Skip to main content

Advertisement

Log in

In the absence of its cytosolic domain, the CD28 molecule still contributes to T cell activation

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The CD28 costimulatory receptor has a pivotal role in T cell biology as this molecule amplifies T cell receptor (TCR) signals to provide an efficient immune T cell response. There is a large debate about how CD28 mediates these signals. Here, we designed a CD28 gene-targeted knock-in mouse strain lacking the cytoplasmic tail of CD28. As is the case in CD28-deficient (CD28 knock-out) mice, regulatory T cell homeostasis and T cell activation are altered in these CD28 knock-in mice. Unexpectedly, the presence of a CD28 molecule deprived of its cytoplasmic tail could partially induce some early activation events in T cells such as signaling events or expression of early activation markers. These results unravel a new mechanism of T cell costimulation by CD28, independent of its cytoplasmic tail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Riley JL, June CH (2005) The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood 105(1):13–21. doi:10.1182/blood-2004-04-1596

    Article  CAS  PubMed  Google Scholar 

  2. Boomer JS, Green JM (2010) An enigmatic tail of CD28 signaling. Cold Spring Harb Perspect Biol 2(8):a002436. doi:10.1101/cshperspect.a002436

    Article  PubMed Central  PubMed  Google Scholar 

  3. Ogawa S, Watanabe M, Sakurai Y, Inutake Y, Watanabe S, Tai X, Abe R (2013) CD28 signaling in primary CD4(+) T cells: identification of both tyrosine phosphorylation-dependent and phosphorylation-independent pathways. Int Immunol 25(12):671–681. doi:10.1093/intimm/dxt028

    Article  CAS  PubMed  Google Scholar 

  4. Harada Y, Tokushima M, Matsumoto Y, Ogawa S, Otsuka M, Hayashi K, Weiss BD, June CH, Abe R (2001) Critical requirement for the membrane-proximal cytosolic tyrosine residue for CD28-mediated costimulation in vivo. J Immunol 166(6):3797–3803

    Article  CAS  PubMed  Google Scholar 

  5. Burr JS, Savage ND, Messah GE, Kimzey SL, Shaw AS, Arch RH, Green JM (2001) Cutting edge: distinct motifs within CD28 regulate T cell proliferation and induction of Bcl-XL. J Immunol 166(9):5331–5335

    Article  CAS  PubMed  Google Scholar 

  6. Andres PG, Howland KC, Nirula A, Kane LP, Barron L, Dresnek D, Sadra A, Imboden J, Weiss A, Abbas AK (2004) Distinct regions in the CD28 cytoplasmic domain are required for T helper type 2 differentiation. Nat Immunol 5(4):435–442. doi:10.1038/ni1044

    Article  CAS  PubMed  Google Scholar 

  7. Yokosuka T, Kobayashi W, Sakata-Sogawa K, Takamatsu M, Hashimoto-Tane A, Dustin ML, Tokunaga M, Saito T (2008) Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 29(4):589–601. doi:10.1016/j.immuni.2008.08.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Michel F, Attal-Bonnefoy G, Mangino G, Mise-Omata S, Acuto O (2001) CD28 as a molecular amplifier extending TCR ligation and signaling capabilities. Immunity 15(6):935–945 (S1074-7613(01)00244-8)

    Article  CAS  PubMed  Google Scholar 

  9. Shahinian A, Pfeffer K, Lee KP, Kundig TM, Kishihara K, Wakeham A, Kawai K, Ohashi PS, Thompson CB, Mak TW (1993) Differential T cell costimulatory requirements in CD28-deficient mice. Science 261(5121):609–612

    Article  CAS  PubMed  Google Scholar 

  10. Firaguay G, Nunes JA (2009) Analysis of signaling events by dynamic phosphoflow cytometry. Sci Signal 2(86):l3. doi:10.1126/scisignal.286pl3

    Google Scholar 

  11. Meghari S, Bechah Y, Capo C, Lepidi H, Raoult D, Murray PJ, Mege JL (2008) Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis. PLoS Pathog 4(2):e23. doi:10.1371/journal.ppat.0040023

    Article  PubMed Central  PubMed  Google Scholar 

  12. Appleman LJ, van Puijenbroek AA, Shu KM, Nadler LM, Boussiotis VA (2002) CD28 costimulation mediates down-regulation of p27kip1 and cell cycle progression by activation of the PI3 K/PKB signaling pathway in primary human T cells. J Immunol 168(6):2729–2736

    Article  CAS  PubMed  Google Scholar 

  13. Kerdiles YM, Beisner DR, Tinoco R, Dejean AS, Castrillon DH, DePinho RA, Hedrick SM (2009) Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat Immunol 10(2):176–184. doi:10.1038/ni.1689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12(4):431–440

    Article  CAS  PubMed  Google Scholar 

  15. Honstettre A, Ghigo E, Moynault A, Capo C, Toman R, Akira S, Takeuchi O, Lepidi H, Raoult D, Mege JL (2004) Lipopolysaccharide from Coxiella burnetii is involved in bacterial phagocytosis, filamentous actin reorganization, and inflammatory responses through Toll-like receptor 4. Journal of immunology 172(6):3695–3703

