Cellular and Molecular Life Sciences

, Volume 72, Issue 13, pp 2575–2584 | Cite as

The novel role of miRNAs for tamoxifen resistance in human breast cancer

  • Wenwen Zhang
  • Jing Xu
  • Yaqin Shi
  • Qian Sun
  • Qun Zhang
  • Xiaoxiang Guan


The selective estrogen receptor modulator tamoxifen is the most commonly used treatment for patients with ER-positive breast cancer. However, tumor cells often develop resistance to tamoxifen therapy, which is a major obstacle limiting the success of breast cancer treatment. miRNAs, as oncogenic or tumor suppressor genes, regulate the expression and function of their related target genes to affect the biological behaviors of cancer cells, including cancer initiation, progression, metastasis, and therapeutic resistance. In detail, many miRNAs associated with breast cancer tamoxifen resistance have been identified, which offer new targets for breast cancer therapy. Here, we review the miRNAs involved in regulation of tamoxifen resistance in human breast cancer and the mechanism of how the modulation of miRNAs may regulate the sensitivity of breast cancer cells to tamoxifen. We also discuss the future prospects of studies about miRNAs in regulation of tamoxifen resistance and miRNA-based therapeutics for tamoxifen resistance breast cancer patients.


miR-221 Endocrine resistance Antiestrogen treatment Biomarkers miRNA-based therapeutics MRX34 Next generation sequencing 



This work was supported by National Natural Science Foundation of China (No. 81470357) and a Foundation for Clinical Medicine Science and Technology Special Project of the Jiangsu Province, China (No. BL2014071) (to X.G.).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi: 10.3322/caac.20107 PubMedCrossRefGoogle Scholar
  2. 2.
    Clark GM, Osborne CK, McGuire WL (1984) Correlations between estrogen receptor, progesterone receptor, and patient characteristics in human breast cancer. J Clin Oncol 2(10):1102–1109PubMedGoogle Scholar
  3. 3.
    Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339(22):1609–1618. doi: 10.1056/NEJM199811263392207 PubMedCrossRefGoogle Scholar
  4. 4.
    Early Breast Cancer Trialists’ Collaborative G (1998) Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 351(9114):1451–1467CrossRefGoogle Scholar
  5. 5.
    Early Breast Cancer Trialists’ Collaborative G, Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S, McGale P, Pan HC, Taylor C, Wang YC, Dowsett M, Ingle J, Peto R (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378(9793):771–784. doi: 10.1016/S0140-6736(11)60993-8 CrossRefGoogle Scholar
  6. 6.
    Early Breast Cancer Trialists’ Collaborative G (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717. doi: 10.1016/S0140-6736(05)66544-0 CrossRefGoogle Scholar
  7. 7.
    Zhou JY, Ma WL, Liang S, Zeng Y, Shi R, Yu HL, Xiao WW, Zheng WL (2009) Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells. BMB Rep 42(9):593–598PubMedCrossRefGoogle Scholar
  8. 8.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269. doi: 10.1038/nrc1840 PubMedCrossRefGoogle Scholar
  9. 9.
    Olson P, Lu J, Zhang H, Shai A, Chun MG, Wang Y, Libutti SK, Nakakura EK, Golub TR, Hanahan D (2009) MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 23(18):2152–2165. doi: 10.1101/gad.1820109 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Nelson KM, Weiss GJ (2008) MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther 7(12):3655–3660. doi: 10.1158/1535-7163.MCT-08-0586 PubMedCrossRefGoogle Scholar
  11. 11.
    Klinge CM (2012) miRNAs and estrogen action. Trends Endocrinol Metab 23(5):223–233. doi: 10.1016/j.tem.2012.03.002 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Majumder S, Jacob ST (2011) Emerging role of microRNAs in drug-resistant breast cancer. Gene Expr 15(3):141–151PubMedCrossRefGoogle Scholar
  13. 13.
