Cellular and Molecular Life Sciences

, Volume 72, Issue 16, pp 3143–3155 | Cite as

Food odors trigger an endocrine response that affects food ingestion and metabolism

  • Oleh V. Lushchak
  • Mikael A. Carlsson
  • Dick R. NässelEmail author
Research Article


Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.


Insulin-like peptides Adipokinetic hormone Neuropeptides Olfactory sensory neurons Feeding Drosophila melanogaster 



We thank E. Rulifson (Stanford, CA), K. Yu (Daejeon, Korea), J. H. Park (Knoxville, TN), Ping Shen (Athens, GA) and Bloomington Drosophila Stock Center (BDSC), Bloomington, IN for providing fly stocks. We are grateful to J. A. Veenstra (Bordeaux, France) and Mark Brown (Athens, GA) for providing antisera. Drs Heinrich Dircksen and Jonas Bengtsson (both Stockholm) kindly read and commented on an earlier version of the manuscript. Funding was from the Swedish Research Council (VR) and Karl Trygger Foundation (both to D.R.N.).

Conflict of interest

The authors declare that there was no conflict of interest.

Supplementary material

18_2015_1884_MOESM1_ESM.tif (4.4 mb)
Fig.S1 Expression of sNPF peptide and receptor in antennal OSNs. A Expression of snpfr-Gal4 in the antennal OSNs coincides to a large extent with sNPF peptide expression (α-sNPF). B Detail (framed area in A2) of OSNs expressing both markers. Scale bars: 25 µm (TIFF 4464 kb)
18_2015_1884_MOESM2_ESM.tif (577 kb)
Fig.S2 Long term effects of sNPF manipulations in OSNs on metabolism (related to Fig. 4). A – D Female flies with sNPF overexpressed or knocked down (sNPF-RNAi) in OSNs (orco-Gal4 driver) were sampled after 25 d of adult life and assayed for carbohydrates and TAG. The results are similar to the effects seen in 3-4 d old flies (see Fig. 4). In all the above experiments data were analyzed by One-way ANOVA followed by Dunnett’s multiple comparison test, *p<0.05, **p<0.01, ***p<0.001, for each treatment n=50-60 (performed in 6 replicates) (TIFF 577 kb)
18_2015_1884_MOESM3_ESM.tif (1.1 mb)
Fig.S3 Effects of sNPFR and insulin receptor (InR) manipulations in OSNs on metabolism and gene expression (related to Fig. 4 and 5). A – C Expression of sNPFR-RNAi and dInRCA in OSNs (orco-Gal4) does not affect levels of glucose, trehalose or glycogen. D Dilp6 levels are not significantly affected by receptor manipulations. E – H Of other gene transcripts tobi, upd2 and pepck are affected by sNPFR-RNAi and dInRCA expression, whereas 4ebp is not. In the above experiments data were analyzed by One-way ANOVA followed by Dunnett’s multiple comparison test, *p<0.05, **p<0.01, ***p<0.001, for each treatment n= 35-40 flies (measured in 4 replicates) (TIFF 1161 kb)
18_2015_1884_MOESM4_ESM.docx (76 kb)
Supplementary material 4 (DOCX 75 kb)


