Skip to main content

Advertisement

Log in

Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Structurally, protein kinase CK2 consists of two catalytic subunits (α and α′) and two regulatory subunits (β), which play a critical role in targeting specific CK2 substrates. Compelling evidence shows the complexity of the CK2 cellular signaling network and supports the view that this enzyme is a key component of regulatory protein kinase networks that are involved in several aspects of cancer. CK2 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, and its expression and activity are upregulated in blood tumors and virtually all solid tumors. The prognostic significance of CK2α expression in association with various clinicopathological parameters highlighted this kinase as an adverse prognostic marker in breast cancer. In addition, several recent studies reported its implication in the regulation of the epithelial-to-mesenchymal transition (EMT), an early step in cancer invasion and metastasis. In this review, we briefly overview the contribution of CK2 to several aspects of cancer and discuss how in mammary epithelial cells, the expression of its CK2β regulatory subunit plays a critical role in maintaining an epithelial phenotype through CK2-mediated control of key EMT-related transcription factors. Importantly, decreased CK2β expression in breast tumors is correlated with inefficient phosphorylation and nuclear translocation of Snail1 and Foxc2, ultimately leading to EMT induction. This review highlights the pivotal role played by CK2β in the mammary epithelial phenotype and discusses how a modest alteration in its expression may be sufficient to induce dramatic effects facilitating the early steps in tumor cell dissemination through the coordinated regulation of two key transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allende JE, Allende CC (1995) Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J 9(5):313–323

    CAS  PubMed  Google Scholar 

  2. Guerra B, Issinger OG (1999) Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis 20(2):391–408. doi:10.1002/(SICI)1522-2683(19990201)20:2<391:AID-ELPS391>3.0.CO;2-N

    CAS  PubMed  Google Scholar 

  3. Pinna LA (1990) Casein kinase 2: an ‘eminence grise’ in cellular regulation? Biochim Biophys Acta 1054(3):267–284

    CAS  PubMed  Google Scholar 

  4. Basnet H, Su XB, Tan Y, Meisenhelder J, Merkurjev D, Ohgi KA, Hunter T, Pillus L, Rosenfeld MG (2014) Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation. Nature 516(7530):267–271. doi:10.1038/nature13736

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Salvi M, Sarno S, Cesaro L, Nakamura H, Pinna LA (2009) Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim Biophys Acta 1793(5):847–859. doi:10.1016/j.bbamcr.2009.01.013

    CAS  PubMed  Google Scholar 

  6. Gabriel M, Litchfield DW (2013) Protein kinase CK2: at the crossroads of pathways controlling cell proliferation and survival, vol Protein kinase CK2. John Wiley & Sons, Inc, New York

    Google Scholar 

  7. Arevalo MA, Rodriguez-Tebar A (2006) Activation of casein kinase II and inhibition of phosphatase and tensin homologue deleted on chromosome 10 phosphatase by nerve growth factor/p75(NTR) inhibit glycogen synthase kinase-3 beta and stimulate axonal growth. Mol Biol Cell 17(8):3369–3377. doi:10.1091/mbc.E05-12-1144

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Hauck L, Harms C, An JF, Rohne J, Gertz K, Dietz R, Endres M, von Harsdorf R (2008) Protein kinase CK2 links extracellular growth factor signaling with the control of p27(Kip1) stability in the heart (vol 14, pg 315). Nat Med 14(5):585. doi:10.1038/Nm0508-585a

    CAS  Google Scholar 

  9. Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q, Fang B, Fang X, Fang D, Litchfield DW, Aldape K, Lu Z (2009) EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin. Mol Cell 36(4):547–559. doi:10.1016/j.molcel.2009.09.034

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Mead JR, Hughes TR, Irvine SA, Singh NN, Ramji DP (2003) Interferon-gamma stimulates the expression of the inducible cAMP early repressor in macrophages through the activation of casein kinase 2: a potentially novel pathway for interferon-gamma-mediated inhibition of gene transcription. J Biol Chem 278(20):17741–17751. doi:10.1074/jbc.M301602200

    CAS  PubMed  Google Scholar 

  11. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17(3):349–368

    CAS  PubMed  Google Scholar 

  12. Duncan JS, Litchfield DW (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784(1):33–47

    CAS  PubMed  Google Scholar 

  13. Guerra B, Issinger OG (2008) Protein kinase CK2 in human diseases. Curr Med Chem 15(19):1870–1886

    CAS  PubMed  Google Scholar 

  14. Ruzzene M (1804) Pinna LA (2010) Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim Biophys Acta 3:499–504. doi:10.1016/j.bbapap.2009.07.018

    Google Scholar 

  15. Trembley JH, Unger GM, Tobolt DK, Korman VL, Wang G, Ahmad KA, Slaton JW, Kren BT, Ahmed K (2011) Systemic administration of antisense oligonucleotides simultaneously targeting CK2alpha and alpha’ subunits reduces orthotopic xenograft prostate tumors in mice. Mol Cell Biochem 356(1–2):21–35. doi:10.1007/s11010-011-0943-x

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Tawfic S, Yu S, Wang H, Faust R, Davis A, Ahmed K (2001) Protein kinase CK2 signal in neoplasia. Histol Histopathol 16(2):573–582

    CAS  PubMed  Google Scholar 

  17. Pinna LA, Allende JE (2009) Protein kinase CK2 in health and disease: protein kinase CK2: an ugly duckling in the kinome pond. Cell Mol Life Sci 66(11–12):1795–1799. doi:10.1007/s00018-009-9148-9

    CAS  PubMed  Google Scholar 

  18. St-Denis NA, Litchfield DW (2009) Protein kinase CK2 in health and disease: from birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci 66(11–12):1817–1829. doi:10.1007/s00018-009-9150-2

    CAS  PubMed  Google Scholar 

  19. Seldin DC, Leder P (1995) Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 267(5199):894–897

    CAS  PubMed  Google Scholar 

  20. Landesman-Bollag E, Belkina A, Hovey B, Connors E, Cox C, Seldin DC (2011) Developmental and growth defects in mice with combined deficiency of CK2 catalytic genes. Mol Cell Biochem 356(1–2):227–231. doi:10.1007/s11010-011-0967-2

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Landesman-Bollag E, Channavajhala PL, Cardiff RD, Seldin DC (1998) p53 deficiency and misexpression of protein kinase CK2alpha collaborate in the development of thymic lymphomas in mice. Oncogene 16(23):2965–2974

    CAS  PubMed  Google Scholar 

  22. Eddy SF, Guo S, Demicco EG, Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE (2005) Inducible IkappaB kinase/IkappaB kinase epsilon expression is induced by CK2 and promotes aberrant nuclear factor-kappaB activation in breast cancer cells. Cancer Res 65(24):11375–11383

    CAS  PubMed  Google Scholar 

  23. Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE (2002) Protein kinase CK2 promotes aberrant activation of nuclear factor-kappaB, transformed phenotype, and survival of breast cancer cells. Cancer Res 62(22):6770–6778

    CAS  PubMed  Google Scholar 

  24. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2):48–61. doi:10.1016/j.cell.2014.12.033

    CAS  PubMed  Google Scholar 

  25. Gray GK, McFarland BC, Rowse AL, Gibson SA, Benveniste EN (2014) Therapeutic CK2 inhibition attenuates diverse prosurvival signaling cascades and decreases cell viability in human breast cancer cells. Oncotarget 5(15):6484–6496

    PubMed Central  PubMed  Google Scholar 

  26. Ahmed K, Gerber DA, Cochet C (2002) Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 12(5):226–230

    CAS  PubMed  Google Scholar 

  27. Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K (2008) Protein kinase CK2––a key suppressor of apoptosis. Adv Enzyme Regul 48:179–187. doi:10.1016/j.advenzreg.2008.04.002

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Trembley JH, Wang G, Unger G, Slaton J, Ahmed K (2009) Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 66(11–12):1858–1867. doi:10.1007/s00018-009-9154-y

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Giusiano S, Cochet C, Filhol O, Duchemin-Pelletier E, Secq V, Bonnier P, Carcopino X, Boubli L, Birnbaum D, Garcia S, Iovanna J, Charpin C (2011) Protein kinase CK2alpha subunit over-expression correlates with metastatic risk in breast carcinomas: quantitative immunohistochemistry in tissue microarrays. Eur J Cancer 47(5):792–801. doi:10.1016/j.ejca.2010.11.028

    CAS  PubMed  Google Scholar 

  30. Ortega CE, Seidner Y, Dominguez I (2014) Mining CK2 in cancer. PLoS ONE 9(12):e115609. doi:10.1371/journal.pone.0115609

    PubMed Central  PubMed  Google Scholar 

  31. Bae JS, Park SH, Kim KM, Kwon KS, Kim CY, Lee HK, Park BH, Park HS, Lee H, Moon WS, Chung MJ, Sylvester KG, Jang KY (2015) CK2alpha phosphorylates DBC1 and is involved in the progression of gastric carcinoma and predicts poor survival of gastric carcinoma patients. Int J Cancer 136(4):797–809. doi:10.1002/ijc.29043

    CAS  PubMed  Google Scholar 

  32. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G, Lewicki J, Shedden K, Clarke MF (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356(3):217–226. doi:10.1056/NEJMoa063994