    Tessel MA, Krett NL, Rosen ST (2010) Steroid receptor and microRNA regulation in cancer. Curr Opin Oncol 22(6):592–597. doi: 10.1097/CCO.0b013e32833ea80c PubMedCrossRefGoogle Scholar
  14. 14.
    Jaiyesimi IA, Buzdar AU, Decker DA, Hortobagyi GN (1995) Use of tamoxifen for breast cancer: twenty-eight years later. J Clin Oncol 13(2):513–529PubMedGoogle Scholar
  15. 15.
    Gutierrez MC, Detre S, Johnston S, Mohsin SK, Shou J, Allred DC, Schiff R, Osborne CK, Dowsett M (2005) Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol 23(11):2469–2476. doi: 10.1200/JCO.2005.01.172 PubMedCrossRefGoogle Scholar
  16. 16.
    Yang X, Ferguson AT, Nass SJ, Phillips DL, Butash KA, Wang SM, Herman JG, Davidson NE (2000) Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res 60(24):6890–6894PubMedGoogle Scholar
  17. 17.
    Nass SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF, Davidson NE, Graff JR (2000) Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Res 60(16):4346–4348PubMedGoogle Scholar
  18. 18.
    Yi X, Wei W, Wang SY, Du ZY, Xu YJ, Yu XD (2008) Histone deacetylase inhibitor SAHA induces ERalpha degradation in breast cancer MCF-7 cells by CHIP-mediated ubiquitin pathway and inhibits survival signaling. Biochem Pharmacol 75(9):1697–1705. doi: 10.1016/j.bcp.2007.10.035 PubMedCrossRefGoogle Scholar
  19. 19.
    Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG, Davidson NE (2001) Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res 61(19):7025–7029PubMedGoogle Scholar
  20. 20.
    Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, Coppola D, Cheng JQ (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283(45):31079–31086. doi: 10.1074/jbc.M806041200 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF (2005) Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66. Biochem Biophys Res Commun 336(4):1023–1027. doi: 10.1016/j.bbrc.2005.08.226 PubMedCrossRefGoogle Scholar
  22. 22.
    Shi L, Dong B, Li Z, Lu Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Wang Z, Xie Y (2009) Expression of ER-{alpha}36, a novel variant of estrogen receptor {alpha}, and resistance to tamoxifen treatment in breast cancer. J Clin Oncol 27(21):3423–3429. doi: 10.1200/JCO.2008.17.2254 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Zhao Y, Deng C, Lu W, Xiao J, Ma D, Guo M, Recker RR, Gatalica Z, Wang Z, Xiao GG (2011) let-7 microRNAs induce tamoxifen sensitivity by downregulation of estrogen receptor alpha signaling in breast cancer. Mol Med 17(11–12):1233–1241. doi: 10.2119/molmed.2010.00225 PubMedCentralPubMedGoogle Scholar
  24. 24.
    Denger S, Reid G, Kos M, Flouriot G, Parsch D, Brand H, Korach KS, Sonntag-Buck V, Gannon F (2001) ERalpha gene expression in human primary osteoblasts: evidence for the expression of two receptor proteins. Mol Endocrinol 15(12):2064–2077. doi: 10.1210/mend.15.12.0741 PubMedGoogle Scholar
  25. 25.
    Penot G, Le Peron C, Merot Y, Grimaud-Fanouillere E, Ferriere F, Boujrad N, Kah O, Saligaut C, Ducouret B, Metivier R, Flouriot G (2005) The human estrogen receptor-alpha isoform hERalpha46 antagonizes the proliferative influence of hERalpha66 in MCF7 breast cancer cells. Endocrinology 146(12):5474–5484. doi: 10.1210/en.2005-0866 PubMedCrossRefGoogle Scholar
  26. 26.
