Skip to main content
Log in

Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

This review summarizes different approaches and breakthroughs in the development of laccase-based biocathodes for bioelectrocatalytic oxygen reduction. The use of advanced electrode materials, such as nanoparticles and nanowires is underlined. The applications of recently developed laccase electrodes for enzymatic biofuel cells are reviewed with an emphasis on in vivo application of biofuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886. doi:10.1021/cr020719k

    Article  CAS  PubMed  Google Scholar 

  2. Cracknell JA, Vincent KA, Armstrong FA (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 108:2439–2461. doi:10.1021/cr0680639

    Article  CAS  PubMed  Google Scholar 

  3. Gellett W, Kesmez M, Schumacher J et al (2010) Biofuel cells for portable power. Electroanalysis 22:727–731. doi:10.1002/elan.200980013

    Article  CAS  Google Scholar 

  4. Willner I, Yan Y-M, Willner B, Tel-Vered R (2009) Integrated enzyme-based biofuel cells—a review. Fuel Cells 9:7–24. doi:10.1002/fuce.200800115

    Article  CAS  Google Scholar 

  5. Katz E, MacVittie K (2013) Implanted biofuel cells operating in vivo—methods, applications and perspectives—feature article. Energy Environ Sci 6:2791–2803. doi:10.1039/c3ee42126k

    Article  CAS  Google Scholar 

  6. Cosnier S, Le Goff A, Holzinger M (2014) Towards glucose biofuel cells implanted in human body for powering artificial organs: review. Electrochem Commun 38:19–23. doi:10.1016/j.elecom.2013.09.021

    Article  CAS  Google Scholar 

  7. Cinquin P, Gondran C, Giroud F et al (2010) A glucose biofuel cell implanted in rats. Plos One. doi:10.1371/journal.pone.0010476 e10476

    PubMed Central  PubMed  Google Scholar 

  8. Zebda A, Cosnier S, Alcaraz J-P et al (2013) Single glucose biofuel cells implanted in rats power electronic devices. Sci Rep 3:1516. doi:10.1038/srep01516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Krishnan S, Armstrong FA (2012) Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures. Chem Sci 3:1015–1023. doi:10.1039/C2SC01103D

    Article  CAS  Google Scholar 

  10. Ciaccafava A, De Poulpiquet A, Techer V et al (2012) An innovative powerful and mediatorless H2/O2 biofuel cell based on an outstanding bioanode. Electrochem Commun 23:25–28. doi:10.1016/j.elecom.2012.06.035

    Article  CAS  Google Scholar 

  11. Addo PK, Arechederra RL, Minteer SD (2011) Towards a rechargeable alcohol biobattery. J Power Sources 196:3448–3451. doi:10.1016/j.jpowsour.2010.06.032

    Article  CAS  Google Scholar 

  12. Jia W, Valdés-Ramírez G, Bandodkar AJ et al (2013) Epidermal biofuel cells: energy harvesting from human perspiration. Angew Chem Int Ed 52:7233–7236. doi:10.1002/anie.201302922

    Article  CAS  Google Scholar 

  13. Solomon EI, Chen P, Metz M et al (2001) Oxygen binding, activation, and reduction to water by copper proteins. Angew Chem Int Ed 40:4570–4590. doi:10.1002/1521-3773

    Article  CAS  Google Scholar 

  14. Yahiro AT, Lee SM, Kimble DO (1964) Bioelectrochemistry I. Enzyme utilizing bio-fuel cell studies. Biochim Biophys Acta 88:375–383

    CAS  PubMed  Google Scholar 

  15. Reuillard B, Le Goff A, Agnès C et al (2013) High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. Phys Chem Chem Phys 15:4892–4896. doi:10.1039/c3cp50767j

    Article  CAS  PubMed  Google Scholar 

  16. Gutiérrez-Sánchez C, Pita M, Vaz-Domínguez C et al (2012) Gold nanoparticles as electronic bridges for laccase-based biocathodes. J Am Chem Soc 134:17212–17220

    Article  PubMed  Google Scholar 

  17. Lalaoui N, Elouarzaki K, Le Goff A et al (2013) Efficient direct oxygen reduction by laccases attached and oriented on pyrene-functionalized polypyrrole/carbon nanotube electrodes. Chem Commun 49:9281–9283. doi:10.1039/C3CC44994G