    CAS  PubMed  Google Scholar 

  33. Solimini NL, Luo J, Elledge SJ (2007) Non-oncogene addiction and the stress phenotype of cancer cells. Cell 130(6):986–988. doi:10.1016/j.cell.2007.09.007

    CAS  PubMed  Google Scholar 

  34. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    CAS  PubMed  Google Scholar 

  35. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    CAS  PubMed  Google Scholar 

  36. Lebrin F, Chambaz EM, Bianchini L (2001) A role for protein kinase CK2 in cell proliferation: evidence using a kinase-inactive mutant of CK2 catalytic subunit alpha. Oncogene 20(16):2010–2022. doi:10.1038/sj.onc.1204307

    CAS  PubMed  Google Scholar 

  37. Bailly K, Soulet F, Leroy D, Amalric F, Bouche G (2000) Uncoupling of cell proliferation and differentiation activities of basic fibroblast growth factor. FASEB J 14(2):333–344

    CAS  PubMed  Google Scholar 

  38. Bonnet H, Filhol O, Truchet I, Brethenou P, Cochet C, Amalric F, Bouche G (1996) Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 271(40):24781–24787

    CAS  PubMed  Google Scholar 

  39. Filhol O, Baudier J, Delphin C, Loue-Mackenbach P, Chambaz EM, Cochet C (1992) Casein kinase II and the tumor suppressor protein P53 associate in a molecular complex that is negatively regulated upon P53 phosphorylation. J Biol Chem 267(29):20577–20583

    CAS  PubMed  Google Scholar 

  40. Bliesath J, Huser N, Omori M, Bunag D, Proffitt C, Streiner N, Ho C, Siddiqui-Jain A, O’Brien SE, Lim JK, Ryckman DM, Anderes K, Rice WG, Drygin D (2012) Combined inhibition of EGFR and CK2 augments the attenuation of PI3 K-Akt-mTOR signaling and the killing of cancer cells. Cancer Lett 322(1):113–118. doi:10.1016/j.canlet.2012.02.032

    CAS  PubMed  Google Scholar 

  41. Cox ML, Meek DW (2010) Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse stimuli. Cell Signal 22(3):564–571. doi:10.1016/j.cellsig.2009.11.014

    CAS  PubMed  Google Scholar 

  42. Skjerpen CS, Nilsen T, Wesche J, Olsnes S (2002) Binding of FGF-1 variants to protein kinase CK2 correlates with mitogenicity. EMBO J 21(15):4058–4069

    CAS  PubMed  Google Scholar 

  43. So KS, Kim CH, Rho JK, Kim SY, Choi YJ, Song JS, Kim WS, Choi CM, Chun YJ, Lee JC (2014) Autophagosome-mediated EGFR down-regulation induced by the CK2 inhibitor enhances the efficacy of EGFR-TKI on EGFR-mutant lung cancer cells with resistance by T790M. PLoS ONE 9(12):e114000. doi:10.1371/journal.pone.0114000

    PubMed Central  PubMed  Google Scholar 

  44. Ritt DA, Zhou M, Conrads TP, Veenstra TD, Copeland TD, Morrison DK (2007) CK2 Is a component of the KSR1 scaffold complex that contributes to Raf kinase activation. Curr Biol 17(2):179–184. doi:10.1016/j.cub.2006.11.061

    CAS  PubMed  Google Scholar 

  45. Filhol O, Nueda A, Martel V, Gerber-Scokaert D, Benitez MJ, Souchier C, Saoudi Y, Cochet C (2003) Live-cell fluorescence imaging reveals the dynamics of protein kinase CK2 individual subunits. Mol Cell Biol 23(3):975–987

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Fragoso R, Barata JT (2014) Kinases, tails and more: regulation of PTEN function by phosphorylation. Methods. doi:10.1016/j.ymeth.2014.10.015

    PubMed  Google Scholar 

  47. Lallemand-Breitenbach V, de The H (2006) CK2 and PML: regulating the regulator. Cell 126(2):244–245. doi:10.1016/j.cell.2006.07.004

    CAS  PubMed  Google Scholar 

  48. Keller DM, Lu H (2002) p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem 277(51):50206–50213

    CAS  PubMed  Google Scholar 

  49. Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B, Teruya-Feldstein J, Tempst P, Pandolfi PP (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126(2):269–283. doi:10.1016/j.cell.2006.05.041

    CAS  PubMed  Google Scholar 

  50. Sivachandran N, Cao JY, Frappier L (2010) Epstein–Barr virus nuclear antigen 1 Hijacks the host kinase CK2 to disrupt PML nuclear bodies. J Virol 84(21):11113–11123. doi:10.1128/JVI.01183-10

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Martel V, Filhol O, Colas P, Cochet C (2006) p53-dependent inhibition of mammalian cell survival by a genetically selected peptide aptamer that targets the regulatory subunit of protein kinase CK2. Oncogene 25(56):7343–7353

    CAS  PubMed  Google Scholar 

  52. Torres J, Pulido R (2001) The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 276(2):993–998. doi:10.1074/jbc.M009134200

    CAS  PubMed  Google Scholar 

  53. Torres J, Rodriguez J, Myers MP, Valiente M, Graves JD, Tonks NK, Pulido R (2003) Phosphorylation-regulated cleavage of the tumor suppressor PTEN by caspase-3: implications for the control of protein stability and pten–protein interactions. J Biol Chem 278(33):30652–30660

    CAS  PubMed  Google Scholar 

  54. Kang NI, Yoon HY, Kim HA, Kim KJ, Han MK, Lee YR, Hwang PH, Soh BY, Shin SJ, Im SY, Lee HK (2011) Protein kinase CK2/PTEN pathway plays a key role in platelet-activating factor-mediated murine anaphylactic shock. J Immunol 186(11):6625–6632. doi:10.4049/jimmunol.1100007

    CAS  PubMed  Google Scholar 

  55. Barata JT (2011) The impact of PTEN regulation by CK2 on PI3 K-dependent signaling and leukemia cell survival. Adv Enzyme Regul 51(1):37–49. doi:10.1016/j.advenzreg.2010.09.012

    CAS  PubMed  Google Scholar 

  56. Lu H, Yan C, Quan XX, Yang X, Zhang J, Bian Y, Chen Z, Van Waes C (2014) CK2 phosphorylates and inhibits TAp73 tumor suppressor function to promote expression of cancer stem cell genes and phenotype in head and neck cancer. Neoplasia 16(10):789–800. doi:10.1016/j.neo.2014.08.014

    PubMed Central  PubMed  Google Scholar 

  57. Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H, Goodman R, Lozano G, Zhao Y, Lu H (2001) A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 7(2):283–292

    CAS  PubMed  Google Scholar 

  58. Sestero CM, McGuire DJ, De Sarno P, Brantley EC, Soldevila G, Axtell RC, Raman C (2012) CD5-dependent CK2 activation pathway regulates threshold for T cell anergy. J Immunol 189(6):2918–2930. doi:10.4049/jimmunol.1200065

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Ulges A, Klein M, Reuter S, Gerlitzki B, Hoffmann M, Grebe N, Staudt V, Stergiou N, Bohn T, Bruhl TJ, Muth S, Yurugi H, Rajalingam K, Bellinghausen I, Tuettenberg A, Hahn S, Reissig S, Haben I, Zipp F, Waisman A, Probst HC, Beilhack A, Buchou T, Filhol-Cochet O, Boldyreff B, Breloer M, Jonuleit H, Schild H, Schmitt E, Bopp T (2015) Protein kinase CK2 enables regulatory T cells to suppress excessive T2 responses in vivo. Nat Immunol. doi:10.1038/ni.3083

    PubMed  Google Scholar 

  60. Dixit D, Sharma V, Ghosh S, Mehta VS, Sen E (2012) Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFalpha)-induced apoptosis through SIRT1 inhibition. Cell Death Dis 3:e271. doi:10.1038/cddis.2012.10

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Kim HR, Kim K, Lee KH, Kim SJ, Kim J (2008) Inhibition of casein kinase 2 enhances the death ligand- and natural killer cell-induced hepatocellular carcinoma cell death. Clin Exp Immunol 152(2):336–344

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Lee YH, Bae YS (2014) Phospholipase D2 downregulation induces cellular senescence through a reactive oxygen species-p53-p21Cip1/WAF1 pathway. FEBS Lett 588(17):3251–3258. doi:10.1016/j.febslet.2014.07.009

    CAS  PubMed  Google Scholar 

  63. Lee YH, Kang BS, Bae YS (2014) Premature senescence in human breast cancer and colon cancer cells by tamoxifen-mediated reactive oxygen species generation. Life Sci 97(2):116–122. doi:10.1016/j.lfs.2013.12.009

    CAS  PubMed  Google Scholar 

  64. Lee YH, Kim SY, Bae YS (2014) Upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells. Mol Cells 37(8):620–627. doi:10.14348/molcells.2014.0157

    PubMed Central  PubMed  Google Scholar 

  65. Caino MC, Meshki J, Kazanietz MG (2009) Hallmarks for senescence in carcinogenesis: novel signaling players. Apoptosis Int J Program Cell Death 14(4):392–408. doi:10.1007/s10495-009-0316-z

    CAS  Google Scholar 

  66. Wang D, Jang DJ (2009) Protein kinase CK2 regulates cytoskeletal reorganization during ionizing radiation-induced senescence of human mesenchymal stem cells. Cancer Res 69(20):8200–8207. doi:10.1158/0008-5472.CAN-09-1976

