Skip to main content
Log in

Splitting up the powerhouse: structural insights into the mechanism of mitochondrial fission

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mitochondria are dynamic organelles whose shape is regulated by the opposing processes of fission and fusion, operating in conjunction with organelle distribution along the cytoskeleton. The importance of fission and fusion homeostasis has been highlighted by a number of disease states linked to mutations in proteins involved in regulating mitochondrial morphology, in addition to changes in mitochondrial dynamics in Alzheimer’s, Huntington’s and Parkinson’s diseases. While a number of mitochondrial morphology proteins have been identified, how they co-ordinate to assemble the fission apparatus is not clear. In addition, while the master mediator of mitochondrial fission, dynamin-related protein 1, is conserved throughout evolution, the adaptor proteins involved in its mitochondrial recruitment are not. This review focuses on our current understanding of mitochondrial fission and the proteins that regulate this process in cell homeostasis, with a particular focus on the recent mechanistic insights based on protein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529:57–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lodi R, Cooper JM, Bradley JL, Manners D, Styles P, Taylor DJ, Schapira AH (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci USA 96(20):11492–11495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76:701–722

    Article  CAS  PubMed  Google Scholar 

  4. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    Article  CAS  PubMed  Google Scholar 

  5. Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122(5):669–682

    Article  CAS  PubMed  Google Scholar 

  6. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397(6718):441–446

    Article  CAS  PubMed  Google Scholar 

  7. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21(9):3017–3023

    CAS  PubMed  Google Scholar 

  8. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795

    Article  CAS  PubMed  Google Scholar 

  9. Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36(5):747–751

    Article  CAS  PubMed  Google Scholar 

  10. Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5(8):731–736

    CAS  PubMed  Google Scholar 

  11. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3):823–827

    Article  CAS  PubMed  Google Scholar 

  12. Shirendeb U, Reddy AP, Manczak M, Calkins MJ, Mao P, Tagle D, Reddy H (2011) Abnormal mitochondrial dynamics, mitochondrial loss and mutant Huntington oligomers in Huntington’s disease: implications for selective neuronal damage. Hum Mol Genet 20(7):1438–1455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V, Schroder JM, Vance JM (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat Genet 36(5):449–451

    Article  PubMed  CAS  Google Scholar 

  14. Chen H, Chan DC (2009) Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Osellame LD, Blacker TS, Duchen MR (2012) Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26(6):711–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160(2):189–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126(1):177–189

    Article  CAS  PubMed  Google Scholar 

  18. Kotiadis VN, Duchen MR, Osellame LD (2014) Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta 1840(4):1254–1265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Parone PA, Da Cruz S, Tondera D, Mattenberger Y, James DI, Maechler P, Barja F, Martinou JC (2008) Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS ONE 3(9):e3257

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Ban-Ishihara R, Ishihara T, Sasaki N, Mihara K, Ishihara N (2013) Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c. Proc Natl Acad Sci USA 110(29):11863–11868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462(2):245–253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. van der Bliek AM (1999) Functional diversity in the dynamin family. Trends Cell Biol 9(3):96–102

    Article  PubMed  Google Scholar 

  24. Danino D, Hinshaw JE (2001) Dynamin family of mechanoenzymes. Curr Opin Cell Biol 13(4):454–460

    Article  CAS  PubMed  Google Scholar 

  25. Pitts KR, Yoon Y, Krueger EW, McNiven MA (1999) The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol Biol Cell 10(12):4403–4417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Smirnova E, Shurland D, Ryazantsev SN, van der Bliek AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143(2):351–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Bui HT, Shaw JM (2013) Dynamin assembly strategies and adaptor proteins in mitochondrial fission. Curr Biol 23(19):R891–R899

    Article  CAS  PubMed  Google Scholar 

  28. Elgass K, Pakay J, Ryan MT, Palmer CS (2013) Recent advances into the understanding of mitochondrial fission. Biochim Biophys Acta 1833(1):150–161

    Article  CAS  PubMed  Google Scholar 

  29. Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356(17):1736–1741

    Article  CAS  PubMed  Google Scholar 

  30. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Goto Y, Taguchi N, Morinaga H, Maeda M, Takayanagi R, Yokota S, Mihara K (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11(8):958–966

