett MV, Nedergaard M, Takano T (2012) Critical role of connexin 43 in secondary expansion of traumatic spinal cord injury. J Neurosci 32(10):3333–3338PubMedCentralPubMedGoogle Scholar
  364. 364.
    Yoon JJ, Green CR, O’Carroll SJ, Nicholson LF (2010) Dose-dependent protective effect of connexin-43 mimetic peptide against neurodegeneration in an ex vivo model of epileptiform lesion. Epilepsy Res 92(2–3):153–162PubMedGoogle Scholar
  365. 365.
    Blanc EM, Bruce-Keller AJ, Mattson MP (1998) Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death. J Neurochem 70(3):958–970PubMedGoogle Scholar
  366. 366.
    Nakase T, Fushiki S, Naus CC (2003) Astrocytic gap junctions composed of connexin 43 reduce apoptotic neuronal damage in cerebral ischemia. Stroke 34(8):1987–1993PubMedGoogle Scholar
  367. 367.
    Karpuk N, Burkovetskaya M, Fritz T, Angle A, Kielian T (2011) Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity. J Neurosci 31(2):414–425. doi: 10.1523/JNEUROSCI.5247-10.2011 PubMedCentralPubMedGoogle Scholar
  368. 368.
    Davidson JO, Green CR, Nicholson LF, O’Carroll SJ, Fraser M, Bennet L, Gunn AJ (2012) Connexin hemichannel blockade improves outcomes in a model of fetal ischemia. Ann Neurol 71(1):121–132PubMedGoogle Scholar
  369. 369.
    Orellana JA, Hernandez DE, Ezan P, Velarde V, Bennett MV, Giaume C, Saez JC (2010) Hypoxia in high glucose followed by reoxygenation in normal glucose reduces the viability of cortical astrocytes through increased permeability of connexin 43 hemichannels. Glia 58(3):329–343PubMedCentralPubMedGoogle Scholar
  370. 370.
    Samoilova M, Wentlandt K, Adamchik Y, Velumian AA, Carlen PL (2008) Connexin 43 mimetic peptides inhibit spontaneous epileptiform activity in organotypic hippocampal slice cultures. Exp Neurol 210(2):762–775PubMedGoogle Scholar
  371. 371.
    Chen YS, Toth I, Danesh-Meyer HV, Green CR, Rupenthal ID (2013) Cytotoxicity and vitreous stability of chemically modified connexin-43 mimetic peptides for the treatment of optic neuropathy. J Pharm Sci 102(7):2322–2331PubMedGoogle Scholar
  372. 372.
    Haefliger JA, Nicod P, Meda P (2004) Contribution of connexins to the function of the vascular wall. Cardiovasc Res 62(2):345–356PubMedGoogle Scholar
  373. 373.
    Gabriels JE, Paul DL (1998) Connexin-43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin-37 and connexin-40 are more uniformly distributed. Circ Res 83(6):636–643PubMedGoogle Scholar
  374. 374.
    Little TL, Beyer EC, Duling BR (1995) Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol 268(2 Pt 2):H729–H739PubMedGoogle Scholar
  375. 375.
    Traub O, Hertlein B, Kasper M, Eckert R, Krisciukaitis A, Hulser D, Willecke K (1998) Characterization of the gap junction protein connexin-37 in murine endothelium, respiratory epithelium, and after transfection in human HeLa cells. Eur J Cell Biol 77(4):313–322PubMedGoogle Scholar
  376. 376.
    De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L (2013) Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 108:1–20PubMedGoogle Scholar
  377. 377.
    Nagasawa K, Chiba H, Fujita H, Kojima T, Saito T, Endo T, Sawada N (2006) Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J Cell Physiol 208(1):123–132PubMedGoogle Scholar
  378. 378.
    Wilson AC, Clemente L, Liu T, Bowen RL, Meethal SV, Atwood CS (2008) Reproductive hormones regulate the selective permeability of the blood-brain barrier. Biochim Biophys Acta 1782(6):401–407PubMedGoogle Scholar
  379. 379.
    Burns AR, Phillips SC, Sokoya EM (2012) Pannexin protein expression in the rat middle cerebral artery. J Vasc Res 49(2):101–110PubMedCentralPubMedGoogle Scholar
  380. 380.
    Kaneko Y, Tachikawa M, Akaogi R, Fujimoto K, Ishibashi M, Uchida Y, Couraud PO, Ohtsuki S, Hosoya K, Terasaki T (2015) Contribution of pannexin 1 and connexin 43 hemichannels to extracellular calcium-dependent transport dynamics in human blood-brain barrier endothelial cells. J Pharmacol Exp Ther 353(1):192–200PubMedGoogle Scholar
  381. 381.
    Bedner P, Steinhauser C (1818) Theis M (2012) Functional redundancy and compensation among members of gap junction protein families? Biochim Biophys Acta 8:1971–1984Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Elke Decrock
    • 1
  • Marijke De Bock
    • 1
  • Nan Wang
    • 1
  • Geert Bultynck
    • 2
  • Christian Giaume
    • 3
    • 4
    • 5
  • Christian C. Naus
    • 6
  • Colin R. Green
    • 7
  • Luc Leybaert
    • 1
  1. 1.Physiology Group, Department of Basic Medical SciencesGhent UniversityGhentBelgium
  2. 2.Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular MedicineKU LeuvenLouvainBelgium
  3. 3.Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche ScientifiqueUnité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050Paris Cedex 05France
  4. 4.University Pierre et Marie CurieParisFrance
  5. 5.MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research UniversityParisFrance
  6. 6.Department of Cellular and Physiological Sciences, Faculty of MedicineUniversity of British ColumbiaVancouverCanada
  7. 7.Department of OphthalmologyThe University of AucklandAucklandNew Zealand

Personalised recommendations