    Klinge CM, Riggs KA, Wickramasinghe NS, Emberts CG, McConda DB, Barry PN, Magnusen JE (2010) Estrogen receptor alpha 46 is reduced in tamoxifen resistant breast cancer cells and re-expression inhibits cell proliferation and estrogen receptor alpha 66-regulated target gene transcription. Mol Cell Endocrinol 323(2):268–276. doi: 10.1016/j.mce.2010.03.013 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Pandey DP, Picard D (2009) miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 29(13):3783–3790. doi: 10.1128/MCB.01875-08 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Osborne CK, Schiff R (2005) Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol 23(8):1616–1622. doi: 10.1200/JCO.2005.10.036 PubMedCrossRefGoogle Scholar
  29. 29.
    Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, Shepard HM, Osborne CK (1992) Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 24(2):85–95PubMedCrossRefGoogle Scholar
  30. 30.
    Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, Gorman CM, Parker MG, Sliwkowski MX, Slamon DJ (1995) HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10(12):2435–2446PubMedGoogle Scholar
  31. 31.
    De Laurentiis M, Arpino G, Massarelli E, Ruggiero A, Carlomagno C, Ciardiello F, Tortora G, D’Agostino D, Caputo F, Cancello G, Montagna E, Malorni L, Zinno L, Lauria R, Bianco AR, De Placido S (2005) A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin Cancer Res 11(13):4741–4748. doi: 10.1158/1078-0432.CCR-04-2569 PubMedCrossRefGoogle Scholar
  32. 32.
    Leary AF, Drury S, Detre S, Pancholi S, Lykkesfeldt AE, Martin LA, Dowsett M, Johnston SR (2010) Lapatinib restores hormone sensitivity with differential effects on estrogen receptor signaling in cell models of human epidermal growth factor receptor 2-negative breast cancer with acquired endocrine resistance. Clin Cancer Res 16(5):1486–1497. doi: 10.1158/1078-0432.CCR-09-1764 PubMedCrossRefGoogle Scholar
  33. 33.
    Kaklamani VG, Cianfrocca M, Ciccone J, Kindy K, Rademaker A, Wiley EL, Gradishar W, O’Regan RM (2010) Increased HER2/neu expression in recurrent hormone receptor-positive breast cancer. Biomarkers 15(2):191–193. doi: 10.3109/13547500903312173 PubMedCrossRefGoogle Scholar
  34. 34.
    Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, Jones FE (2010) Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis 31(12):2049–2057. doi: 10.1093/carcin/bgq192 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Kwong KY, Hung MC (1998) A novel splice variant of HER2 with increased transformation activity. Mol Carcinog 23(2):62–68PubMedCrossRefGoogle Scholar
  36. 36.
    Cittelly DM, Das PM, Spoelstra NS, Edgerton SM, Richer JK, Thor AD, Jones FE (2010) Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol Cancer 9:317. doi: 10.1186/1476-4598-9-317 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78(1):59–66PubMedCrossRefGoogle Scholar
  38. 38.
    Chu IM, Hengst L, Slingerland JM (2008) The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8(4):253–267. doi: 10.1038/nrc2347 PubMedCrossRefGoogle Scholar
  39. 39.
    Guan X, Wang Y, Xie R, Chen L, Bai J, Lu J, Kuo MT (2010) p27(Kip1) as a prognostic factor in breast cancer: a systematic review and meta-analysis. J Cell Mol Med 14(4):944–953. doi: 10.1111/j.1582-4934.2009.00730.x PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Chu I, Blackwell K, Chen S, Slingerland J (2005) The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res 65(1):18–25PubMedGoogle Scholar
  41. 41.
    Pohl G, Rudas M, Dietze O, Lax S, Markis E, Pirker R, Zielinski CC, Hausmaninger H, Kubista E, Samonigg H, Jakesz R, Filipits M (2003) High p27Kip1 expression predicts superior relapse-free and overall survival for premenopausal women with early-stage breast cancer receiving adjuvant treatment with tamoxifen plus goserelin. J Clin Oncol 21(19):3594–3600. doi: 10.1200/JCO.2003.02.021 PubMedCrossRefGoogle Scholar
  42. 42.