    Article  CAS  Google Scholar 

  18. Winkler JR, Gray HB (2014) Long-range electron tunneling. J Am Chem Soc 136:2930–2939. doi:10.1021/ja500215j

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Shleev S, Tkac J, Christenson A et al (2005) Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron 20:2517–2554. doi:10.1016/j.bios.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  20. Shleev S, Jarosz-Wilkolazka A, Khalunina A et al (2005) Direct electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry 67:115–124. doi:10.1016/j.bioelechem.2005.02.004

    Article  CAS  PubMed  Google Scholar 

  21. Holzinger M, Le Goff A, Cosnier S (2012) Carbon nanotube/enzyme biofuel cells. Electrochim Acta 82:179–190. doi: 10.1016/j.electacta.2011.12.135

    Article  CAS  Google Scholar 

  22. De Poulpiquet A, Ciaccafava A, Lojou E (2014) New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells. Electrochim Acta 126:104–114. doi:10.1016/j.electacta.2013.07.133

    Article  Google Scholar 

  23. Gooding JJ, Wibowo R, Liu et al (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125:9006–9007. doi:10.1021/ja035722f

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Wang J, Zhou F (2004) Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes. Electroanalysis 16:627–632. doi:10.1002/elan.200302849

    Article  CAS  Google Scholar 

  25. Cai C, Chen J (2004) Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal Biochem 325:285–292. doi:10.1016/j.ab.2003.10.040

    Article  CAS  PubMed  Google Scholar 

  26. Reuillard B, Le Goff A, Holzinger M, Cosnier S (2014) Non-covalent functionalization of carbon nanotubes with boronic acids for the wiring of glycosylated redox enzymes in oxygen-reducing biocathodes. J Mater Chem B. doi:10.1039/C3TB21846E

    Google Scholar 

  27. Alonso-Lomillo MA, Rüdiger O, Maroto-Valiente A et al (2007) Hydrogenase-coated carbon nanotubes for efficient H2 oxidation. Nano Lett 7:1603–1608. doi:10.1021/nl070519u

    Article  CAS  PubMed  Google Scholar 

  28. Hu L, Hecht DS, Grüner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110:5790–5844. doi:10.1021/cr9002962

    Article  CAS  PubMed  Google Scholar 

  29. Fuchsberger K, Le Goff A, Gambazzi L et al (2011) Multiwalled carbon-nanotube-functionalized microelectrode arrays fabricated by microcontact printing: platform for studying chemical and electrical neuronal signaling. Small 7:524–530. doi:10.1002/smll.201001640

    Article  CAS  PubMed  Google Scholar 

  30. Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060. doi:10.1016/j.electacta.2004.08.052

    Article  CAS  Google Scholar 

  31. Hughes M, Chen GZ, Shaffer MSP et al (2002) Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem Mater 14:1610–1613. doi:10.1021/cm010744r

    Article  CAS  Google Scholar 

  32. Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41:121–125. doi:10.1016/0302-4598(96)05078-7

    Article  CAS  Google Scholar 

  33. Miyake T, Yoshino S, Yamada T et al (2011) Self-regulating enzyme—nanotube ensemble films and their application as flexible electrodes for biofuel cells. J Am Chem Soc 133:5129–5134. doi:10.1021/ja111517e

    Article  CAS  PubMed  Google Scholar 

  34. Zebda A, Gondran C, Le Goff A et al (2011) Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat Commun 2:370. doi:10.1038/ncomms1365

    Article  PubMed Central  PubMed  Google Scholar 

  35. Agnes C, Holzinger M, Le Goff A et al (2014) Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions. Energy Environ Sci 7:1884–1888. doi:10.1039/c3ee43986k

    Article  CAS  Google Scholar 

  36. Deng L, Shang L, Wang Y et al (2008) Multilayer structured carbon nanotubes/poly-l-lysine/laccase composite cathode for glucose/O2 biofuel cell. Electrochem Commun 10:1012–1015. doi:10.1016/j.elecom.2008.05.001

    Article  CAS  Google Scholar 

  37. Mousty C, Vieille L, Cosnier S (2007) Laccase immobilization in redox active layered double hydroxides: a reagentless amperometric biosensor. Biosens Bioelectron 22:1733–1738. doi:10.1016/j.bios.2006.08.020

