Skip to main content
Log in

Maternal PCBP1 determines the normal timing of pronucleus formation in mouse eggs

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In mammals, pronucleus formation, a landmark event for egg activation and fertilization, is critical for embryonic development. However, the mechanisms underlying pronucleus formation remain unclear. Increasing evidence has shown that the transition from a mature egg to a developing embryo and the early steps of development are driven by the control of maternal cytoplasmic factors. Herein, a two-dimensional-electrophoresis-based proteomic approach was used in metaphase II and parthenogenetically activated mouse eggs to search for maternal proteins involved in egg activation, one of which was poly(rC)-binding protein 1 (PCBP1). Phosphoprotein staining indicated that PCBP1 displayed dephosphorylation in parthenogenetically activated egg, which possibly boosts its ability to bind to mRNAs. We identified 75 mRNAs expressed in mouse eggs that contained the characteristic PCBP1-binding CU-rich sequence in the 3′-UTR. Among them, we focused on H2a.x mRNA, as it was closely related to pronucleus formation in Xenopus oocytes. Further studies suggested that PCBP1 could bind to H2a.x mRNA and enhance its stability, thus promoting mouse pronucleus formation during parthenogenetic activation of murine eggs, while the inhibition of PCBP1 evidently retarded pronucleus formation. In summary, these data propose that PCBP1 may serve as a novel maternal factor that is required for determining the normal timing of pronucleus formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Horner VL, Wolfner MF (2008) Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev Dyn 237:527–544. doi:10.1002/dvdy.21454

    Article  CAS  PubMed  Google Scholar 

  2. Krauchunas AR, Wolfner MF (2013) Molecular changes during egg activation. Curr Top Dev Biol 102:267–292. doi:10.1016/B978-0-12-416024-8.00010-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Malcuit C, Kurokawa M, Fissore RA (2006) Calcium oscillations and mammalian egg activation. J Cell Physiol 206:565–573. doi:10.1002/jcp.20471

    Article  CAS  PubMed  Google Scholar 

  4. Stitzel ML, Seydoux G (2007) Regulation of the oocyte-to-zygote transition. Science 316:407–408. doi:10.1126/science.1138236

    Article  CAS  PubMed  Google Scholar 

  5. Collas P (1998) Cytoplasmic control of nuclear assembly. Reprod Fertil Dev 10:581–592

    Article  CAS  PubMed  Google Scholar 

  6. Poccia D, Collas P (1997) Nuclear envelope dynamics during male pronuclear development. Dev Growth Differ 39:541–550

    Article  CAS  PubMed  Google Scholar 

  7. Perreault SD, Naish SJ, Zirkin BR (1987) The timing of hamster sperm nuclear decondensation and male pronucleus formation is related to sperm nuclear disulfide bond content. Biol Reprod 36:239–244

    Article  CAS  PubMed  Google Scholar 

  8. Clift D, Schuh M (2013) Restarting life: fertilization and the transition from meiosis to mitosis. Nat Rev Mol Cell Biol 14:549–562. doi:10.1038/nrm3643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Li L, Zheng P, Dean J (2010) Maternal control of early mouse development. Development 137:859–870. doi:10.1242/dev.039487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Nakamura H, Wu C, Kuang J, Larabell C, Etkin LD (2000) XCS-1, a maternally expressed gene product involved in regulating mitosis in Xenopus. J Cell Sci 113(Pt 13):2497–2505

    CAS  PubMed  Google Scholar 

  11. Ma M, Guo X, Wang F, Zhao C, Liu Z, Shi Z, Wang Y, Zhang P, Zhang K, Wang N, Lin M, Zhou Z, Liu J, Li Q, Wang L, Huo R, Sha J, Zhou Q (2008) Protein expression profile of the mouse metaphase-II oocyte. J Proteome Res 7:4821–4830. doi:10.1021/pr800392s

    Article  CAS  PubMed  Google Scholar 

  12. Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I, Gao S (2010) Proteome of mouse oocytes at different developmental stages. Proc Natl Acad Sci USA 107:17639–17644. doi:10.1073/pnas.1013185107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ko JL and Loh HH (2005) Poly C binding protein, a single-stranded DNA binding protein, regulates mouse mu-opioid receptor gene expression. J Neurochem 93:749–761. doi:10.1111/j.1471-4159.2005.03089.x

    Article  CAS  PubMed  Google Scholar 

  14. Kim JH, Hahm B, Kim YK, Choi M, Jang SK (2000) Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm. J Mol Biol 298:395–405. doi:10.1006/jmbi.2000.3687

    Article  CAS  PubMed  Google Scholar 

  15. Weiss IM, Liebhaber SA (1994) Erythroid cell-specific determinants of alpha-globin mRNA stability. Mol Cell Biol 14:8123–8132

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Weiss IM, Liebhaber SA (1995) Erythroid cell-specific mRNA stability elements in the alpha 2-globin 3′ nontranslated region. Mol Cell Biol 15:2457–2465