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Kim KJ, Cho KD, Jang KY, Kim HA, Kim HK, Lee HK, Im SY (2014) Platelet-activating factor enhances tumour metastasis via the reactive oxygen species-dependent protein kinase casein kinase 2-mediated nuclear factor-kappaB activation. Immunology 143(1):21–32. doi:10.1111/imm.12283

    CAS  PubMed  Google Scholar 

  68. Aparicio-Siegmund S, Sommer J, Monhasery N, Schwanbeck R, Keil E, Finkenstadt D, Pfeffer K, Rose-John S, Scheller J, Garbers C (2014) Inhibition of protein kinase II (CK2) prevents induced signal transducer and activator of transcription (STAT) 1/3 and constitutive STAT3 activation. Oncotarget 5(8):2131–2148

    PubMed Central  PubMed  Google Scholar 

  69. Yang H, Minamishima YA, Yan Q, Schlisio S, Ebert BL, Zhang X, Zhang L, Kim WY, Olumi AF, Kaelin WG Jr (2007) pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2. Mol Cell 28(1):15–27. doi:10.1016/j.molcel.2007.09.010

    PubMed Central  PubMed  Google Scholar 

  70. Zheng Y, Qin H, Frank SJ, Deng L, Litchfield DW, Tefferi A, Pardanani A, Lin FT, Li J, Sha B, Benveniste EN (2011) A CK2-dependent mechanism for activation of the JAK-STAT signaling pathway. Blood 118(1):156–166. doi:10.1182/blood-2010-01-266320

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Singh NN, Ramji DP (2008) Protein kinase CK2, an important regulator of the inflammatory response? J Mol Med 86(8):887–897. doi:10.1007/s00109-008-0352-0

    CAS  PubMed  Google Scholar 

  72. Su YW, Xie TX, Sano D, Myers JN (2011) IL-6 stabilizes Twist and enhances tumor cell motility in head and neck cancer cells through activation of casein kinase 2. PLoS ONE 6(4):e19412. doi:10.1371/journal.pone.0019412

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Koch S, Capaldo CT, Hilgarth RS, Fournier B, Parkos CA, Nusrat A (2013) Protein kinase CK2 is a critical regulator of epithelial homeostasis in chronic intestinal inflammation. Mucosal Immunol 6(1):136–145. doi:10.1038/mi.2012.57

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Drygin D, Ho CB, Omori M, Bliesath J, Proffitt C, Rice R, Siddiqui-Jain A, O’Brien S, Padgett C, Lim JK, Anderes K, Rice WG, Ryckman D (2011) Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer. Biochemical and biophysical research communications 415(1):163–167. doi:10.1016/j.bbrc.2011.10.046

    CAS  PubMed  Google Scholar 

  75. Serres M, Filhol O, Lickert H, Grangeasse C, Chambaz EM, Stappert J, Vincent C, Schmitt D (2000) The disruption of adherens junctions is associated with a decrease of E-cadherin phosphorylation by protein kinase CK2. Exp Cell Res 257(2):255–264

    CAS  PubMed  Google Scholar 

  76. Zou J, Luo H, Zeng Q, Dong Z, Wu D, Liu L (2011) Protein kinase CK2alpha is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes. J Trans Med 9:97. doi:10.1186/1479-5876-9-97

    CAS  Google Scholar 

  77. Dorfel MJ, Westphal JK, Bellmann C, Krug SM, Cording J, Mittag S, Tauber R, Fromm M, Blasig IE, Huber O (2013) CK2-dependent phosphorylation of occludin regulates the interaction with ZO-proteins and tight junction integrity. CCS 11(1):40. doi:10.1186/1478-811X-11-40

    PubMed Central  PubMed  Google Scholar 

  78. Golden D, Cantley LG (2014) Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm. Oncogene. doi:10.1038/onc.2014.395

    PubMed  Google Scholar 

  79. Wu H, Symes K, Seldin DC, Dominguez I (2009) Threonine 393 of beta-catenin regulates interaction with Axin. J Cell Biochem 108(1):52–63. doi:10.1002/jcb.22260

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Deshiere A, Duchemin-Pelletier E, Spreux E, Ciais D, Combes F, Vandenbrouck Y, Coute Y, Mikaelian I, Giusiano S, Charpin C, Cochet C, Filhol O (2013) Unbalanced expression of CK2 kinase subunits is sufficient to drive epithelial-to-mesenchymal transition by Snail1 induction. Oncogene 32(11):1373–1383. doi:10.1038/onc.2012.165

    CAS  PubMed  Google Scholar 

  81. MacPherson MR, Molina P, Souchelnytskyi S, Wernstedt C, Martin-Perez J, Portillo F, Cano A (2010) Phosphorylation of serine 11 and serine 92 as new positive regulators of human Snail1 function: potential involvement of casein kinase-2 and the cAMP-activated kinase protein kinase A. Mol Biol Cell 21(2):244–253. doi:10.1091/mbc.E09-06-0504

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC (2001) Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 20(25):3247–3257

    CAS  PubMed  Google Scholar 

  83. Kim H, Choi K, Kang H, Lee SY, Chi SW, Lee MS, Song J, Im D, Choi Y, Cho S (2014) Identification of a novel function of CX-4945 as a splicing regulator. PLoS ONE 9(4):e94978. doi:10.1371/journal.pone.0094978

    PubMed Central  PubMed  Google Scholar 

  84. Yu M, Yeh J, Van Waes C (2006) Protein kinase casein kinase 2 mediates inhibitor-kappaB kinase and aberrant nuclear factor-kappaB activation by serum factor(s) in head and neck squamous carcinoma cells. Cancer Res 66(13):6722–6731. doi:10.1158/0008-5472.CAN-05-3758

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Brenneisen P, Wlaschek M, Schwamborn E, Schneider LA, Ma W, Sies H, Scharffetter-Kochanek K (2002) Activation of protein kinase CK2 is an early step in the ultraviolet B-mediated increase in interstitial collagenase (matrix metalloproteinase-1; MMP-1) and stromelysin-1 (MMP-3) protein levels in human dermal fibroblasts. Biochem J 365(Pt 1):31–40. doi:10.1042/BJ20020110

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Chaar Z, O’Reilly P, Gelman I, Sabourin LA (2006) v-Src-dependent down-regulation of the Ste20-like kinase SLK by casein kinase II. J Biol Chem 281(38):28193–28199. doi:10.1074/jbc.M605665200

    CAS  PubMed  Google Scholar 

  87. Ranganathan P, Vasquez-Del Carpio R, Kaplan FM, Wang H, Gupta A, VanWye JD, Capobianco AJ (2011) Hierarchical phosphorylation within the ankyrin repeat domain defines a phosphoregulatory loop that regulates Notch transcriptional activity. J Biol Chem 286(33):28844–28857. doi:10.1074/jbc.M111.243600

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Rozanov DV, Savinov AY, Williams R, Liu K, Golubkov VS, Krajewski S, Strongin AY (2008) Molecular signature of MT1-MMP: transactivation of the downstream universal gene network in cancer. Cancer Res 68(11):4086–4096. doi:10.1158/0008-5472.CAN-07-6458

    CAS  PubMed Central  PubMed  Google Scholar 

  89. de Groot RE, Rappel SB, Lorenowicz MJ, Korswagen HC (2014) Protein kinase CK2 is required for Wntless internalization and Wnt secretion. Cell Signal 26(12):2601–2605. doi:10.1016/j.cellsig.2014.08.016

    PubMed  Google Scholar 

  90. Ku MJ, Park JW, Ryu BJ, Son YJ, Kim SH, Lee SY (2013) CK2 inhibitor CX4945 induces sequential inactivation of proteins in the signaling pathways related with cell migration and suppresses metastasis of A549 human lung cancer cells. Bioorg Med Chem Lett 23(20):5609–5613. doi:10.1016/j.bmcl.2013.08.043

    CAS  PubMed  Google Scholar 

  91. Cheng P, Kumar V, Liu H, Youn JI, Fishman M, Sherman S, Gabrilovich D (2014) Effects of notch signaling on regulation of myeloid cell differentiation in cancer. Cancer Res 74(1):141–152. doi:10.1158/0008-5472.CAN-13-1686

    CAS  PubMed  Google Scholar 

  92. Jia H, Liu Y, Xia R, Tong C, Yue T, Jiang J, Jia J (2010) Casein kinase 2 promotes Hedgehog signaling by regulating both smoothened and Cubitus interruptus. J Biol Chem 285(48):37218–37226. doi:10.1074/jbc.M110.174565

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Zhang S, Wang Y, Mao JH, Hsieh D, Kim IJ, Hu LM, Xu Z, Long H, Jablons DM, You L (2012) Inhibition of CK2alpha down-regulates Hedgehog/Gli signaling leading to a reduction of a stem-like side population in human lung cancer cells. PLoS ONE 7(6):e38996. doi:10.1371/journal.pone.0038996

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Zhang S, Yang YL, Wang Y, You B, Dai Y, Chan G, Hsieh D, Kim IJ, Fang L, Au A, Stoppler HJ, Xu Z, Jablons DM, You L (2014) CK2 inverted question mark, over-expressed in human malignant pleural mesothelioma, regulates the Hedgehog signaling pathway in mesothelioma cells. J Exp Clin Cancer Res 33(1):93. doi:10.1186/PREACCEPT-1843915470139675