    Article  CAS  PubMed  Google Scholar 

  38. Deng L, Chen C, Zhou M et al (2010) Integrated self-powered microchip biosensor for endogenous biological cyanide. Anal Chem 82:4283–4287. doi:10.1021/ac100274s

    Article  CAS  PubMed  Google Scholar 

  39. Gellett W, Schumacher J, Kesmez M et al (2010) High current density air-breathing laccase biocathode. J Electrochem Soc 157:B557–B562. doi:10.1149/1.3309728

    Article  CAS  Google Scholar 

  40. Jose Gonzalez-Guerrero M, Pablo Esquivel J, Sanchez-Molas D et al (2013) Membraneless glucose/O2 microfluidic enzymatic biofuel cell using pyrolyzed photoresist film electrodes. Lab Chip 13:2972–2979. doi:10.1039/c3lc50319d

    Article  Google Scholar 

  41. Singh P, Campidelli S, Giordani S et al (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38:2214–2230. doi:10.1039/b518111a

    Article  CAS  PubMed  Google Scholar 

  42. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839. doi:10.1021/ja010172b

    Article  CAS  PubMed  Google Scholar 

  43. Halámková L, Halámek J, Bocharova V et al (2012) Implanted biofuel cell operating in a living snail. J Am Chem Soc 134:5040–5043. doi:10.1021/ja211714w

    Article  PubMed  Google Scholar 

  44. Ramasamy RP, Luckarift HR, Ivnitski DM et al (2010) High electrocatalytic activity of tethered multicopper oxidase–carbon nanotube conjugates. Chem Commun 46:6045–6047. doi:10.1039/C0CC00911C

    Article  CAS  Google Scholar 

  45. Lau C, Adkins ER, Ramasamy RP et al (2012) Design of carbon nanotube-based gas-diffusion cathode for O2 reduction by multicopper oxidases. Adv Energy Mater 2:162–168. doi:10.1002/aenm.201100433

    Article  CAS  Google Scholar 

  46. Szczupak A, Halámek J, Halámková L et al (2012) Living battery—biofuel cells operating in vivo in clams. Energy Environ Sci 5:8891–8895. doi:10.1039/C2EE21626D

    Article  CAS  Google Scholar 

  47. MacVittie K, Halamek J, Halámková L et al (2012) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6:81–86. doi:10.1039/C2EE23209J

    Article  Google Scholar 

  48. Shleev S, Pita M, Yaropolov AI et al (2006) Direct heterogeneous electron transfer reactions of Trametes hirsuta laccase at bare and thiol-modified gold electrodes. Electroanalysis 18:1901–1908. doi:10.1002/elan.200603600

    Article  CAS  Google Scholar 

  49. Ciaccafava A, Infossi P, Ilbert M et al (2012) Electrochemistry, AFM, and PM-IRRA spectroscopy of immobilized hydrogenase: role of a hydrophobic helix in enzyme orientation for efficient H2 oxidation. Angew Chem Int Ed 51:953–956. doi:10.1002/anie.201107053

    Article  CAS  Google Scholar 

  50. Fowler JM, Stuart MC, Wong DKY (2008) An amperometric immunosensor with a thiolated protein G scaffold. Electrochem Commun 10:1020–1023. doi:10.1016/j.elecom.2008.05.002

    Article  CAS  Google Scholar 

  51. Gutiérrez-Sánchez C, Jia W, Beyl Y et al (2012) Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/carbon nanotubes composite electrodes. Comparison of three enzyme immobilization methods. Electrochim Acta 82:218–223. doi:10.1016/j.electacta.2011.12.134

    Article  Google Scholar 

  52. Blanford CF, Heath RS, Armstrong FA (2007) A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface. Chem Commun 17:1710. doi:10.1039/b703114a

    Article  Google Scholar 

  53. Blanford CF, Foster CE, Heath RS, Armstrong FA (2008) Efficient electrocatalytic oxygen reduction by the “blue” copper oxidase, laccase, directly attached to chemically modified carbons. Faraday Discuss 140:319–335. doi:10.1039/B808939F

    Article  CAS  PubMed  Google Scholar 

  54. Stolarczyk K, Lyp D, Zelechowska K et al (2012) Arylated carbon nanotubes for biobatteries and biofuel cells. Electrochim Acta 79:74–81. doi:10.1016/j.electacta.2012.06.050