    Stendahl M, Nilsson S, Wigerup C, Jirstrom K, Jonsson PE, Stal O, Landberg G (2010) p27Kip1 is a predictive factor for tamoxifen treatment response but not a prognostic marker in premenopausal breast cancer patients. Int J Cancer 127(12):2851–2858. doi: 10.1002/ijc.25297 PubMedCrossRefGoogle Scholar
  43. 43.
    Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S, Majumder S (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283(44):29897–29903. doi: 10.1074/jbc.M804612200 PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y, Li H, Zhu X, Yao L, Zhang J (2014) Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat 147(2):423–431. doi: 10.1007/s10549-014-3037-0 PubMedCrossRefGoogle Scholar
  45. 45.
    Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573. doi: 10.1016/j.cardiores.2005.12.002 PubMedCrossRefGoogle Scholar
  46. 46.
    Cruz-Munoz W, Khokha R (2008) The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Crit Rev Clin Lab Sci 45(3):291–338. doi: 10.1080/10408360801973244 PubMedCrossRefGoogle Scholar
  47. 47.
    Song B, Wang C, Liu J, Wang X, Lv L, Wei L, Xie L, Zheng Y, Song X (2010) MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res 29:29. doi: 10.1186/1756-9966-29-29 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Hafez MM, Hassan ZK, Zekri AR, Gaber AA, Al Rejaie SS, Sayed-Ahmed MM, Al Shabanah O (2012) MicroRNAs and metastasis-related gene expression in Egyptian breast cancer patients. Asian Pac J Cancer Prev 13(2):591–598PubMedCrossRefGoogle Scholar
  49. 49.
    Helleman J, Jansen MP, Ruigrok-Ritstier K, van Staveren IL, Look MP, Meijer-van Gelder ME, Sieuwerts AM, Klijn JG, Sleijfer S, Foekens JA, Berns EM (2008) Association of an extracellular matrix gene cluster with breast cancer prognosis and endocrine therapy response. Clin Cancer Res 14(17):5555–5564. doi: 10.1158/1078-0432.CCR-08-0555 PubMedCrossRefGoogle Scholar
  50. 50.
    Gan R, Yang Y, Yang X, Zhao L, Lu J, Meng QH (2014) Downregulation of miR-221/222 enhances sensitivity of breast cancer cells to tamoxifen through upregulation of TIMP3. Cancer Gene Ther 21(7):290–296. doi: 10.1038/cgt.2014.29 PubMedCrossRefGoogle Scholar
  51. 51.
    Lu Y, Roy S, Nuovo G, Ramaswamy B, Miller T, Shapiro C, Jacob ST, Majumder S (2011) Anti-microRNA-222 (anti-miR-222) and -181B suppress growth of tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein and modulating mitogenic signal. J Biol Chem 286(49):42292–42302. doi: 10.1074/jbc.M111.270926 PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. doi: 10.1016/j.cell.2009.11.007 PubMedCrossRefGoogle Scholar
  53. 53.
    Manavalan TT, Teng Y, Litchfield LM, Muluhngwi P, Al-Rayyan N, Klinge CM (2013) Reduced expression of miR-200 family members contributes to antiestrogen resistance in LY2 human breast cancer cells. PLoS One 8(4):e62334. doi: 10.1371/journal.pone.0062334 PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T, Wiemann S, Sahin O (2013) Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 32(9):1173–1182. doi: 10.1038/onc.2012.128 PubMedCrossRefGoogle Scholar
  55. 55.
    Sachdeva M, Wu H, Ru P, Hwang L, Trieu V, Mo YY (2011) MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene 30(7):822–831. doi: 10.1038/onc.2010.463 PubMedCrossRefGoogle Scholar
  56. 56.