  1. 1.
    Yeomans MR (2006) Olfactory influences on appetite and satiety in humans. Physiol Behav 89:10–14PubMedCrossRefGoogle Scholar
  2. 2.
    Rogers PJ, Hill AJ (1989) Breakdown of dietary restraint following mere exposure to food stimuli: interrelationships between restraint, hunger, salivation, and food intake. Addict Behav 14:387–397PubMedCrossRefGoogle Scholar
  3. 3.
    Johnson WG, Wildman HE (1983) Influence of external and covert food stimuli on insulin secretion in obese and normal persons. Behav Neurosci 97:1025–1028PubMedCrossRefGoogle Scholar
  4. 4.
    Louis-Sylvestre J, Le Magnen J (1980) Palatability and preabsorptive insulin release. Neurosci Biobehav Rev 4(Suppl 1):43–46PubMedCrossRefGoogle Scholar
  5. 5.
    Smith GP (1995) Pavlov and appetite. Integr Physiol Behav Sci Off J Pavlov Soc 30:169–174CrossRefGoogle Scholar
  6. 6.
    Pavlov IP (1902) The work of the digestive glands. Charles Griffin and Co, LondonGoogle Scholar
  7. 7.
    Rolls ET, Rolls JH (1997) Olfactory sensory-specific satiety in humans. Physiol Behav 61:461–473PubMedCrossRefGoogle Scholar
  8. 8.
    Ruijschop RM, Boelrijk AE, Burgering MJ, de Graaf C, Westerterp-Plantenga MS (2010) Acute effects of complexity in aroma composition on satiation and food intake. Chem Senses 35:91–100PubMedCrossRefGoogle Scholar
  9. 9.
    Massolt ET, van Haard PM, Rehfeld JF, Posthuma EF, van der Veer E et al (2010) Appetite suppression through smelling of dark chocolate correlates with changes in ghrelin in young women. Regul Pept 161:81–86PubMedCrossRefGoogle Scholar
  10. 10.
    Johnson J, Vickers Z (1992) Factors influencing sensory-specific satiety. Appetite 19:15–31PubMedCrossRefGoogle Scholar
  11. 11.
    Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533PubMedCrossRefGoogle Scholar
  12. 12.
    Wilson RI (2013) Early olfactory processing in Drosophila: mechanisms and principles. Annu Review Neurosci 36:217–241CrossRefGoogle Scholar
  13. 13.
    Rajan A, Perrimon N (2013) Of flies and men: insights on organismal metabolism from fruit flies. BMC Biol 11:38PubMedPubMedCentralGoogle Scholar
  14. 14.
    Baker KD, Thummel CS (2007) Diabetic larvae and obese flies—emerging studies of metabolism in Drosophila. Cell Metab 6:257–266PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Melcher C, Bader R, Pankratz MJ (2007) Amino acids, taste circuits, and feeding behavior in Drosophila: towards understanding the psychology of feeding in flies and man. J Endocrinol 192:467–472PubMedCrossRefGoogle Scholar
  16. 16.
    Leopold P, Perrimon N (2007) Drosophila and the genetics of the internal milieu. Nature 450:186–188PubMedCrossRefGoogle Scholar
  17. 17.
    Itskov PM, Ribeiro C (2013) The dilemmas of the gourmet fly: the molecular and neuronal mechanisms of feeding and nutrient decision making in Drosophila. Front Neurosci 7:12PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hergarden AC, Tayler TD, Anderson DJ (2012) Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc Natl Acad Sci USA 109:3967–3972PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Owusu-Ansah E, Perrimon N (2014) Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases. Disease Models Mech 7:343–350CrossRefGoogle Scholar
  20. 20.
    Padmanabha D, Baker KD (2014) Drosophila gains traction as a repurposed tool to investigate metabolism. Trends Endocrinol Metabol 25:518–527CrossRefGoogle Scholar
  21. 21.
    Semmelhack JL, Wang JW (2009) Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459:218–223PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Zhu J, Park KC, Baker TC (2003) Identification of odors from overripe mango that attract vinegar flies, Drosophila melanogaster. J Chem Ecol 29:899–909PubMedCrossRefGoogle Scholar
  23. 23.
    Knaden M, Strutz A, Ahsan J, Sachse S, Hansson BS (2012) Spatial representation of odorant valence in an insect brain. Cell Reports 1:392–399PubMedCrossRefGoogle Scholar
  24. 24.
    Root CM, Ko KI, Jafari A, Wang JW (2011) Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145:133–144PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Beshel J, Zhong Y (2013) Graded encoding of food odor value in the Drosophila brain. J Neurosci 33:15693–15704PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Wang Y, Pu Y, Shen P (2013) Neuropeptide-gated perception of appetitive olfactory inputs in Drosophila larvae. Cell Reports 3:820–830PubMedCrossRefGoogle Scholar
  27. 27.
    Stensmyr MC, Giordano E, Balloi A, Angioy AM, Hansson BS (2003) Novel natural ligands for Drosophila olfactory receptor neurones. J Exp Biol 206:715–724PubMedCrossRefGoogle Scholar
  28. 28.