    Article  CAS  Google Scholar 

  16. Honstettre A, Meghari S, Nunes JA, Lepidi H, Raoult D, Olive D, Mege JL (2006) Role for the CD28 molecule in the control of Coxiella burnetii infection. Infect Immun 74(3):1800–1808. doi:10.1128/IAI.74.3.1800-1808.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242. doi:10.1038/nri3405

    Article  PubMed Central  PubMed  Google Scholar 

  18. Pages F, Ragueneau M, Rottapel R, Truneh A, Nunes J, Imbert J, Olive D (1994) Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369(6478):327–329. doi:10.1038/369327a0

    Article  CAS  PubMed  Google Scholar 

  19. Garcon F, Ghiotto M, Gerard A, Yang WC, Olive D, Nunes JA (2004) The SH3 domain of Tec kinase is essential for its targeting to activated CD28 costimulatory molecule. Eur J Immunol 34(7):1972–1980. doi:10.1002/eji.200324777

    Article  CAS  PubMed  Google Scholar 

  20. Friend LD, Shah DD, Deppong C, Lin J, Bricker TL, Juehne TI, Rose CM, Green JM (2006) A dose-dependent requirement for the proline motif of CD28 in cellular and humoral immunity revealed by a targeted knockin mutant. J Exp Med 203(9):2121–2133. doi:10.1084/jem.20052230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Dodson LF, Boomer JS, Deppong CM, Shah DD, Sim J, Bricker TL, Russell JH, Green JM (2009) Targeted knock-in mice expressing mutations of CD28 reveal an essential pathway for costimulation. Mol Cell Biol 29(13):3710–3721. doi:10.1128/MCB.01869-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bachmann MF, McKall-Faienza K, Schmits R, Bouchard D, Beach J, Speiser DE, Mak TW, Ohashi PS (1997) Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity 7(4):549–557

    Article  CAS  PubMed  Google Scholar 

  23. Garcon F, Patton DT, Emery JL, Hirsch E, Rottapel R, Sasaki T, Okkenhaug K (2008) CD28 provides T-cell costimulation and enhances PI3 K activity at the immune synapse independently of its capacity to interact with the p85/p110 heterodimer. Blood 111(3):1464–1471. doi:10.1182/blood-2007-08-108050

    Article  CAS  PubMed  Google Scholar 

  24. Arad G, Levy R, Nasie I, Hillman D, Rotfogel Z, Barash U, Supper E, Shpilka T, Minis A, Kaempfer R (2011) Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biol 9(9):e1001149. doi:10.1371/journal.pbio.1001149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lasserre R, Guo XJ, Conchonaud F, Hamon Y, Hawchar O, Bernard AM, Soudja SM, Lenne PF, Rigneault H, Olive D, Bismuth G, Nunes JA, Payrastre B, Marguet D, He HT (2008) Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol 4(9):538–547. doi:10.1038/nchembio.103

    Article  CAS  PubMed  Google Scholar 

  26. Ledbetter JA, June CH, Grosmaire LS, Rabinovitch PS (1987) Crosslinking of surface antigens causes mobilization of intracellular ionized calcium in T lymphocytes. Proc Natl Acad Sci USA 84(5):1384–1388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Acuto O, Michel F (2003) CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol 3(12):939–951. doi:10.1038/nri1248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Valérie Ferrier-Depraetere (Institut Paoli-Calmettes) for thoughtful reading of the manuscript. We are grateful to Pr. Doreen A. Cantrell (University of Dundee) for sharing her expertise in the “animal models and T cell signaling” research field. We are indebted to Anne-Marie Mura and Mireille Richelme for their help to handle and manipulate mouse ES cells, to Danielle Depetris and Dr Marie-Geneviève Mattei for analyzing chromosome stability of ES cells, to Dr Cécile Goujet (SEAT, Villejuif) for injecting selected ES clones, to Nacer Boubenna for his help in the initial steps of the description of CD28 KI mouse strain, to Emilie Coppin (CRCM) and Marisa Goncalves Menoita (CIML) for their help in the biochemical assays and to Dr Anne-Marie Schmitt-Verhulst (CIML) for helpful discussions. The authors thank to Patrick Gibier, Jean-Christophe Orsoni (CRCM animal facility) and Fabrice Gianardi (inter-IFR animal facility) for taking care of the mouse strain colonies and the CRCM cytometry platform for FACS analysis. This work was supported by institutional grants from the Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique and Aix-Marseille Université to CRCM and the Comité du Var de la Ligue Nationale contre le Cancer (J.A.N.). J.A. Nunès and D. Olive laboratory is supported by the Fondation pour la Recherche Médicale (Equipe FRM DEQ 20140329534). V. Giroux was supported by a fellowship from the Fondation pour la Recherche Médicale, S.O. Morin by a fellowship from Aix-Marseille Université, C. Favre by fellowships from the Ministère de l’Enseignement Supérieur et de la Recherche and the Association pour la Recherche contre le Cancer. D. Olive is a scholar of the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques A. Nunès.

Additional information

S. O. Morin , V. Giroux , and C. Favre contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morin, S.O., Giroux, V., Favre, C. et al. In the absence of its cytosolic domain, the CD28 molecule still contributes to T cell activation. Cell. Mol. Life Sci. 72, 2739–2748 (2015). https://doi.org/10.1007/s00018-015-1873-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1873-7

Keywords

Navigation