    Article  CAS  Google Scholar 

  55. Karaśkiewicz M, Nazaruk E, Żelechowska K et al (2012) Fully enzymatic mediatorless fuel cell with efficient naphthylated carbon nanotube–laccase composite cathodes. Electrochem Commun 20:124–127. doi:10.1016/j.elecom.2012.04.011

    Article  Google Scholar 

  56. Meredith MT, Minson M, Hickey D et al (2011) Anthracene-modified multi-walled carbon nanotubes as direct electron transfer scaffolds for enzymatic oxygen reduction. ACS Catal 1:1683–1690. doi:10.1021/cs200475q

    Article  CAS  Google Scholar 

  57. Sosna M, Stoica L, Wright E et al (2012) Mass transport controlled oxygen reduction at anthraquinone modified 3D-CNT electrodes with immobilized Trametes hirsuta laccase. Phys Chem Chem Phys 14:11882. doi:10.1039/c2cp41588g

    Article  CAS  PubMed  Google Scholar 

  58. Bourourou M, Elouarzaki K, Lalaoui N et al (2013) Supramolecular immobilization of laccase on carbon nanotube electrodes functionalized with (methylpyrenylaminomethyl)anthraquinone for direct electron reduction of oxygen. Chem Eur J 19:9371–9375. doi:10.1002/chem.201301043

    Article  CAS  PubMed  Google Scholar 

  59. Cosnier S, Holzinger M (2008) Design of carbon nanotube-polymer frameworks by electropolymerization of SWCNT-pyrrole derivatives. Electrochim Acta 53:3948–3954. doi:10.1016/j.electacta.2007.10.027

    Article  CAS  Google Scholar 

  60. Szot K, Nogala W, Niedziolka-Jönsson J et al (2009) Hydrophilic carbon nanoparticle-laccase thin film electrode for mediatorless dioxygen reduction: SECM activity mapping and application in zinc-dioxygen battery. Electrochim Acta 54:4620–4625. doi:10.1016/j.electacta.2009.02.072

    Article  CAS  Google Scholar 

  61. Salaj-Kosla U, Pöller S, Schuhmann W et al (2013) Direct electron transfer of Trametes hirsuta laccase adsorbed at unmodified nanoporous gold electrodes. Bioelectrochemistry 91:15–20. doi:10.1016/j.bioelechem.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  62. Chen T, Barton SC, Binyamin G et al (2001) A miniature biofuel cell. J Am Chem Soc 123:8630–8631. doi:10.1021/ja0163164

    Article  CAS  PubMed  Google Scholar 

  63. Soukharev V, Mano N, Heller A (2004) A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J Am Chem Soc 126:8368–8369. doi:10.1021/ja0475510

    Article  CAS  PubMed  Google Scholar 

  64. Kiiskinen L-L, Viikari L, Kruus K (2002) Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces. Appl Microbiol Biotechnol 59:198–204. doi:10.1007/s00253-002-1012-x

    Article  CAS  PubMed  Google Scholar 

  65. Kavanagh P, Jenkins P, Leech D (2008) Electroreduction of O2 at a mediated Melanocarpus albomyces laccase cathode in a physiological buffer. Electrochem Commun 10:970–972. doi:10.1016/j.elecom.2008.04.025

    Article  CAS  Google Scholar 

  66. Boland S, Leech D (2012) A glucose/oxygen enzymatic fuel cell based on redox polymer and enzyme immobilisation at highly-ordered macroporous gold electrodes. Analyst 137:113. doi:10.1039/c1an15537g

    Article  CAS  PubMed  Google Scholar 

  67. Barton SC, Kim H-H, Binyamin G et al (2001) Electroreduction of O2 to water on the “wired” laccase cathode. J Phys Chem B 105:11917–11921. doi:10.1021/jp012488b

    Article  CAS  Google Scholar 

  68. Barton SC, Pickard M, Vazquez-Duhalt R, Heller A (2002) Electroreduction of O2 to water at 0.6 V (SHE) at pH 7 on the “wired” Pleurotus ostreatus laccase cathode. Biosens Bioelectron 17:1071–1074. doi:10.1016/S0956-5663(02)00100-8