    PubMed Central  PubMed  Google Scholar 

  95. Wu D, Sui C, Meng F, Tian X, Fu L, Li Y, Qi X, Cui H, Liu Y, Jiang Y (2014) Stable knockdown of protein kinase CK2-alpha (CK2alpha) inhibits migration and invasion and induces inactivation of hedgehog signaling pathway in hepatocellular carcinoma Hep G2 cells. Acta Histochem 116(8):1501–1508. doi:10.1016/j.acthis.2014.06.001

    CAS  PubMed  Google Scholar 

  96. Farina HG, Benavent Acero F, Perera Y, Rodriguez A, Perea SE, Castro BA, Gomez R, Alonso DF, Gomez DE (2011) CIGB-300, a proapoptotic peptide, inhibits angiogenesis in vitro and in vivo. Exp Cell Res 317(12):1677–1688. doi:10.1016/j.yexcr.2011.04.011

    CAS  PubMed  Google Scholar 

  97. Noy P, Sawasdichai A, Jayaraman PS, Gaston K (2012) Protein kinase CK2 inactivates PRH/Hhex using multiple mechanisms to de-repress VEGF-signalling genes and promote cell survival. Nucleic Acids Res 40(18):9008–9020. doi:10.1093/nar/gks687

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Lee NY, Haney JC, Sogani J, Blobe GC (2009) Casein kinase 2beta as a novel enhancer of activin-like receptor-1 signaling. FASEB J 23(11):3712–3721. doi:10.1096/fj.09-131607

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Stepanova V, Jerke U, Sagach V, Lindschau C, Dietz R, Haller H, Dumler I (2002) Urokinase-dependent human vascular smooth muscle cell adhesion requires selective vitronectin phosphorylation by ectoprotein kinase CK2. J Biol Chem 277(12):10265–10272. doi:10.1074/jbc.M109057200

    CAS  PubMed  Google Scholar 

  100. Xiao S, Caglar E, Maldonado P, Das D, Nadeem Z, Chi A, Trinite B, Li X, Saxena A (2014) Induced expression of nucleolin phosphorylation-deficient mutant confers dominant-negative effect on cell proliferation. PLoS ONE 9(10):e109858. doi:10.1371/journal.pone.0109858

    PubMed Central  PubMed  Google Scholar 

  101. Montenarh M (2014) Protein kinase CK2 and angiogenesis. Adv Clin Exp Med 23(2):153–158

    PubMed  Google Scholar 

  102. Lee WH, Lee HH, Vo MT, Kim HJ, Ko MS, Im YC, Min YJ, Lee BJ, Cho WJ, Park JW (2011) Casein kinase 2 regulates the mRNA-destabilizing activity of tristetraprolin. J Biol Chem 286(24):21577–21587. doi:10.1074/jbc.M110.201137

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Guerra B, Rasmussen TD, Schnitzler A, Jensen HH, Boldyreff BS, Miyata Y, Marcussen N, Niefind K, Issinger OG (2015) Protein kinase CK2 inhibition is associated with the destabilization of HIF-1alpha in human cancer cells. Cancer Lett 356(2):751–761. doi:10.1016/j.canlet.2014.10.026

    CAS  PubMed  Google Scholar 

  104. Hubert A, Paris S, Piret JP, Ninane N, Raes M, Michiels C (2006) Casein kinase 2 inhibition decreases hypoxia-inducible factor-1 activity under hypoxia through elevated p53 protein level. J Cell Sci 119(Pt 16):3351–3362. doi:10.1242/jcs.03069

    CAS  PubMed  Google Scholar 

  105. Mottet D, Ruys SP, Demazy C, Raes M, Michiels C (2005) Role for casein kinase 2 in the regulation of HIF-1 activity. Int J Cancer 117(5):764–774

    CAS  PubMed  Google Scholar 

  106. Pluemsampant S, Safronova OS, Nakahama K, Morita I (2008) Protein kinase CK2 is a key activator of histone deacetylase in hypoxia-associated tumors. Int J Cancer 122(2):333–341

    CAS  PubMed  Google Scholar 

  107. Guerra B (2006) Protein kinase CK2 subunits are positive regulators of AKT kinase. Int J Oncol 28(3):685–693

    CAS  PubMed  Google Scholar 

  108. Zheng Y, McFarland BC, Drygin D, Yu H, Bellis SL, Kim H, Bredel M, Benveniste EN (2013) Targeting protein kinase CK2 suppresses prosurvival signaling pathways and growth of glioblastoma. Clin Cancer Res 19(23):6484–6494. doi:10.1158/1078-0432.CCR-13-0265

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Parker R, Clifton-Bligh R, Molloy MP (2014) Phosphoproteomics of MAPK inhibition in BRAF-mutated cells and a role for the lethal synergism of dual BRAF and CK2 inhibition. Mol Cancer Ther 13(7):1894–1906. doi:10.1158/1535-7163.MCT-13-0938

    CAS  PubMed  Google Scholar 

  110. Olsen BB, Fritz G, Issinger OG (2012) Characterization of ATM and DNA-PK wild-type and mutant cell lines upon DSB induction in the presence and absence of CK2 inhibitors. Int J Oncol 40(2):592–598. doi:10.3892/ijo.2011.1227

    CAS  PubMed  Google Scholar 

  111. Olsen BB, Issinger OG, Guerra B (2010) Regulation of DNA-dependent protein kinase by protein kinase CK2 in human glioblastoma cells. Oncogene 29(45):6016–6026. doi:10.1038/onc.2010.337

    CAS  PubMed  Google Scholar 

  112. Finlan LE, Nenutil R, Ibbotson SH, Vojtesek B, Hupp TR (2006) CK2-site phosphorylation of p53 is induced in DeltaNp63 expressing basal stem cells in UVB irradiated human skin. Cell Cycle 5(21):2489–2494

    CAS  PubMed  Google Scholar 

  113. Kang H, Jung JW, Kim MK, Chung JH (2009) CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS ONE 4(8):e6611. doi:10.1371/journal.pone.0006611

    PubMed Central  PubMed  Google Scholar 

  114. Ubeda M, Habener JF (2003) CHOP transcription factor phosphorylation by casein kinase 2 inhibits transcriptional activation. J Biol Chem 278(42):40514–40520. doi:10.1074/jbc.M306404200

    CAS  PubMed  Google Scholar 

  115. Ford HL, Landesman-Bollag E, Dacwag CS, Stukenberg PT, Pardee AB, Seldin DC (2000) Cell cycle-regulated phosphorylation of the human SIX1 homeodomain protein. J Biol Chem 275(29):22245–22254. doi:10.1074/jbc.M002446200

    CAS  PubMed  Google Scholar 

  116. Tamaru T, Hattori M, Ninomiya Y, Kawamura G, Vares G, Honda K, Mishra DP, Wang B, Benjamin I, Sassone-Corsi P, Ozawa T, Takamatsu K (2013) ROS stress resets circadian clocks to coordinate pro-survival signals. PLoS ONE 8(12):e82006. doi:10.1371/journal.pone.0082006

    PubMed Central  PubMed  Google Scholar 

  117. Miyata Y, Nishida E (2005) CK2 binds, phosphorylates, and regulates its pivotal substrate Cdc37, an Hsp90-cochaperone. Mol Cell Biochem 274(1–2):171–179

    CAS  PubMed  Google Scholar 

  118. Sayed M, Kim SO, Salh BS, Issinger OG, Pelech SL (2000) Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem 275(22):16569–16573. doi:10.1074/jbc.M000312200

    CAS  PubMed  Google Scholar 

  119. Watabe M, Nakaki T (2011) Protein kinase CK2 regulates the formation and clearance of aggresomes in response to stress. J Cell Sci 124(Pt 9):1519–1532. doi:10.1242/jcs.081778

    CAS  PubMed  Google Scholar 

  120. Olsen BB, Svenstrup TH, Guerra B (2012) Downregulation of protein kinase CK2 induces autophagic cell death through modulation of the mTOR and MAPK signaling pathways in human glioblastoma cells. Int J Oncol 41(6):1967–1976. doi:10.3892/ijo.2012.1635

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Bandyopadhyay K, Li P, Gjerset RA (2012) CK2-mediated hyperphosphorylation of topoisomerase I targets serine 506, enhances topoisomerase I-DNA binding, and increases cellular camptothecin sensitivity. PLoS ONE 7(11):e50427. doi:10.1371/journal.pone.0050427

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Escargueil AE, Plisov SY, Filhol O, Cochet C, Larsen AK (2000) Mitotic phosphorylation of DNA topoisomerase II alpha by protein kinase CK2 creates the MPM-2 phosphoepitope on Ser-1469. J Biol Chem 275(44):34710–34718

    CAS  PubMed  Google Scholar 

  123. Grecu D, Assairi L (2014) CK2 phosphorylation of human centrins 1 and 2 regulates their binding to the DNA repair protein XPC, the centrosomal protein Sfi1 and the phototransduction protein transducin beta. FEBS Open Bio 4:407–419. doi:10.1016/j.fob.2014.04.002