    Article  CAS  PubMed  Google Scholar 

  31. Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M, Kensler TW, Iijima M, Sesaki H (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol 186(6):805–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bolanos JP, Almeida A, Moncada S (2010) Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci 35(3):145–149

    Article  CAS  PubMed  Google Scholar 

  33. Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11(6):747–752

    Article  CAS  PubMed  Google Scholar 

  34. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15(11):5001–5011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, Herzig S, Da Cruz S, Clerc P, Raschke I, Merkwirth C, Ehses S, Krause F, Chan DC, Alexander C, Bauer C, Youle R, Langer T, Martinou JC (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28(11):1589–1600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wasiak S, Zunino R, McBride HM (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177(3):439–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282(15):11521–11529

    Article  CAS  PubMed  Google Scholar 

  38. Chang CR, Blackstone C (2007) Drp1 phosphorylation and mitochondrial regulation. EMBO Rep 8(12):1088–1089 (author reply 1089–1090)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8(10):939–944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL, Counter CM, Kashatus DF (2015) Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 57(3):537–551

    Article  CAS  PubMed  Google Scholar 

  41. Serasinghe MN, Wieder SY, Renault TT, Elkholi R, Asciolla JJ, Yao JL, Jabado O, Hoehn K, Kageyama Y, Sesaki H, Chipuk JE (2015) mitochondrial division is requisite to ras-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol Cell 57(3):521–536

    Article  CAS  PubMed  Google Scholar 

  42. Faelber K, Posor Y, Gao S, Held M, Roske Y, Schulze D, Haucke V, Noe F, Daumke O (2011) Crystal structure of nucleotide-free dynamin. Nature 477(7366):556–560

    Article  CAS  PubMed  Google Scholar 

  43. Ford MG, Jenni S, Nunnari J (2011) The crystal structure of dynamin. Nature 477(7366):561–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Frohlich C, Grabiger S, Schwefel D, Faelber K, Rosenbaum E, Mears J, Rocks O, Daumke O (2013) Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. EMBO J 32(9):1280–1292

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12(8):2245–2256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Lackner LL, Horner JS, Nunnari J (2009) Mechanistic analysis of a dynamin effector. Science 325(5942):874–877

    Article  CAS  PubMed  Google Scholar 

  47. Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191(6):1141–1158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Schrader M (2006) Shared components of mitochondrial and peroxisomal division. Biochim Biophys Acta 1763(5–6):531–541

    Article  CAS  PubMed  Google Scholar 

  49. Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89(3):799–845

    Article  CAS  PubMed  Google Scholar 

  50. Strack S, Cribbs JT (2012) Allosteric modulation of Drp1 mechanoenzyme assembly and mitochondrial fission by the variable domain. J Biol Chem 287(14):10990–11001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Bui HT, Karren MA, Bhar D, Shaw JM (2012) A novel motif in the yeast mitochondrial dynamin Dnm1 is essential for adaptor binding and membrane recruitment. J Cell Biol 199(4):613–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18(1):20–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Ingerman E, Perkins EM, Marino M, Mears JA, McCaffery JM, Hinshaw JE, Nunnari J (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol 170(7):1021–1027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Roux A, Koster G, Lenz M, Sorre B, Manneville JB, Nassoy P, Bassereau P (2010) Membrane curvature controls dynamin polymerization. Proc Natl Acad Sci USA 107(9):4141–4146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Sweitzer SM, Hinshaw JE (1998) Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93(6):1021–1029

    Article  CAS  PubMed  Google Scholar 

  56. Danino D, Moon KH, Hinshaw JE (2004) Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin. J Struct Biol 147(3):259–267

    Article  CAS  PubMed  Google Scholar 

  57. Bashkirov PV, Akimov SA, Evseev AI, Schmid SL, Zimmerberg J, Frolov VA (2008) GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135(7):1276–1286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Kozlovsky Y, Kozlov MM (2003) Membrane fission: model for intermediate structures. Biophys J 85(1):85–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Bustillo-Zabalbeitia I, Montessuit S, Raemy E, Basanez G, Terrones O, Martinou JC (2014) Specific interaction with cardiolipin triggers functional activation of dynamin-related protein 1. PLoS ONE 9(7):e102738