    Palouzier-Paulignan B, Lacroix MC, Aime P, Baly C, Caillol M et al (2012) Olfaction under metabolic influences. Chem Senses 37:769–797PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Sengupta P (2013) The belly rules the nose: feeding state-dependent modulation of peripheral chemosensory responses. Curr Opin Neurobiol 23:68–75PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Gruber F, Knapek S, Fujita M, Matsuo K, Bräcker L et al (2013) Suppression of conditioned odor approach by feeding is independent of taste and nutritional value in Drosophila. Curr Biol 23:507–514PubMedCrossRefGoogle Scholar
  31. 31.
    Small DM, Veldhuizen MG, Felsted J, Mak YE, McGlone F (2008) Separable substrates for anticipatory and consummatory food chemosensation. Neuron 57:786–797PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Sternson SM, Nicholas Betley J, Cao ZF (2013) Neural circuits and motivational processes for hunger. Curr Opin Neurobiol 23:353–360PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Carlsson MA, Diesner M, Schachtner J, Nässel DR (2010) Multiple neuropeptides in the Drosophila antennal lobe suggest complex modulatory circuits. J Comp Neurol 518:3359–3380PubMedCrossRefGoogle Scholar
  34. 34.
    Sohn JW, Elmquist JK, Williams KW (2013) Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci 36:504–512PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Betley JN, Cao ZF, Ritola KD, Sternson SM (2013) Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155:1337–1350PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Yeo GS, Heisler LK (2012) Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci 15:1343–1349PubMedCrossRefGoogle Scholar
  37. 37.
    Nässel DR, Winther ÅM (2010) Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol 92:42–104PubMedCrossRefGoogle Scholar
  38. 38.
    Al-Anzi B, Armand E, Nagamei P, Olszewski M, Sapin V et al (2010) The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr Biol 20:969–978PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Bharucha KN, Tarr P, Zipursky SL (2008) A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J Exp Biol 211:3103–3110PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kim SK, Rulifson EJ (2004) Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431:316–320PubMedCrossRefGoogle Scholar
  41. 41.
    Rulifson EJ, Kim SK, Nusse R (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296:1118–1120PubMedCrossRefGoogle Scholar
  42. 42.
    Teleman AA (2010) Molecular mechanisms of metabolic regulation by insulin in Drosophila. Biochem J 425:13–26CrossRefGoogle Scholar
  43. 43.
    Géminard G, Arquier N, Layalle S, Bourouis M, Slaidina M et al (2006) Control of metabolism and growth through insulin-like peptides in Drosophila. Diabetes 55:S5–S8CrossRefGoogle Scholar
  44. 44.
    Lee KS, You KH, Choo JK, Han YM, Yu K (2004) Drosophila short neuropeptide F regulates food intake and body size. J Biol Chem 279:50781–50789PubMedCrossRefGoogle Scholar
  45. 45.
    Kreher SA, Kwon JY, Carlson JR (2005) The molecular basis of odor coding in the Drosophila larva. Neuron 46:445–456PubMedCrossRefGoogle Scholar
  46. 46.
    Lee G, Park JH (2004) Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167:311–323PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Lee KS, Kwon OY, Lee JH, Kwon K, Min KJ et al (2008) Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat Cell Biol 10:468–475PubMedCrossRefGoogle Scholar
  48. 48.
    Wu Q, Zhang Y, Xu J, Shen P (2005) Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. Proc Natl Acad Sci USA 102:13289–13294PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Nitabach MN, Blau J, Holmes TC (2002) Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109:485–495PubMedCrossRefGoogle Scholar
  50. 50.
    Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H et al (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714PubMedCrossRefGoogle Scholar
  51. 51.
    Ja WW, Carvalho GB, Mak EM, de la Rosa NN, Fang AY et al (2007) Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci USA 104:8253–8256PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Lushchak OV, Gospodaryov DV, Rovenko BM, Glovyak AD, Yurkevych IS et al (2012) Balance between macronutrients affects life span and functional senescence in fruit fly Drosophila melanogaster. J Gerontol Series A Biol Sci Med Sci 67:118–125CrossRefGoogle Scholar
  53. 53.
    Kapan N, Lushchak OV, Luo J, Nässel DR (2012) Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell Mol Life Sci 69:4051–4066CrossRefGoogle Scholar
  54. 54.
    Fernandez-Ayala DJ, Sanz A, Vartiainen S, Kemppainen KK, Babusiak M et al (2009) Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation. Cell Metab 9:449–460PubMedCrossRefGoogle Scholar