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Guerra B, Iwabuchi K, Issinger OG (2014) Protein kinase CK2 is required for the recruitment of 53BP1 to sites of DNA double-strand break induced by radiomimetic drugs. Cancer Lett 345(1):115–123. doi:10.1016/j.canlet.2013.11.008

    CAS  PubMed  Google Scholar 

  125. Yata K, Lloyd J, Maslen S, Bleuyard JY, Skehel M, Smerdon SJ, Esashi F (2012) Plk1 and CK2 act in concert to regulate Rad51 during DNA double strand break repair. Mol Cell 45(3):371–383. doi:10.1016/j.molcel.2011.12.028

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Ohashi E, Takeishi Y, Ueda S, Tsurimoto T (2014) Interaction between Rad9-Hus1-Rad1 and TopBP1 activates ATR-ATRIP and promotes TopBP1 recruitment to sites of UV-damage. DNA Repair 21:1–11. doi:10.1016/j.dnarep.2014.05.001

    CAS  PubMed  Google Scholar 

  127. Takeishi Y, Ohashi E, Ogawa K, Masai H, Obuse C, Tsurimoto T (2010) Casein kinase 2-dependent phosphorylation of human Rad9 mediates the interaction between human Rad9-Hus1-Rad1 complex and TopBP1. Genes Cells 15(7):761–771. doi:10.1111/j.1365-2443.2010.01418.x

    CAS  PubMed  Google Scholar 

  128. Zhao T, Jia H, Li L, Zhang G, Zhao M, Cheng Q, Zheng J, Li D (2013) Inhibition of CK2 enhances UV-triggered apoptotic cell death in lung cancer cell lines. Oncol Rep 30(1):377–384. doi:10.3892/or.2013.2407

    CAS  PubMed  Google Scholar 

  129. Krohn NM, Stemmer C, Fojan P, Grimm R, Grasser KD (2003) Protein kinase CK2 phosphorylates the high mobility group domain protein SSRP1, inducing the recognition of UV-damaged DNA. J Biol Chem 278(15):12710–12715. doi:10.1074/jbc.M300250200

    CAS  PubMed  Google Scholar 

  130. Loizou JI, El-Khamisy SF, Zlatanou A, Moore DJ, Chan DW, Qin J, Sarno S, Meggio F, Pinna LA, Caldecott KW (2004) The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Cell 117(1):17–28

    CAS  PubMed  Google Scholar 

  131. Luo H, Chan DW, Yang T, Rodriguez M, Chen BP, Leng M, Mu JJ, Chen D, Songyang Z, Wang Y, Qin J (2004) A new XRCC1-containing complex and its role in cellular survival of methyl methanesulfonate treatment. Mol Cell Biol 24(19):8356–8365. doi:10.1128/MCB.24.19.8356-8365.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Strom CE, Mortusewicz O, Finch D, Parsons JL, Lagerqvist A, Johansson F, Schultz N, Erixon K, Dianov GL, Helleday T (2011) CK2 phosphorylation of XRCC1 facilitates dissociation from DNA and single-strand break formation during base excision repair. DNA Repair 10(9):961–969. doi:10.1016/j.dnarep.2011.07.004

    PubMed  Google Scholar 

  133. Bekker-Jensen S, Fugger K, Danielsen JR, Gromova I, Sehested M, Celis J, Bartek J, Lukas J, Mailand N (2007) Human Xip1 (C2orf13) is a novel regulator of cellular responses to DNA strand breaks. J Biol Chem 282(27):19638–19643. doi:10.1074/jbc.C700060200

    CAS  PubMed  Google Scholar 

  134. Clements PM, Breslin C, Deeks ED, Byrd PJ, Ju L, Bieganowski P, Brenner C, Moreira MC, Taylor AM, Caldecott KW (2004) The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4. DNA Repair 3(11):1493–1502. doi:10.1016/j.dnarep.2004.06.017

    CAS  PubMed  Google Scholar 

  135. Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR (2008) HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453(7195):682–686. doi:10.1038/nature06875

    CAS  PubMed  Google Scholar 

  136. Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR (2009) Paving the way for H2AX phosphorylation: chromatin changes in the DNA damage response. Cell Cycle 8(10):1494–1500

    CAS  PubMed  Google Scholar 

  137. Ayoub N, Jeyasekharan AD, Venkitaraman AR (2009) Mobilization and recruitment of HP1: a bimodal response to DNA breakage. Cell Cycle 8(18):2945–2950

    PubMed  Google Scholar 

  138. Chapman JR, Jackson SP (2008) Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep 9(8):795–801. doi:10.1038/embor.2008.103

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Wu L, Luo K, Lou Z, Chen J (2008) MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks. Proc Natl Acad Sci USA 105(32):11200–11205

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Spycher C, Miller ES, Townsend K, Pavic L, Morrice NA, Janscak P, Stewart GS, Stucki M (2008) Constitutive phosphorylation of MDC1 physically links the MRE11-RAD50-NBS1 complex to damaged chromatin. J Cell Biol 181(2):227–240. doi:10.1083/jcb.200709008

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Melander F, Bekker-Jensen S, Falck J, Bartek J, Mailand N, Lukas J (2008) Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. J Cell Biol 181(2):213–226. doi:10.1083/jcb.200708210

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Filhol O, Cochet C (2009) Protein kinase CK2 in health and disease: cellular functions of protein kinase CK2: a dynamic affair. Cell Mol Life Sci 66(11–12):1830–1839. doi:10.1007/s00018-009-9151-1

    CAS  PubMed  Google Scholar 

  143. Tapia JC, Torres VA, Rodriguez DA, Leyton L, Quest AF (2006) Casein kinase 2 (CK2) increases survivin expression via enhanced beta-catenin-T cell factor/lymphoid enhancer binding factor-dependent transcription. Proc Natl Acad Sci USA 103(41):15079–15084. doi:10.1073/pnas.0606845103

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Barrett RM, Colnaghi R, Wheatley SP (2011) Threonine 48 in the BIR domain of survivin is critical to its mitotic and anti-apoptotic activities and can be phosphorylated by CK2 in vitro. Cell Cycle 10(3):538–548

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Ponce DP, Maturana JL, Cabello P, Yefi R, Niechi I, Silva E, Armisen R, Galindo M, Antonelli M, Tapia JC (2011) Phosphorylation of AKT/PKB by CK2 is necessary for the AKT-dependent up-regulation of beta-catenin transcriptional activity. J Cell Physiol 226(7):1953–1959. doi:10.1002/jcp.22527

    CAS  PubMed  Google Scholar 

  146. Ponce DP, Yefi R, Cabello P, Maturana JL, Niechi I, Silva E, Galindo M, Antonelli M, Marcelain K, Armisen R, Tapia JC (2011) CK2 functionally interacts with AKT/PKB to promote the beta-catenin-dependent expression of survivin and enhance cell survival. Mol Cell Biochem 356(1–2):127–132. doi:10.1007/s11010-011-0965-4

    CAS  PubMed  Google Scholar 

  147. Olsen BB, Boldyreff B, Niefind K, Issinger OG (2006) Purification and characterization of the CK2alpha’-based holoenzyme, an isozyme of CK2alpha: a comparative analysis. Protein Expr Purif 47(2):651–661. doi:10.1016/j.pep.2005.12.001

    CAS  PubMed  Google Scholar 

  148. Hellwig CT, Ludwig-Galezowska AH, Concannon CG, Litchfield DW, Prehn JH, Rehm M (2010) Activity of protein kinase CK2 uncouples Bid cleavage from caspase-8 activation. J Cell Sci 123(Pt 9):1401–1406. doi:10.1242/jcs.061143

    CAS  PubMed  Google Scholar 

  149. Izeradjene K, Douglas L, Delaney A, Houghton JA (2004) Influence of casein kinase II in tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human rhabdomyosarcoma cells. Clin Cancer Res 10(19):6650–6660. doi:10.1158/1078-0432.CCR-04-0576

    CAS  PubMed  Google Scholar 

  150. Izeradjene K, Douglas L, Delaney A, Houghton JA (2005) Casein kinase II (CK2) enhances death-inducing signaling complex (DISC) activity in TRAIL-induced apoptosis in human colon carcinoma cell lines. Oncogene 24(12):2050–2058. doi:10.1038/sj.onc.1208397

    CAS  PubMed  Google Scholar 

  151. Ravi R, Bedi A (2002) Sensitization of tumor cells to Apo2 ligand/TRAIL-induced apoptosis by inhibition of casein kinase II. Cancer Res 62(15):4180–4185

    CAS  PubMed  Google Scholar 

  152. Wang G, Ahmad KA, Ahmed K (2006) Role of protein kinase CK2 in the regulation of tumor necrosis factor-related apoptosis inducing ligand-induced apoptosis in prostate cancer cells. Cancer Res 66(4):2242–2249

    CAS  PubMed  Google Scholar 

  153. Li PF, Li J, Muller EC, Otto A, Dietz R, von Harsdorf R (2002) Phosphorylation by protein kinase CK2: a signaling switch for the caspase-inhibiting protein ARC. Mol Cell 10(2):247–258

    CAS  PubMed  Google Scholar 

  154. Duncan JS, Turowec JP, Duncan KE, Vilk G, Wu C, Luscher B, Li SS, Gloor GB, Litchfield DW (2011) A peptide-based target screen implicates the protein kinase CK2 in the global regulation of caspase signaling. Sci Signal 4(172):ra30. doi:10.1126/scisignal.2001682