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Macdonald PJ, Stepanyants N, Mehrotra N, Mears JA, Qi X, Sesaki H, Ramachandran R (2014) A dimeric equilibrium intermediate nucleates Drp1 reassembly on mitochondrial membranes for fission. Mol Biol Cell 25(12):1905–1915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Daum G (1985) Lipids of mitochondria. Biochim Biophys Acta 822(1):1–42

    Article  CAS  PubMed  Google Scholar 

  62. Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K (2004) Cardiolipin domains in Bacillus subtilis marburg membranes. J Bacteriol 186(5):1475–1483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Ortiz A, Killian JA, Verkleij AJ, Wilschut J (1999) Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. Biophys J 77(4):2003–2014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Pan R, Jones AD, Hu J (2014) Cardiolipin-mediated mitochondrial dynamics and stress response in Arabidopsis. Plant Cell 26(1):391–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Unsay JD, Cosentino K, Subburaj Y, Garcia-Saez AJ (2013) Cardiolipin effects on membrane structure and dynamics. Langmuir 29(51):15878–15887

    Article  CAS  PubMed  Google Scholar 

  66. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48(2):158–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Dagda RK, Cherra SJ 3rd, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284(20):13843–13855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Solesio ME, Prime TA, Logan A, Murphy MP, Del Mar Arroyo-Jimenez M, Jordan J, Galindo MF (2013) The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson’s disease. Biochim Biophys Acta 1:174–182

    Article  CAS  Google Scholar 

  70. Wang H, Song P, Du L, Tian W, Yue W, Liu M, Li D, Wang B, Zhu Y, Cao C, Zhou J, Chen Q (2011) Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem 286(13):11649–11658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29(28):9090–9103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 103(8):2653–2658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121(18):2012–2022

    Article  CAS  PubMed  Google Scholar 

  74. Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 1777(7–8):1028–1031

    Article  CAS  PubMed  Google Scholar 

  75. Smith RA, Murphy MP (2010) Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci 1201:96–103

    Article  CAS  PubMed  Google Scholar 

  76. Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, Sammut IA (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19(9):1088–1095

    Article  CAS  PubMed  Google Scholar 

  77. Chacko BK, Reily C, Srivastava A, Johnson MS, Ye Y, Ulasova E, Agarwal A, Zinn KR, Murphy MP, Kalyanaraman B, Darley-Usmar V (2010) Prevention of diabetic nephropathy in Ins2(+/)(−)(AkitaJ) mice by the mitochondria-targeted therapy MitoQ. Biochem J 432(1):9–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cocheme HM, Murphy MP, Dominiczak AF (2009) Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54(2):322–328

    Article  CAS  PubMed  Google Scholar 

  79. Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP, Szeto HH, Park B, Reddy PH (2010) Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 20(Suppl 2):S609–S631

    PubMed Central  PubMed  Google Scholar 

  80. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45(7–8):466–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Mozdy AD, McCaffery JM, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151(2):367–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Zhang Y, Chan DC (2007) Structural basis for recruitment of mitochondrial fission complexes by Fis1. Proc Natl Acad Sci USA 104(47):18526–18530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Jofuku A, Ishihara N, Mihara K (2005) Analysis of functional domains of rat mitochondrial Fis1, the mitochondrial fission-stimulating protein. Biochem Biophys Res Commun 333(2):650–659

    Article  CAS  PubMed  Google Scholar 

  84. Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21(11):932–939

    Article  CAS  PubMed  Google Scholar 

  85. Gandre-Babbe S, van der Bliek AM (2008) The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19(6):2402–2412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Koch A, Thiemann M, Grabenbauer M, Yoon Y, McNiven MA, Schrader M (2003) Dynamin-like protein 1 is involved in peroxisomal fission. J Biol Chem 278(10):8597–8605

