Skip to main content
Log in

Cell death controlling complexes and their potential therapeutic role

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Programmed cell death plays a central role in the regulation of homeostasis and development of multicellular organisms. Deregulation of programmed cell death is connected to a number of disorders, including cancer and autoimmune diseases. Initiation of cell death occurs in the multiprotein complexes or high molecular weight platforms. Composition, structure, and molecular interactions within these platforms influence the cellular decision toward life or death and, therefore, define the induction of a particular cell death program. Here, we discuss in detail the key cell-death complexes—including DISC, complex II, and TNFRI complex I/II, and the necrosome, RIPoptosome, apoptosome, and PIDDosome—that control apoptosis or necroptosis pathways as well as their regulation. The possibility of their pharmacological targeting leading to the development of new strategies of interference with cell death programs via control of the high molecular weight platforms will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254

    CAS  PubMed  Google Scholar 

  2. Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 16:3–11

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Krammer PH, Arnold R, Lavrik IN (2007) Life and death in peripheral T cells. Nat Rev Immunol 7:532–542

    CAS  PubMed  Google Scholar 

  4. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    CAS  PubMed  Google Scholar 

  5. Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A (2014) Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 35:24–32

  6. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660

    CAS  PubMed  Google Scholar 

  7. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652

    CAS  PubMed  Google Scholar 

  8. Kuranaga E (2012) Beyond apoptosis: caspase regulatory mechanisms and functions in vivo. Genes Cells 17:83–97

    CAS  PubMed  Google Scholar 

  9. Ciraci C, Janczy JR, Sutterwala FS, Cassel SL (2012) Control of innate and adaptive immunity by the inflammasome. Microbes Infect 14:1263–1270

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22:8543–8567

    CAS  PubMed  Google Scholar 

  11. Lamkanfi M, Dixit VM (2012) Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 28:137–161

    CAS  PubMed  Google Scholar 

  12. Mittl PR, Di Marco S, Krebs JF et al (1997) Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-Asp-Val-Ala-Asp fluoromethyl ketone. J Biol Chem 272:6539–6547

    CAS  PubMed  Google Scholar 

  13. Wei Y, Fox T, Chambers SP et al (2000) The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. Chem Biol 7:423–432

    CAS  PubMed  Google Scholar 

  14. Riedl SJ, Renatus M, Schwarzenbacher R et al (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104:791–800

    CAS  PubMed  Google Scholar 

  15. Chai J, Shiozaki E, Srinivasula SM et al (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104:769–780

    CAS  PubMed  Google Scholar 

  16. Weber CH, Vincenz C (2001) The death domain superfamily: a tale of two interfaces? Trends Biochem Sci 26:475–481

    CAS  PubMed  Google Scholar 

  17. Dickens LS, Powley IR, Hughes MA, MacFarlane M (2012) The, “complexities” of life and death: death receptor signalling platforms. Exp Cell Res 318:1269–1277

    CAS  PubMed  Google Scholar 

  18. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273:2926–2930

    CAS  PubMed  Google Scholar 

  19. Stennicke HR, Salvesen GS (2000) Caspases: controlling intracellular signals by protease zymogen activation. Biochim Biophys Acta Protein Struct Mol Enzymol 1477:299–306

    CAS  Google Scholar 

  20. Muzio M, Chinnaiyan AM, Kischkel FC et al (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817–827

    CAS  PubMed  Google Scholar 

  21. Lavrik IN, Krammer PH (2012) Regulation of CD95/Fas signaling at the DISC. Cell Death Differ 19:36–41

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Sessler T, Healy S, Samali A, Szegezdi E (2013) Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Pharmacol Ther 140:186–199

    CAS  PubMed  Google Scholar 

  23. Schleich K, Warnken U, Fricker N et al (2012) Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model. Mol Cell 47:306–319

    CAS  PubMed  Google Scholar 

  24. Dickens LS, Boyd RS, Jukes-Jones R et al (2012) A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell 47:291–305

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Martin DA, Siegel RM, Zheng L, Lenardo MJ (1998) Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem 273:4345–4349

    CAS  PubMed  Google Scholar 

  26. Chang DW, Xing Z, Capacio VL, Peter ME, Yang X (2003) Interdimer processing mechanism of procaspase-8 activation. EMBO J 22:4132–4142

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hoffmann JC, Pappa A, Krammer PH, Lavrik IN (2009) A new C-terminal cleavage product of procaspase-8, p30, defines an alternative pathway of procaspase-8 activation. Mol Cell Biol 29:4431–4440

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Kallenberger SM, Beaudouin J, Claus J et al (2014) Intra- and interdimeric caspase-8 self-cleavage controls strength and timing of CD95-induced apoptosis. Sci Signal 7:ra23