    PubMed  Google Scholar 

  155. Duncan JS, Turowec JP, Vilk G, Li SS, Gloor GB (1804) Litchfield DW (2010) Regulation of cell proliferation and survival: convergence of protein kinases and caspases. Biochim Biophys Acta 3:505–510. doi:10.1016/j.bbapap.2009.11.001

    Google Scholar 

  156. Filhol O, Cochet C (2011) Protein kinases curb cell death. Sci Signal 4(172):pe26. doi:10.1126/scisignal.2001921

    PubMed  Google Scholar 

  157. Turowec JP, Vilk G, Gabriel M, Litchfield DW (2013) Characterizing the convergence of protein kinase CK2 and caspase-3 reveals isoform-specific phosphorylation of caspase-3 by CK2alpha’: implications for pathological roles of CK2 in promoting cancer cell survival. Oncotarget 4(4):560–571

    PubMed Central  PubMed  Google Scholar 

  158. Di Maira G, Brustolon F, Bertacchini J, Tosoni K, Marmiroli S, Pinna LA, Ruzzene M (2007) Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene 26(48):6915–6926. doi:10.1038/sj.onc.1210495

    PubMed  Google Scholar 

  159. Kreutzer JN, Ruzzene M, Guerra B (2010) Enhancing chemosensitivity to gemcitabine via RNA interference targeting the catalytic subunits of protein kinase CK2 in human pancreatic cancer cells. BMC Cancer 10:440. doi:10.1186/1471-2407-10-440

    PubMed Central  PubMed  Google Scholar 

  160. Zanin S, Borgo C, Girardi C, O’Brien SE, Miyata Y, Pinna LA, Donella-Deana A, Ruzzene M (2012) Effects of the CK2 inhibitors CX-4945 and CX-5011 on drug-resistant cells. PLoS ONE 7(11):e49193. doi:10.1371/journal.pone.0049193

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Heiker JT, Wottawah CM, Juhl C, Kosel D, Morl K, Beck-Sickinger AG (2009) Protein kinase CK2 interacts with adiponectin receptor 1 and participates in adiponectin signaling. Cell Signal 21(6):936–942. doi:10.1016/j.cellsig.2009.02.003

    CAS  PubMed  Google Scholar 

  162. An S, Kyoung M, Allen JJ, Shokat KM, Benkovic SJ (2010) Dynamic regulation of a metabolic multi-enzyme complex by protein kinase CK2. J Biol Chem 285(15):11093–11099. doi:10.1074/jbc.M110.101139

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Yanagawa T, Funasaka T, Tsutsumi S, Raz T, Tanaka N, Raz A (2005) Differential regulation of phosphoglucose isomerase/autocrine motility factor activities by protein kinase CK2 phosphorylation. J Biol Chem 280(11):10419–10426. doi:10.1074/jbc.M409457200

    CAS  PubMed  Google Scholar 

  164. AlQuobaili F, Montenarh M (2012) CK2 and the regulation of the carbohydrate metabolism. Metabolism 61(11):1512–1517. doi:10.1016/j.metabol.2012.07.011

    CAS  Google Scholar 

  165. Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P (2012) Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5(210):11. doi:10.1126/scisignal.2002585

    Google Scholar 

  166. Taylor KM, Kille P, Hogstrand C (2012) Protein kinase CK2 opens the gate for zinc signaling. Cell Cycle 11(10):1863–1864. doi:10.4161/cc.20414

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Kim J, Kim SH (2012) Druggability of the CK2 inhibitor CX-4945 as an anticancer drug and beyond. Arch Pharmacal Res 35(8):1293–1296. doi:10.1007/s12272-012-0800-9

    CAS  Google Scholar 

  168. Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O’Brien SE, Bliesath J, Omori M, Huser N, Ho C, Proffitt C, Schwaebe MK, Ryckman DM, Rice WG, Anderes K (2010) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res 70(24):10288–10298. doi:10.1158/0008-5472.CAN-10-1893

    CAS  PubMed  Google Scholar 

  169. Pierre F, Chua PC, O’Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M, Michaux J, Nagasawa J, Schwaebe MK, Stefan E, Vialettes A, Whitten JP, Chen TK, Darjania L, Stansfield R, Bliesath J, Drygin D, Ho C, Omori M, Proffitt C, Streiner N, Rice WG, Ryckman DM, Anderes K (2011) Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol Cell Biochem 356(1–2):37–43. doi:10.1007/s11010-011-0956-5

    CAS  PubMed  Google Scholar 

  170. Siddiqui-Jain A, Bliesath J, Macalino D, Omori M, Huser N, Streiner N, Ho CB, Anderes K, Proffitt C, O’Brien SE, Lim JK, Von Hoff DD, Ryckman DM, Rice WG, Drygin D (2012) CK2 inhibitor CX-4945 suppresses DNA repair response triggered by DNA-targeted anticancer drugs and augments efficacy: mechanistic rationale for drug combination therapy. Mol Cancer Ther 11(4):994–1005. doi:10.1158/1535-7163.MCT-11-0613

    CAS  PubMed  Google Scholar 

  171. Lolli G, Ranchio A, Battistutta R (2014) Active form of the protein kinase CK2 alpha2beta2 holoenzyme is a strong complex with symmetric architecture. ACS Chem Biol 9(2):366–371. doi:10.1021/cb400771y

    CAS  PubMed  Google Scholar 

  172. Olsen BB, Wang SY, Svenstrup TH, Chen BP, Guerra B (2012) Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage. BMC Mol Biol 13:7. doi:10.1186/1471-2199-13-7

    CAS  PubMed Central  PubMed  Google Scholar 

  173. St-Denis NA, Bailey ML, Parker EL, Vilk G, Litchfield DW (2011) Localization of phosphorylated CK2alpha to the mitotic spindle requires the peptidyl-prolyl isomerase Pin1. J Cell Sci 124(Pt 14):2341–2348. doi:10.1242/jcs.077446

    CAS  PubMed  Google Scholar 

  174. Filhol O, Martiel JL, Cochet C (2004) Protein kinase CK2: a new view of an old molecular complex. EMBO Rep 5(4):351–355. doi:10.1038/sj.embor.7400115

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Bibby AC, Litchfield DW (2005) The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta. Int J Biol Sci 1(2):67–79

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Bolanos-Garcia VM, Fernandez-Recio J, Allende JE, Blundell TL (2006) Identifying interaction motifs in CK2beta–a ubiquitous kinase regulatory subunit. Trends Biochem Sci 31(12):654–661. doi:10.1016/j.tibs.2006.10.005

    CAS  PubMed  Google Scholar 

  177. Stigare J, Buddelmeijer N, Pigon A, Egyhazi E (1993) A majority of casein kinase II alpha subunit is tightly bound to intranuclear components but not to the beta subunit. Mol Cell Biochem 129(1):77–85

    CAS  PubMed  Google Scholar 

  178. Guerra B, Siemer S, Boldyreff B, Issinger OG (1999) Protein kinase CK2: evidence for a protein kinase CK2beta subunit fraction, devoid of the catalytic CK2alpha subunit, in mouse brain and testicles. FEBS Lett 462(3):353–357

    CAS  PubMed  Google Scholar 

  179. Stalter G, Siemer S, Becht E, Ziegler M, Remberger K, Issinger OG (1994) Asymmetric expression of protein kinase CK2 subunits in human kidney tumors. Biochem Biophys Res Commun 202(1):141–147. doi:10.1006/bbrc.1994.1904

    CAS  PubMed  Google Scholar 

  180. Pinna LA, Meggio F (1997) Protein kinase CK2 (“casein kinase-2”) and its implication in cell division and proliferation. Prog Cell Cycle Res 3:77–97

    CAS  PubMed  Google Scholar 

  181. Guerra B, Issinger OG, Wang JY (2003) Modulation of human checkpoint kinase Chk1 by the regulatory beta-subunit of protein kinase CK2. Oncogene 22(32):4933–4942. doi:10.1038/sj.onc.1206721

    CAS  PubMed  Google Scholar 

  182. Olsen BB, Kreutzer JN, Watanabe N, Holm T, Guerra B (2010) Mapping of the interaction sites between Wee1 kinase and the regulatory beta-subunit of protein kinase CK2. Int J Oncol 36(5):1175–1182

    CAS  PubMed  Google Scholar 

  183. Gerber DA, Souquere-Besse S, Puvion F, Dubois MF, Bensaude O, Cochet C (2000) Heat-induced relocalization of protein kinase CK2. Implication of CK2 in the context of cellular stress. J Biol Chem 275(31):23919–23926. doi:10.1074/jbc.M002697200

    CAS  PubMed  Google Scholar 

  184. Yamane K, Kinsella TJ (2005) CK2 inhibits apoptosis and changes its cellular localization following ionizing radiation. Cancer Res 65(10):4362–4367

    CAS  PubMed  Google Scholar 

  185. Souquere-Besse S, Pichard E, Filhol O, Legrand V, Rosa-Calatrava M, Hovanessian AG, Cochet C, Puvion-Dutilleul F (2002) Adenovirus infection targets the cellular protein kinase CK2 and RNA-activated protein kinase (PKR) into viral inclusions of the cell nucleus. Microsc Res Tech 56(6):465–478