    Article  CAS  PubMed  Google Scholar 

  87. Koch A, Yoon Y, Bonekamp NA, McNiven MA, Schrader M (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16(11):5077–5086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Griffin EE, Graumann J, Chan DC (2005) The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. J Cell Biol 170(2):237–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Naylor K, Ingerman E, Okreglak V, Marino M, Hinshaw JE, Nunnari J (2006) Mdv1 interacts with assembled dnm1 to promote mitochondrial division. J Biol Chem 281(4):2177–2183

    Article  CAS  PubMed  Google Scholar 

  90. Tieu Q, Nunnari J (2000) Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J Cell Biol 151(2):353–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Zhang Y, Chan NC, Ngo HB, Gristick H, Chan DC (2012) Crystal structure of mitochondrial fission complex reveals scaffolding function for mitochondrial division 1 (Mdv1) coiled coil. J Biol Chem 287(13):9855–9861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Koirala S, Guo Q, Kalia R, Bui HT, Eckert DM, Frost A, Shaw JM (2013) Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. Proc Natl Acad Sci USA 110(15):E1342–E1351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. James DI, Parone PA, Mattenberger Y, Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278(38):36373–36379

    Article  CAS  PubMed  Google Scholar 

  94. Stojanovski D, Koutsopoulos OS, Okamoto K, Ryan MT (2004) Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 117(Pt 7):1201–1210

    Article  CAS  PubMed  Google Scholar 

  95. Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23(15):5409–5420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Loson OC, Song Z, Chen H, Chan DC (2013) Fis1, Mff, MiD49 and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24(5):659–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S (2011) Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 30(3):556–568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Shen Q, Yamano K, Head BP, Kawajiri S, Cheung JT, Wang C, Cho JH, Hattori N, Youle RJ, van der Bliek AM (2014) Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Mol Biol Cell 25(1):145–159

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Wang B, Nguyen M, Chang NC, Shore GC (2011) Fis1, Bap31 and the kiss of death between mitochondria and endoplasmic reticulum. EMBO J 30(3):451–452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Itoyama A, Michiyuki S, Honsho M, Yamamoto T, Moser A, Yoshida Y, Fujiki Y (2013) Mff functions with Pex11pbeta and DLP1 in peroxisomal fission. Biol Open 2(10):998–1006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Koch J, Brocard C (2012) PEX11 proteins attract Mff and human Fis1 to coordinate peroxisomal fission. J Cell Sci 125(16):3813–3826

    Article  CAS  PubMed  Google Scholar 

  102. Simpson JC, Wellenreuther R, Poustka A, Pepperkok R, Wiemann S (2000) Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep 1(3):287–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT (2011) MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12(6):565–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D, Ryan MT (2013) MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J Biol Chem 288(38):27584–27593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Zhao J, Liu T, Jin S, Wang X, Qu M, Uhlen P, Tomilin N, Shupliakov O, Lendahl U, Nister M (2011) Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J 30(14):2762–2778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Kuchta K, Knizewski L, Wyrwicz LS, Rychlewski L, Ginalski K (2009) Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human. Nucleic Acids Res 37(22):7701–7714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Richter V, Palmer CS, Osellame LD, Singh AP, Elgass K, Stroud DA, Sesaki H, Kvansakul M, Ryan MT (2014) Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. J Cell Biol 204(4):477–486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Loson OC, Liu R, Rome ME, Meng S, Kaiser JT, Shan SO, Chan DC (2014) The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure 22(3):367–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Loson OC, Meng S, Ngo H, Liu R, Kaiser JT, Chan DC (2015) Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1. Protein Sci 24(3):386–394

    Article  CAS  PubMed  Google Scholar 

  110. Arnoult D, Grodet A, Lee YJ, Estaquier J, Blackstone C (2005) Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J Biol Chem 280(42):35742–35750