    Article  CAS  PubMed  Google Scholar 

  69. Ackermann Y, Guschin DA, Eckhard K et al (2010) Design of a bioelectrocatalytic electrode interface for oxygen reduction in biofuel cells based on a specifically adapted Os-complex containing redox polymer with entrapped Trametes hirsuta laccase. Electrochem Commun 12:640–643. doi:10.1016/j.elecom.2010.02.019

    Article  CAS  Google Scholar 

  70. Barrière F, Kavanagh P, Leech D (2006) A laccase–glucose oxidase biofuel cell prototype operating in a physiological buffer. Electrochim Acta 51:5187–5192. doi:10.1016/j.electacta.2006.03.050

    Article  Google Scholar 

  71. Gao F, Viry L, Maugey M et al (2010) Engineering hybrid nanotube wires for high-power biofuel cells. Nat Commun 1:2. doi:10.1038/ncomms1000

    PubMed  Google Scholar 

  72. Beneyton T, Wijaya IPM, Salem CB et al (2013) Membraneless glucose/O2 microfluidic biofuel cells using covalently bound enzymes. Chem Commun 49:1094–1096. doi:10.1039/C2CC37906F

    Article  CAS  Google Scholar 

  73. Jenkins P, Tuurala S, Vaari A et al (2012) A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes. Bioelectrochemistry 87:172–177. doi:10.1016/j.bioelechem.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  74. Nazaruk E, Sadowska K, Biernat JF et al (2010) Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications. Anal Bioanal Chem 398:1651–1660. doi:10.1007/s00216-010-4012-1

    Article  CAS  PubMed  Google Scholar 

  75. Lee JY, Shin HY, Kang SW et al (2010) Use of bioelectrode containing DNA-wrapped single-walled carbon nanotubes for enzyme-based biofuel cell. J Power Sources 195:750–755. doi:10.1016/j.jpowsour.2009.08.050

    Article  CAS  Google Scholar 

  76. Bourourou M, Elouarzaki K, Holzinger M et al (2014) Freestanding redox buckypaper electrodes from multi-wall carbon nanotubes for bioelectrocatalytic oxygen reduction via mediated electron transfer. Chem Sci. doi:10.1039/C3SC53544D

    Google Scholar 

  77. Vaz-Dominguez C, Campuzano S, Rüdiger O et al (2008) Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Biosens Bioelectron 24:531–537. doi:10.1016/j.bios.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  78. Mate DM, Gonzalez-Perez D, Falk M et al (2013) Blood tolerant laccase by directed evolution. Chem Biol 20:223–231. doi:10.1016/j.chembiol.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  79. Clot S, Gutierrez-Sanchez C, Shleev S et al (2012) Laccase cathode approaches to physiological conditions by local pH acidification. Electrochem Commun 18:37–40. doi:10.1016/j.elecom.2012.01.022

    Article  CAS  Google Scholar 

  80. Scodeller P, Carballo R, Szamocki R et al (2010) Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide. J Am Chem Soc 132:11132–11140. doi:10.1021/ja1020487

    Article  CAS  PubMed  Google Scholar 

  81. Milton RD, Giroud F, Thumser AE et al (2013) Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement. Phys Chem Chem Phys 15:19371–19379. doi:10.1039/C3CP53351D

    Article  CAS  PubMed  Google Scholar 

  82. Cosnier S, Innocent C, Allien L et al (1997) An electrochemical method for making enzyme microsensors. application to the detection of dopamine and glutamate. Anal Chem 69:968–971. doi:10.1021/ac960841h

    Article  CAS  PubMed  Google Scholar 

  83. Castorena-Gonzalez JA, Foote C, MacVittie K et al (2013) Biofuel cell operating in vivo in rat. Electroanalysis 25:1579–1584. doi:10.1002/elan.201300136

    Article  CAS  Google Scholar 

  84. Cosnier S, Holzinger M, Le Goff A, Zebda A (2012) Direct-transfer biopile. WO Patent 2012022921

  85. Pita M, Mate DM, Gonzalez-Perez D et al (2014) Bioelectrochemical oxidation of water. J Am Chem Soc 136:5892–5895. doi:10.1021/ja502044j

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Le Goff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Goff, A., Holzinger, M. & Cosnier, S. Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells. Cell. Mol. Life Sci. 72, 941–952 (2015). https://doi.org/10.1007/s00018-014-1828-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1828-4

Keywords

Navigation