    Shi W, Gerster K, Alajez NM, Tsang J, Waldron L, Pintilie M, Hui AB, Sykes J, P’ng C, Miller N, McCready D, Fyles A, Liu FF (2011) MicroRNA-301 mediates proliferation and invasion in human breast cancer. Cancer Res 71(8):2926–2937. doi: 10.1158/0008-5472.CAN-10-3369 PubMedCrossRefGoogle Scholar
  57. 57.
    Hrstka R, Nenutil R, Fourtouna A, Maslon MM, Naughton C, Langdon S, Murray E, Larionov A, Petrakova K, Muller P, Dixon MJ, Hupp TR, Vojtesek B (2010) The pro-metastatic protein anterior gradient-2 predicts poor prognosis in tamoxifen-treated breast cancers. Oncogene 29(34):4838–4847. doi: 10.1038/onc.2010.228 PubMedCrossRefGoogle Scholar
  58. 58.
    Bergamaschi A, Katzenellenbogen BS (2012) Tamoxifen downregulation of miR-451 increases 14-3-3zeta and promotes breast cancer cell survival and endocrine resistance. Oncogene 31(1):39–47. doi: 10.1038/onc.2011.223 PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Ward A, Shukla K, Balwierz A, Soons Z, Konig R, Sahin O, Wiemann S (2014) MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER + breast cancer. J Pathol 233(4):368–379. doi: 10.1002/path.4363 PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Nam S, Long X, Kwon C, Kim S, Nephew KP (2012) An integrative analysis of cellular contexts, miRNAs and mRNAs reveals network clusters associated with antiestrogen-resistant breast cancer cells. BMC Genom 13:732. doi: 10.1186/1471-2164-13-732 CrossRefGoogle Scholar
  61. 61.
    Manavalan TT, Teng Y, Appana SN, Datta S, Kalbfleisch TS, Li Y, Klinge CM (2011) Differential expression of microRNA expression in tamoxifen-sensitive MCF-7 versus tamoxifen-resistant LY2 human breast cancer cells. Cancer Lett 313(1):26–43. doi: 10.1016/j.canlet.2011.08.018 PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Hoppe R, Achinger-Kawecka J, Winter S, Fritz P, Lo WY, Schroth W, Brauch H (2013) Increased expression of miR-126 and miR-10a predict prolonged relapse-free time of primary oestrogen receptor-positive breast cancer following tamoxifen treatment. Eur J Cancer 49(17):3598–3608. doi: 10.1016/j.ejca.2013.07.145 PubMedCrossRefGoogle Scholar
  63. 63.
    Lyng MB, Laenkholm AV, Sokilde R, Gravgaard KH, Litman T, Ditzel HJ (2012) Global microRNA expression profiling of high-risk ER + breast cancers from patients receiving adjuvant tamoxifen mono-therapy: a DBCG study. PLoS One 7(5):e36170. doi: 10.1371/journal.pone.0036170 PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13(8):622–638. doi: 10.1038/nrd4359 PubMedCrossRefGoogle Scholar
  65. 65.
    Davis S, Lollo B, Freier S, Esau C (2006) Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 34(8):2294–2304. doi: 10.1093/nar/gkl183 PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C, Burow ME, Ivan M, Croce CM, Nephew KP (2011) MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene 30(9):1082–1097. doi: 10.1038/onc.2010.487 PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Ye X, Bai W, Zhu H, Zhang X, Chen Y, Wang L, Yang A, Zhao J, Jia L (2014) MiR-221 promotes trastuzumab-resistance and metastasis in HER2-positive breast cancers by targeting PTEN. BMB Rep 47(5):268–273PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O’Brien C, Spoerke J, Jhunjhunwala S, Boyd Z, Januario T, Newman RJ, Yue P, Bourgon R, Modrusan Z, Stern HM, Warming S, de Sauvage FJ, Amler L, Yeh RF, Dornan D (2011) TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal 4(177):41. doi: 10.1126/scisignal.2001538 CrossRefGoogle Scholar
  69. 69.