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Thiele BJ, Doller A, Kahne T, Pregla R, Hetzer R and Regitz-Zagrosek V (2004) RNA-binding proteins heterogeneous nuclear ribonucleoprotein A1, E1, and K are involved in post-transcriptional control of collagen I and III synthesis. Circ Res 95:1058–1066. doi:10.1161/01.RES.0000149166.33833.08

    Article  CAS  PubMed  Google Scholar 

  18. Paulding WR, Czyzyk-Krzeska MF (1999) Regulation of tyrosine hydroxylase mRNA stability by protein-binding, pyrimidine-rich sequence in the 3′-untranslated region. J Biol Chem 274:2532–2538

    Article  CAS  PubMed  Google Scholar 

  19. Czyzyk-Krzeska MF, Bendixen AC (1999) Identification of the poly(C) binding protein in the complex associated with the 3′ untranslated region of erythropoietin messenger RNA. Blood 93:2111–2120

    CAS  PubMed  Google Scholar 

  20. Evans JR, Mitchell SA, Spriggs KA, Ostrowski J, Bomsztyk K, Ostarek D, Willis AE (2003) Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene 22:8012–8020. doi:10.1038/sj.onc.1206645

    Article  PubMed  Google Scholar 

  21. Pickering BM, Mitchell SA, Spriggs KA, Stoneley M, Willis AE (2004) Bag-1 internal ribosome entry segment activity is promoted by structural changes mediated by poly(rC) binding protein 1 and recruitment of polypyrimidine tract binding protein 1. Mol Cell Biol 24:5595–5605. doi:10.1128/MCB.24.12.5595-5605.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Pickering BM, Mitchell SA, Evans JR, Willis AE (2003) Polypyrimidine tract binding protein and poly r(C) binding protein 1 interact with the BAG-1 IRES and stimulate its activity in vitro and in vivo. Nucleic Acids Res 31:639–646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhong N, Radu G, Ju W and Brown WT (2005) Novel progerin-interactive partner proteins hnRNP E1, EGF, Mel 18, and UBC9 interact with lamin A/C. Biochem Biophys Res Commun 338:855–861. doi:10.1016/j.bbrc.2005.10.020

    Article  CAS  PubMed  Google Scholar 

  24. Lim J, Hao T, Shaw C, Patel AJ, Szabo G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabasi AL, Vidal M and Zoghbi HY (2006) A protein–protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125:801–814. doi:10.1016/j.cell.2006.03.032

    Article  CAS  PubMed  Google Scholar 

  25. Xia M, He H, Wang Y, Liu M, Zhou T, Lin M, Zhou Z, Huo R, Zhou Q, Sha J (2012) PCBP1 is required for maintenance of the transcriptionally silent state in fully grown mouse oocytes. Cell Cycle 11:2833–2842. doi:10.4161/cc.21169

    Article  CAS  PubMed  Google Scholar 

  26. Huang XY, Guo XJ, Shen J, Wang YF, Chen L, Xie J, Wang NL, Wang FQ, Zhao C, Huo R, Lin M, Wang X, Zhou ZM, Sha JH (2008) Construction of a proteome profile and functional analysis of the proteins involved in the initiation of mouse spermatogenesis. J Proteome Res 7:3435–3446. doi:10.1021/pr800179h

    Article  CAS  PubMed  Google Scholar 

  27. Holcik M, Liebhaber SA (1997) Four highly stable eukaryotic mRNAs assemble 3′ untranslated region RNA-protein complexes sharing cis and trans components. Proc Natl Acad Sci USA 94:2410–2414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Mignone F, Grillo G, Licciulli F, Iacono M, Liuni S, Kersey PJ, Duarte J, Saccone C and Pesole G (2005) UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 33:D141–D146. doi:10.1093/nar/gki021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Evsikov AV, Graber JH, Brockman JM, Hampl A, Holbrook AE, Singh P, Eppig JJ, Solter D, Knowles BB (2006) Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev 20:2713–2727. doi:10.1101/gad.1471006

    Article  CAS  PubMed  Google Scholar 

  30. Yeap BB, Voon DC, Vivian JP, McCulloch RK, Thomson AM, Giles KM, Czyzyk-Krzeska MF, Furneaux H, Wilce MC, Wilce JA, Leedman PJ (2002) Novel binding of HuR and poly(C)-binding protein to a conserved UC-rich motif within the 3′-untranslated region of the androgen receptor messenger RNA. J Biol Chem 277:27183–27192. doi:10.1074/jbc.M202883200

    Article  CAS  PubMed  Google Scholar 

  31. Dai Y, Lee C, Hutchings A, Sun Y, Moor R (2000) Selective requirement for Cdc25C protein synthesis during meiotic progression in porcine oocytes. Biol Reprod 62:519–532

    Article  CAS  PubMed  Google Scholar 

  32. Agrawal GK, Thelen JJ (2005) Development of a simplified, economical polyacrylamide gel staining protocol for phosphoproteins. Proteomics 5:4684–4688. doi:10.1002/pmic.200500021