    CAS  PubMed  Google Scholar 

  186. Wadd S, Bryant H, Filhol O, Scott JE, Hsieh TY, Everett RD, Clements JB (1999) The multifunctional herpes simplex virus IE63 protein interacts with heterogeneous ribonucleoprotein K and with casein kinase 2. J Biol Chem 274(41):28991–28998

    CAS  PubMed  Google Scholar 

  187. Koffa MD, Kean J, Zachos G, Rice SA, Clements JB (2003) CK2 protein kinase is stimulated and redistributed by functional herpes simplex virus ICP27 protein. J Virol 77(7):4315–4325

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Medina-Palazon C, Gruffat H, Mure F, Filhol O, Vingtdeux-Didier V, Drobecq H, Cochet C, Sergeant N, Sergeant A, Manet E (2007) Protein kinase CK2 phosphorylation of EB2 regulates its function in the production of Epstein-Barr virus infectious viral particles. J Virol 81(21):11850–11860

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Laramas M, Pasquier D, Filhol O, Ringeisen F, Descotes JL, Cochet C (2007) Nuclear localization of protein kinase CK2 catalytic subunit (CK2alpha) is associated with poor prognostic factors in human prostate cancer. Eur J Cancer 43(5):928–934

    CAS  PubMed  Google Scholar 

  190. Lin KY, Tai C, Hsu JC, Li CF, Fang CL, Lai HC, Hseu YC, Lin YF, Uen YH (2011) Overexpression of nuclear protein kinase CK2 alpha catalytic subunit (CK2alpha) as a poor prognosticator in human colorectal cancer. PLoS ONE 6(2):e17193. doi:10.1371/journal.pone.0017193

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Bachhuber T, Almaca J, Aldehni F, Mehta A, Amaral MD, Schreiber R, Kunzelmann K (2008) Regulation of the epithelial Na+ channel by the protein kinase CK2. J Biol Chem 283(19):13225–13232

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Brechet A, Fache MP, Brachet A, Ferracci G, Baude A, Irondelle M, Pereira S, Leterrier C, Dargent B (2008) Protein kinase CK2 contributes to the organization of sodium channels in axonal membranes by regulating their interactions with ankyrin G. J Cell Biol 183(6):1101–1114

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Pagano MA, Arrigoni G, Marin O, Sarno S, Meggio F, Treharne KJ, Mehta A, Pinna LA (2008) Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis. Biochemistry 47(30):7925–7936

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Wang Y, Guo W, Liang L, Esselman WJ (1999) Phosphorylation of CD45 by casein kinase 2. Modulation of activity and mutational analysis. J Biol Chem 274(11):7454–7461

    CAS  PubMed  Google Scholar 

  195. Greer SF, Wang Y, Raman C, Justement LB (2001) CD45 function is regulated by an acidic 19-amino acid insert in domain II that serves as a binding and phosphoacceptor site for casein kinase 2. J Immunol 166(12):7208–7218

    CAS  PubMed  Google Scholar 

  196. Axtell RC, Xu L, Barnum SR, Raman C (2006) CD5-CK2 binding/activation-deficient mice are resistant to experimental autoimmune encephalomyelitis: protection is associated with diminished populations of IL-17-expressing T cells in the central nervous system. J Immunol 177(12):8542–8549

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Meggio F, Boldyreff B, Marin O, Pinna LA, Issinger OG (1992) Role of the beta subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme. Eur J Biochem 204(1):293–297

    CAS  PubMed  Google Scholar 

  198. Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115(Pt 20):3873–3878

    CAS  PubMed  Google Scholar 

  199. Maizel A, Tassetto M, Filhol O, Cochet C, Prochiantz A, Joliot A (2002) Engrailed homeoprotein secretion is a regulated process. Development 129(15):3545–3553

    CAS  PubMed  Google Scholar 

  200. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369(Pt 1):1–15

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Huillard E, Ziercher L, Blond O, Wong M, Deloulme JC, Souchelnytskyi S, Baudier J, Cochet C, Buchou T (2010) Disruption of CK2beta in embryonic neural stem cells compromises proliferation and oligodendrogenesis in the mouse telencephalon. Mol Cell Biol 30(11):2737–2749. doi:10.1128/MCB.01566-09

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Donella-Deana A, Cesaro L, Sarno S, Ruzzene M, Brunati AM, Marin O, Vilk G, Doherty-Kirby A, Lajoie G, Litchfield DW, Pinna LA (2003) Tyrosine phosphorylation of protein kinase CK2 by Src-related tyrosine kinases correlates with increased catalytic activity. Biochem J 372(Pt 3):841–849. doi:10.1042/BJ20021905

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Landesman-Bollag E, Song DH, Romieu-Mourez R, Sussman DJ, Cardiff RD, Sonenshein GE, Seldin DC (2001) Protein kinase CK2: signaling and tumorigenesis in the mammary gland Protein kinase CK2 in mammary gland tumorigenesis. Mol Cell Biochem 227(1–2):153–165

    CAS  PubMed  Google Scholar 

  204. Belguise K, Guo S, Yang S, Rogers AE, Seldin DC, Sherr DH, Sonenshein GE (2007) Green tea polyphenols reverse cooperation between c-Rel and CK2 that induces the aryl hydrocarbon receptor, slug, and an invasive phenotype. Cancer Res 67(24):11742–11750. doi:10.1158/0008-5472.CAN-07-2730

    CAS  PubMed  Google Scholar 

  205. Channavajhala P, Seldin DC (2002) Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene 21(34):5280–5288. doi:10.1038/sj.onc.1205640

    CAS  PubMed  Google Scholar 

  206. Kelliher MA, Seldin DC, Leder P (1996) Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. EMBO J 15(19):5160–5166

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial–mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22(5–6):396–403. doi:10.1016/j.semcancer.2012.04.001

    CAS  PubMed  Google Scholar 

  208. Ansieau S (2013) EMT in breast cancer stem cell generation. Cancer Lett 338(1):63–68. doi:10.1016/j.canlet.2012.05.014

    CAS  PubMed  Google Scholar 

  209. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196. doi:10.1038/nrm3758

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Puisieux A, Brabletz T, Caramel J (2014) Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 16(6):488–494. doi:10.1038/ncb2976

    CAS  PubMed  Google Scholar 

  211. Canton DA, Litchfield DW (2006) The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal 18(3):267–275

    CAS  PubMed  Google Scholar 

  212. Deshiere A, Theis-Febvre N, Martel V, Cochet C, Filhol O (2008) Protein kinase CK2 and cell polarity. Mol Cell Biochem 316(1–2):107–113

    CAS  PubMed  Google Scholar 

  213. Filhol O, Deshiere A, Cochet C (2013) Role of CK2 in the control of cell plasticity in breast carcinoma progression, vol Protein kinase CK2 Protein kinase CK2. John Wiley & sons, New York

    Google Scholar 

  214. Galovic M, Xu D, Areces LB, van der Kammen R, Innocenti M (2011) Interplay between N-WASP and CK2 optimizes clathrin-mediated endocytosis of EGFR. J Cell Sci 124(Pt 12):2001–2012. doi:10.1242/jcs.081182

    CAS  PubMed  Google Scholar 

  215. Ulloa L, Diaz-Nido J, Avila J (1993) Depletion of casein kinase II by antisense oligonucleotide prevents neuritogenesis in neuroblastoma cells. EMBO J 12(4):1633–1640

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Nieto MA (2011) The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 27:347–376. doi:10.1146/annurev-cellbio-092910-154036

    CAS  PubMed  Google Scholar 

  217. Nieto MA, Cano A (2012) The epithelial–mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin Cancer Biol 22(5–6):361–368. doi:10.1016/j.semcancer.2012.05.003

    CAS  PubMed  Google Scholar 

  218. Gonzalez DM, Medici D (2014) Signaling mechanisms of the epithelial–mesenchymal transition. Sci Signal 7(344):re8. doi:10.1126/scisignal.2005189

    PubMed Central  PubMed  Google Scholar 

  219. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142. doi:10.1038/nrm1835

    CAS  PubMed  Google Scholar 

  220. Moustakas A, Heldin CH (2007) Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98(10):1512–1520. doi:10.1111/j.1349-7006.2007.00550.x

    CAS  PubMed  Google Scholar 

  221. Yang J, Weinberg RA (2008) Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829. doi:10.1016/j.devcel.2008.05.009

    CAS  PubMed  Google Scholar 

  222. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial–mesenchymal transitions in development and disease. Cell 139(5):871–890. doi:10.1016/j.cell.2009.11.007

    CAS  PubMed  Google Scholar 

  223. Foubert E, De Craene B, Berx G (2010) Key signalling nodes in mammary gland development and cancer. The Snail1-Twist1 conspiracy in malignant breast cancer progression. Breast Cancer Res 12(3):206. doi:10.1186/bcr2585

    PubMed Central  PubMed  Google Scholar 

  224. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2(2):84–89. doi:10.1038/35000034

    CAS  PubMed  Google Scholar 

  225. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76–83. doi:10.1038/35000025

    CAS  PubMed  Google Scholar 

  226. Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62(6):1613–1618

    CAS  PubMed  Google Scholar 

  227. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939. doi:10.1016/j.cell.2004.06.006

    CAS  PubMed  Google Scholar 

  228. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24(14):2375–2385. doi:10.1038/sj.onc.1208429