    Nassirpour R, Mehta PP, Baxi SM, Yin MJ (2013) miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS One 8(4):e62170. doi: 10.1371/journal.pone.0062170 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Gong C, Nie Y, Qu S, Liao JY, Cui X, Yao H, Zeng Y, Su F, Song E, Liu Q (2014) miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors. Cancer Res 74(16):4341–4352. doi: 10.1158/0008-5472.CAN-14-0125 PubMedCrossRefGoogle Scholar
  71. 71.
    Mishra S, Lin CL, Huang TH, Bouamar H, Sun LZ (2014) MicroRNA-21 inhibits p57Kip2 expression in prostate cancer. Mol Cancer 13:212. doi: 10.1186/1476-4598-13-212 PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336. doi: 10.1074/jbc.M611393200 PubMedCrossRefGoogle Scholar
  73. 73.
    Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27(31):4373–4379. doi: 10.1038/onc.2008.72 PubMedCrossRefGoogle Scholar
  74. 74.
    Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658. doi: 10.1053/j.gastro.2007.05.022 PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Kilker RL, Hartl MW, Rutherford TM, Planas-Silva MD (2004) Cyclin D1 expression is dependent on estrogen receptor function in tamoxifen-resistant breast cancer cells. J Steroid Biochem Mol Biol 92(1–2):63–71. doi: 10.1016/j.jsbmb.2004.05.005 PubMedCrossRefGoogle Scholar
  76. 76.
    Rudas M, Lehnert M, Huynh A, Jakesz R, Singer C, Lax S, Schippinger W, Dietze O, Greil R, Stiglbauer W, Kwasny W, Grill R, Stierer M, Gnant MF, Filipits M, Austrian B, Colorectal Cancer Study G (2008) Cyclin D1 expression in breast cancer patients receiving adjuvant tamoxifen-based therapy. Clin Cancer Res 14(6):1767–1774. doi: 10.1158/1078-0432.CCR-07-4122 PubMedCrossRefGoogle Scholar
  77. 77.
    Jirstrom K, Stendahl M, Ryden L, Kronblad A, Bendahl PO, Stal O, Landberg G (2005) Adverse effect of adjuvant tamoxifen in premenopausal breast cancer with cyclin D1 gene amplification. Cancer Res 65(17):8009–8016. doi: 10.1158/0008-5472.CAN-05-0746 PubMedGoogle Scholar
  78. 78.
    Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, Ginther C, Atefi M, Chen I, Fowst C, Los G, Slamon DJ (2009) PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 11(5):R77. doi: 10.1186/bcr2419 PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Agostini M, Knight RA (2014) miR-34: from bench to bedside. Oncotarget 5(4):872–881PubMedCentralPubMedGoogle Scholar
  80. 80.
    Achari C, Winslow S, Ceder Y, Larsson C (2014) Expression of miR-34c induces G2/M cell cycle arrest in breast cancer cells. BMC Cancer 14:538. doi: 10.1186/1471-2407-14-538 PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Antonini D, Russo MT, De Rosa L, Gorrese M, Del Vecchio L, Missero C (2010) Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J Invest Dermatol 130(5):1249–1257. doi: 10.1038/jid.2009.438 PubMedCrossRefGoogle Scholar
  82. 82.
    Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J, Guo XE, Grosschedl R, Karsenty G (2012) miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 197(4):509–521. doi: 10.1083/jcb.201201057 PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Nagaraj AB, Joseph P, DiFeo A (2015) miRNAs as prognostic and therapeutic tools in epithelial ovarian cancer. Biomark Med 9(3):241–257. doi: 10.2217/bmm.14.108 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Wenwen Zhang
    • 1
  • Jing Xu
    • 1
  • Yaqin Shi
    • 1
  • Qian Sun
    • 1
  • Qun Zhang
    • 1
  • Xiaoxiang Guan
    • 1
  1. 1.Department of Medical OncologyJinling Hospital, Medical School of Nanjing UniversityNanjingChina

Personalised recommendations