    Article  CAS  PubMed  Google Scholar 

  111. Brooks C, Wei Q, Cho SG, Dong Z (2009) Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Invest 119(5):1275–1285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Li H, Chen Y, Jones AF, Sanger RH, Collis LP, Flannery R, McNay EC, Yu T, Schwarzenbacher R, Bossy B, Bossy-Wetzel E, Bennett MV, Pypaert M, Hickman JA, Smith PJ, Hardwick JM, Jonas EA (2008) Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci USA 105(6):2169–2174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Shroff EH, Snyder CM, Budinger GR, Jain M, Chew TL, Khuon S, Perlman H, Chandel NS (2009) BH3 peptides induce mitochondrial fission and cell death independent of BAX/BAK. PLoS ONE 4(5):e5646

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Lazarou M, Stojanovski D, Frazier AE, Kotevski A, Dewson G, Craigen WJ, Kluck RM, Vaux DL, Ryan MT (2010) Inhibition of Bak activation by VDAC2 is dependent on the Bak transmembrane anchor. J Biol Chem 285(47):36876–36883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Montessuit S, Somasekharan SP, Terrones O, Lucken-Ardjomande S, Herzig S, Schwarzenbacher R, Manstein DJ, Bossy-Wetzel E, Basanez G, Meda P, Martinou JC (2010) Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142(6):889–901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Cereghetti GM, Costa V, Scorrano L (2010) Inhibition of Drp1-dependent mitochondrial fragmentation and apoptosis by a polypeptide antagonist of calcineurin. Cell Death Differ 17(11):1785–1794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Estaquier J, Arnoult D (2007) Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ 14(6):1086–1094

    Article  CAS  PubMed  Google Scholar 

  118. Chen H, Chomyn A, Chan C (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280(28):26185–26192

    Article  CAS  PubMed  Google Scholar 

  119. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 101(45):15927–15932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141(4):656–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Yamano K, Fogel AI, Wang C, van der Bliek AM, Youle RJ (2014) Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. Elife 3:e01612

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  122. Lazarou M, Jin SM, Kane LA, Youle RJ (2012) Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 22:320–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205(2):143–153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM (2014) Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 460(1):127–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510(7503):162–166

    CAS  PubMed  Google Scholar 

  126. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131

    Article  CAS  PubMed  Google Scholar 

  127. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117(Pt 13):2805–2812

    Article  CAS  PubMed  Google Scholar 

  128. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29(11):1792–1802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191(5):933–942

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. de Brito OM, Scorrano L (2010) An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J 29(16):2715–2723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Rowland AA, Voeltz GK (2012) Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol 13(10):607–625

    Article  CAS  PubMed  Google Scholar 

  132. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174(7):915–921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334(6054):358–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Gaillard J, Ramabhadran V, Neumanne E, Gurel P, Blanchoin L, Vantard M, Higgs HN (2011) Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules. Mol Biol Cell 22(23):4575–4587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Korobova F, Gauvin TJ, Higgs HN (2014) A role for myosin II in mammalian mitochondrial fission. Curr Biol 24(4):409–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Korobova F, Ramabhadran V, Higgs HN (2013) An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339(6118):464–467

    Article  CAS  PubMed  Google Scholar 

  137. Arasaki K, Shimizu H, Mogari H, Nishida N, Hirota N, Furuno A, Kudo Y, Baba M, Baba N, Cheng J, Fujimoto T, Ishihara N, Ortiz-Sandoval C, Barlow LD, Raturi A, Dohmae N, Wakana Y, Inoue H, Tani K, Dacks JB, Simmen T, Tagaya M (2015) A role for the ancient SNARE Syntaxin 17 in regulating mitochondrial division. Dev Cell 32:1–14

    Article  CAS  Google Scholar 

  138. Bui M, Gilady SY, Fitzsimmons RE, Benson MD, Lynes EM, Gesson K, Alto NM, Strack S, Scott JD, Simmen T (2010) Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties. J Biol Chem 285(41):31590–31602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Murley A, Lackner LL, Osman C, West M, Voeltz GK, Walter P, Nunnari J (2013) ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. Elife 2:e00422

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael T. Ryan or Laura D. Osellame.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, V., Singh, A.P., Kvansakul, M. et al. Splitting up the powerhouse: structural insights into the mechanism of mitochondrial fission. Cell. Mol. Life Sci. 72, 3695–3707 (2015). https://doi.org/10.1007/s00018-015-1950-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1950-y

Keywords

Navigation