    Article  CAS  PubMed  Google Scholar 

  33. Meng Q, Rayala SK, Gururaj AE, Talukder AH, O’Malley BW, Kumar R (2007) Signaling-dependent and coordinated regulation of transcription, splicing, and translation resides in a single coregulator, PCBP1. Proc Natl Acad Sci USA 104:5866–5871. doi:10.1073/pnas.0701065104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Leffers H, Dejgaard K, Celis JE (1995) Characterisation of two major cellular poly(rC)-binding human proteins, each containing three K-homologous (KH) domains. Eur J Biochem 230:447–453

    Article  CAS  PubMed  Google Scholar 

  35. Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002) Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12:162–169

    Article  CAS  PubMed  Google Scholar 

  36. Kleinschmidt JA, Steinbeisser H (1991) DNA-dependent phosphorylation of histone H2A.X during nucleosome assembly in Xenopus laevis oocytes: involvement of protein phosphorylation in nucleosome spacing. EMBO J 10:3043–3050

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Zuccotti M, Garagna S, Merico V, Monti M, Alberto Redi C (2005) Chromatin organisation and nuclear architecture in growing mouse oocytes. Mol Cell Endocrinol 234:11–17. doi:10.1016/j.mce.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  38. Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R (2001) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36:337–397. doi:10.1080/20014091074219

    Article  CAS  PubMed  Google Scholar 

  39. Dimitrov S, Dasso MC, Wolffe AP (1994) Remodeling sperm chromatin in Xenopus laevis egg extracts: the role of core histone phosphorylation and linker histone B4 in chromatin assembly. J Cell Biol 126:591–601

    Article  CAS  PubMed  Google Scholar 

  40. Racki WJ, Richter JD (2006) CPEB controls oocyte growth and follicle development in the mouse. Development 133:4527–4537. doi:10.1242/dev.02651

    Article  CAS  PubMed  Google Scholar 

  41. Inoue A, Zhang Y (2014) Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat Struct Mol Biol 21:609–616. doi:10.1038/nsmb.2839

    Article  CAS  PubMed  Google Scholar 

  42. Wu BJ, Dong FL, Ma XS, Wang XG, Lin F, Liu HL (2014) Localization and expression of histone H2A variants during mouse oogenesis and preimplantation embryo development. Genet Mol Res 13:5929–5939. doi:10.4238/2014.August.7.8

    Article  CAS  PubMed  Google Scholar 

  43. McLaren A, Bowman P (1973) Genetic effects on the timing of early development in the mouse. J Embryol Exp Morphol 30:491–498

    CAS  PubMed  Google Scholar 

  44. Lonergan P, Khatir H, Piumi F, Rieger D, Humblot P, Boland MP (1999) Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. J Reprod Fertil 117:159–167

    Article  CAS  PubMed  Google Scholar 

  45. Fenwick J, Platteau P, Murdoch AP, Herbert M (2002) Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro. Hum Reprod 17:407–412

    Article  CAS  PubMed  Google Scholar 

  46. Koyama K, Kang SS, Huang W, Yanagawa Y, Takahashi Y, Nagano M (2014) Aging-related changes in in vitro-matured bovine oocytes: oxidative stress, mitochondrial activity and ATP content after nuclear maturation. J Reprod Dev 60:136–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Qiang Wang (Nanjing Medical University) for providing anti-myc antibody. We gratefully acknowledge Liwen Bianji for editing the article. This work is supported by the China 973 Program (2012CB944704) and the National Science Foundation of China (30700275).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ran Huo or Qi Zhou.

Additional information

Z. Shi, C. Zhao, and Y. Yang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1. The identification information of PCBP1 protein. (XLSX 12 kb)

Supplemental Table 2. Maternal mRNAs suggested to be potential binding targets for PCBP1. (XLSX 19 kb)

18_2015_1905_MOESM3_ESM.tif

Supplemental Fig. 1. Only one band with predicted molecular weight was present on western blots of ovary protein extracts using anti-PCBP1 (a) or anti-H2A.X (b) antibody confirmed the specificity of these antibodies. (TIFF 2153 kb)

18_2015_1905_MOESM4_ESM.tif

Supplemental Fig. 2. RNase-free PBS (control group) or exogenous myc-Pcbp1 mRNA (overexpression group) was microinjected into MII eggs and then immunofluorescence detecting with anti-myc Tag antibody indicated that myc-PCBP1 protein was efficiently overexpressed. (TIFF 10699 kb)

Supplemental movie 1. The process of pronucleus formation in non-injected group. (MOV 1011 kb)

Supplemental movie 2. The process of pronucleus formation in IgG-injected group. (MOV 859 kb)

Supplemental movie 3. The process of pronucleus formation in anti-PCBP1 antibody-injected group. (MOV 1222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Zhao, C., Yang, Y. et al. Maternal PCBP1 determines the normal timing of pronucleus formation in mouse eggs. Cell. Mol. Life Sci. 72, 3575–3586 (2015). https://doi.org/10.1007/s00018-015-1905-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1905-3

Keywords

Navigation