  55. 55.
    Kubrak OI, Kucerova L, Theopold U, Nässel DR (2014) The sleeping beauty: how reproductive diapause affects hormone signaling, metabolism, immune response and somatic maintenance in Drosophila melanogaster. PLoS One 9:e113051PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Johard HA, Enell LE, Gustafsson E, Trifilieff P, Veenstra JA et al (2008) Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: relations to extrinsic neurons expressing different neurotransmitters. J Comp Neurol 507:1479–1496PubMedCrossRefGoogle Scholar
  57. 57.
    Cao C, Brown MR (2001) Localization of an insulin-like peptide in brains of two flies. Cell Tissue Res 304:317–321PubMedCrossRefGoogle Scholar
  58. 58.
    Vroemen SF, Van der Horst DJ, Van Marrewijk WJ (1998) New insights into adipokinetic hormone signaling. Mol Cell Endocrinol 141:7–12PubMedCrossRefGoogle Scholar
  59. 59.
    Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J et al (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci USA 102:3105–3110PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Ikeya T, Galic M, Belawat P, Nairz K, Hafen E (2002) Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12:1293–1300PubMedCrossRefGoogle Scholar
  61. 61.
    Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R et al (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11:213–221PubMedCrossRefGoogle Scholar
  62. 62.
    Park S, Alfa RW, Topper SM, Kim GE, Kockel L et al (2014) A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion. PLoS Genet 10:e1004555PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Rajan A, Perrimon N (2012) Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 151:123–137PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Bai H, Kang P, Tatar M (2012) Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell 11:978–985PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Buch S, Melcher C, Bauer M, Katzenberger J, Pankratz MJ (2008) Opposing effects of dietary protein and sugar regulate a transcriptional target of Drosophila insulin-like peptide signaling. Cell Metab 7:321–332PubMedCrossRefGoogle Scholar
  66. 66.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  67. 67.
    Nässel DR, Enell LE, Santos JG, Wegener C, Johard HA (2008) A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neurosci 9:90PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Isabel G, Martin JR, Chidami S, Veenstra JA, Rosay P (2005) AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am J Physiol Regul Integr Comp Physiol 288:R531–R538PubMedCrossRefGoogle Scholar
  69. 69.
    Samuelsen CL, Gardner MP, Fontanini A (2012) Effects of cue-triggered expectation on cortical processing of taste. Neuron 74:410–422PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Feldman M, Richardson CT (1986) Role of thought, sight, smell, and taste of food in the cephalic phase of gastric acid secretion in humans. Gastroenterology 90:428–433PubMedGoogle Scholar
  71. 71.
    Wong AM, Wang JW, Axel R (2002) Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109:229–241PubMedCrossRefGoogle Scholar
  72. 72.
    Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640CrossRefGoogle Scholar
  73. 73.
    Masse NY, Turner GC, Jefferis GS (2009) Olfactory information processing in Drosophila. Curr Biol 19:R700–R713PubMedCrossRefGoogle Scholar
  74. 74.
    Shim J, Mukherjee T, Mondal BC, Liu T, Young GC et al (2013) Olfactory control of blood progenitor maintenance. Cell 155:1141–1153PubMedCrossRefGoogle Scholar
  75. 75.
    Nässel DR, Kubrak OI, Liu Y, Luo J, Lushchak OV (2013) Factors that regulate insulin producing cells and their output in Drosophila. Front Physiol 4:252PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Miyamoto T, Slone J, Song X, Amrein H (2012) A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151:1113–1125PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Miyamoto T, Amrein H (2014) Diverse roles for the Drosophila fructose sensor Gr43a. Fly 8:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hartenstein V (2006) The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190:555–570PubMedCrossRefGoogle Scholar
  79. 79.
    Broughton SJ, Slack C, Alic N, Metaxakis A, Bass TM et al (2010) DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutrition. Aging Cell 9:336–346PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Oleh V. Lushchak
    • 1
    • 2
  • Mikael A. Carlsson
    • 1
  • Dick R. Nässel
    • 1
    Email author
  1. 1.Department of ZoologyStockholm UniversityStockholmSweden
  2. 2.Department of Biochemistry and BiotechnologyVasyl Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine

Personalised recommendations