    CAS  PubMed  Google Scholar 

  229. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7(6):1267–1278

    CAS  PubMed  Google Scholar 

  230. Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N, Kutok JL, Hartwell K, Richardson AL, Weinberg RA (2007) Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA 104(24):10069–10074. doi:10.1073/pnas.0703900104

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A, Nieto MA (2012) Metastatic colonization requires the repression of the epithelial–mesenchymal transition inducer Prrx1. Cancer Cell 22(6):709–724. doi:10.1016/j.ccr.2012.10.012

    CAS  PubMed  Google Scholar 

  232. Olmeda D, Montes A, Moreno-Bueno G, Flores JM, Portillo F, Cano A (2008) Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines. Oncogene 27(34):4690–4701. doi:10.1038/onc.2008.118

    CAS  PubMed  Google Scholar 

  233. Dave N, Guaita-Esteruelas S, Gutarra S, Frias A, Beltran M, Peiro S, de Herreros AG (2011) Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. J Biol Chem 286(14):12024–12032. doi:10.1074/jbc.M110.168625

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Tran DD, Corsa CA, Biswas H, Aft RL, Longmore GD (2011) Temporal and spatial cooperation of Snail1 and Twist1 during epithelial–mesenchymal transition predicts for human breast cancer recurrence. Mol Cancer Res 9(12):1644–1657. doi:10.1158/1541-7786.MCR-11-0371

    CAS  PubMed  Google Scholar 

  235. Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342(6159):1234850. doi:10.1126/science.1234850

    PubMed  Google Scholar 

  236. Cheng Q, Chang JT, Gwin WR, Zhu J, Ambs S, Geradts J, Lyerly HK (2014) A signature of epithelial–mesenchymal plasticity and stromal activation in primary tumor modulates late recurrence in breast cancer independent of disease subtype. Breast Cancer Res 16(4):407. doi:10.1186/s13058-014-0407-9

    PubMed Central  PubMed  Google Scholar 

  237. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) Epithelial–mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68(4):989–997. doi:10.1158/0008-5472.CAN-07-2017

    CAS  PubMed  Google Scholar 

  238. Vinas-Castells R, Beltran M, Valls G, Gomez I, Garcia JM, Montserrat-Sentis B, Baulida J, Bonilla F, de Herreros AG, Diaz VM (2010) The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation. J Biol Chem 285(6):3794–3805. doi:10.1074/jbc.M109.065995

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Lim S, Becker A, Zimmer A, Lu J, Buettner R, Kirfel J (2013) SNAI1-mediated epithelial–mesenchymal transition confers chemoresistance and cellular plasticity by regulating genes involved in cell death and stem cell maintenance. PLoS ONE 8(6):e66558. doi:10.1371/journal.pone.0066558

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Tam WL, Weinberg RA (2013) The epigenetics of epithelial–mesenchymal plasticity in cancer. Nat Med 19(11):1438–1449. doi:10.1038/nm.3336

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Peinado H, Quintanilla M, Cano A (2003) Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 278(23):21113–21123. doi:10.1074/jbc.M211304200

    CAS  PubMed  Google Scholar 

  242. Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A (2008) HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 283(48):33437–33446. doi:10.1074/jbc.M802016200

    CAS  PubMed Central  PubMed  Google Scholar 

  243. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL (2004) Notch promotes epithelial–mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18(1):99–115. doi:10.1101/gad.276304

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA 105(17):6392–6397. doi:10.1073/pnas.0802047105

    CAS  PubMed Central  PubMed  Google Scholar 

  245. Zhou BP, Hung MC (2005) Wnt, hedgehog and snail: sister pathways that control by GSK-3beta and beta-Trcp in the regulation of metastasis. Cell Cycle 4(6):772–776

    CAS  PubMed  Google Scholar 

  246. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436(7047):123–127. doi:10.1038/nature03688

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Imai T, Horiuchi A, Wang C, Oka K, Ohira S, Nikaido T, Konishi I (2003) Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 163(4):1437–1447. doi:10.1016/S0002-9440(10)63501-8

    CAS  PubMed Central  PubMed  Google Scholar 

  248. Lester RD, Jo M, Montel V, Takimoto S, Gonias SL (2007) uPAR induces epithelial–mesenchymal transition in hypoxic breast cancer cells. J Cell Biol 178(3):425–436. doi:10.1083/jcb.200701092

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Lopez-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1(6–7):303–314. doi:10.1002/emmm.200900043

    CAS  PubMed Central  PubMed  Google Scholar 

  250. Yang Z, Rayala S, Nguyen D, Vadlamudi RK, Chen S, Kumar R (2005) Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail’s subcellular localization and functions. Cancer Res 65(8):3179–3184. doi:10.1158/0008-5472.CAN-04-3480

    CAS  PubMed  Google Scholar 

  251. Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM (2005) Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J cell Biol 168(1):29–33. doi:10.1083/jcb.200409067

    CAS  PubMed Central  PubMed  Google Scholar 

  252. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 6(10):931–940. doi:10.1038/ncb1173

    CAS  PubMed  Google Scholar 

  253. Birkenkamp KU, Coffer PJ (2003) Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans 31(Pt 1):292–297

    CAS  PubMed  Google Scholar 

  254. Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27(16):2276–2288. doi:10.1038/onc.2008.21

    CAS  PubMed  Google Scholar 

  255. Obsil T, Obsilova V (2008) Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene 27(16):2263–2275. doi:10.1038/onc.2008.20

    CAS  PubMed  Google Scholar 

  256. Hader C, Marlier A, Cantley L (2010) Mesenchymal–epithelial transition in epithelial response to injury: the role of Foxc2. Oncogene 29(7):1031–1040. doi:10.1038/onc.2009.397

    CAS  PubMed Central  PubMed  Google Scholar 

  257. Ford HL, Kabingu EN, Bump EA, Mutter GL, Pardee AB (1998) Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: a possible mechanism of breast carcinogenesis. Proc Natl Acad Sci USA 95(21):12608–12613

    CAS  PubMed Central  PubMed  Google Scholar 

  258. Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G (2004) Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 10(2):175–181. doi:10.1038/nm966

    CAS  PubMed  Google Scholar 

  259. Behbakht K, Qamar L, Aldridge CS, Coletta RD, Davidson SA, Thorburn A, Ford HL (2007) Six1 overexpression in ovarian carcinoma causes resistance to TRAIL-mediated apoptosis and is associated with poor survival. Cancer Res 67(7):3036–3042. doi:10.1158/0008-5472.CAN-06-3755

    CAS  PubMed  Google Scholar 

  260. Coletta RD, Christensen KL, Micalizzi DS, Jedlicka P, Varella-Garcia M, Ford HL (2008) Six1 overexpression in mammary cells induces genomic instability and is sufficient for malignant transformation. Cancer Res 68(7):2204–2213. doi:10.1158/0008-5472.CAN-07-3141

    CAS  PubMed  Google Scholar 

  261. McCoy EL, Iwanaga R, Jedlicka P, Abbey NS, Chodosh LA, Heichman KA, Welm AL, Ford HL (2009) Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial–mesenchymal transition. J Clin Invest 119(9):2663–2677. doi:10.1172/JCI37691

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Micalizzi DS, Christensen KL, Jedlicka P, Coletta RD, Baron AE, Harrell JC, Horwitz KB, Billheimer D, Heichman KA, Welm AL, Schiemann WP, Ford HL (2009) The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial–mesenchymal transition and metastasis in mice through increasing TGF-beta signaling. J Clin Invest 119(9):2678–2690. doi:10.1172/JCI37815

    CAS  PubMed Central  PubMed  Google Scholar 

  263. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial–mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15(2):117–134. doi:10.1007/s10911-010-9178-9

    PubMed Central  PubMed  Google Scholar 

  264. McCoy EL, Kawakami K, Ford HL, Coletta RD (2009) Expression of Six1 homeobox gene during development of the mouse submandibular salivary gland. Oral Dis 15(6):407–413. doi:10.1111/j.1601-0825.2009.01560.x

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Lupp S, Gumhold C, Ampofo E, Montenarh M, Rother K (2013) CK2 kinase activity but not its binding to CK2 promoter regions is implicated in the regulation of CK2alpha and CK2beta gene expressions. Mol Cell Biochem 384(1–2):71–82. doi:10.1007/s11010-013-1782-8

    CAS  PubMed  Google Scholar 

  266. Feliciano A, Castellvi J, Artero-Castro A, Leal JA, Romagosa C, Hernandez-Losa J, Peg V, Fabra A, Vidal F, Kondoh H, Ramon YCS, Lleonart ME (2013) miR-125b acts as a tumor suppressor in breast tumorigenesis via its novel direct targets ENPEP, CK2-alpha, CCNJ, and MEGF9. PLoS ONE 8(10):e76247. doi:10.1371/journal.pone.0076247

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Institut National de la Santé et de la Recherche Médicale, the Ligue Nationale et Regionale contre le Cancer, the Commissariat à l’Energie Atomique and the University of Grenoble Alpes and the Espoir foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Odile Filhol or Claude Cochet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filhol, O., Giacosa, S., Wallez, Y. et al. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell. Mol. Life Sci. 72, 3305–3322 (2015). https://doi.org/10.1007/s00018-015-1929-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1929-8

Keywords

Navigation