    PubMed  Google Scholar 

  29. Varfolomeev E, Maecker H, Sharp D et al (2005) Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 280:40599–40608

    CAS  PubMed  Google Scholar 

  30. Lavrik IN, Mock T, Golks A, Hoffmann JC, Baumann S, Krammer PH (2008) CD95 stimulation results in the formation of a novel death effector domain protein-containing complex. J Biol Chem 283:26401–26408

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Cullen SP, Henry CM, Kearney CJ et al (2013) Fas/CD95-induced chemokines can serve as “Find-Me” signals for apoptotic cells. Mol Cell 49:1034–1048

    CAS  PubMed  Google Scholar 

  32. Geserick P, Hupe M, Moulin M et al (2009) Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J Cell Biol 187:1037–1054

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Varfolomeev EE, Ashkenazi A (2004) Tumor necrosis factor: an apoptosis JuNKie? Cell 116:491–497

    CAS  PubMed  Google Scholar 

  34. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    CAS  PubMed  Google Scholar 

  35. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    CAS  PubMed  Google Scholar 

  36. Haas TL, Emmerich CH, Gerlach B et al (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and? Is required for TNF-mediated gene induction. Mol Cell 36:831–844

    CAS  PubMed  Google Scholar 

  37. Gerlach B, Cordier SM, Schmukle AC et al (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471:591–596

    CAS  PubMed  Google Scholar 

  38. Ikeda F, Deribe YL, Skånland SS et al (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471:637–641

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Harper N, Hughes M, MacFarlane M, Cohen GM (2003) Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J Biol Chem 278:25534–25541

    CAS  PubMed  Google Scholar 

  40. Oztürk S, Schleich K, Lavrik IN (2012) Cellular FLICE-like inhibitory proteins (c-FLIPs): fine-tuners of life and death decisions. Exp Cell Res 318:1324–1331

    PubMed  Google Scholar 

  41. Golks A, Brenner D, Fritsch C, Krammer PH, Lavrik IN (2005) c-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem 280:14507–14513

    CAS  PubMed  Google Scholar 

  42. Fricker N, Beaudouin J, Richter P, Eils R, Krammer PH, Lavrik IN (2010) Model-based dissection of CD95 signaling dynamics reveals both a pro- and antiapoptotic role of c-FLIPL. J Cell Biol 190:377–389

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Pop C, Oberst A, Drag M et al (2011) FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J 433:447–457

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14:727–736

    CAS  PubMed  Google Scholar 

  45. Christofferson DE, Li Y, Yuan J (2014) Control of life-or-death decisions by RIP1 kinase. Annu Rev Physiol 76:129–150

    CAS  PubMed  Google Scholar 

  46. Cho Y, Challa S, Moquin D et al (2009) Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Li J, McQuade T, Siemer AB et al (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150:339–350

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Moriwaki K, Chan FK-M (2013) RIP3: a molecular switch for necrosis and inflammation. Genes Dev 27:1640–1649

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    CAS  PubMed  Google Scholar 

  50. Teng X, Degterev A, Jagtap P et al (2005) Structure-activity relationship study of novel necroptosis inhibitors. Bioorg Med Chem Lett 15:5039–5044

    CAS  PubMed  Google Scholar 

  51. Degterev A, Hitomi J, Germscheid M et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    CAS  PubMed  Google Scholar 

  52. Choi S, Keys H, Staples RJ, Yuan J, Degterev A, Cuny GD (2012) Optimization of tricyclic Nec-3 necroptosis inhibitors for in vitro liver microsomal stability. Bioorganic Med Chem Lett 22:5685–5688

    CAS  Google Scholar 

  53. Sun L, Wang H, Wang Z et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227

    CAS  PubMed  Google Scholar 

  54. Murphy JM, Czabotar PE, Hildebrand JM et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39:443–453

    CAS  PubMed  Google Scholar 

  55. Dondelinger Y, Declercq W, Montessuit S et al (2014) MLKL compromises plasma membrane integrity upon binding to phosphatidyl inositol phosphates. Cell Rep 7:1–11

    Google Scholar 

  56. Chen X, Li W, Ren J et al (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24:105–121

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Wang H, Sun L, Su L et al (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54:133–146

    CAS  PubMed  Google Scholar 

  58. Moujalled DM, Cook WD, Okamoto T et al (2013) TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1. Cell Death Dis 4:e465

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Feoktistova M, Geserick P, Kellert B et al (2011) CIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43:449–463

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Tenev T, Bianchi K, Darding M et al (2011) The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43:432–448

    CAS  PubMed  Google Scholar 

  61. Feoktistova M, Geserick P, Panayotova-Dimitrova D, Leverkus M (2012) Pick your poison: the ripoptosome, a cell death platform regulating apoptosis and necroptosis. Cell Cycle 11:460–467

    CAS  PubMed  Google Scholar 

  62. Vanlangenakker N, Bertrand MJM, Bogaert P, Vandenabeele P, Vanden Berghe T (2011) TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis 2:e230

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Remijsen Q, Goossens V, Grootjans S et al (2014) Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis 5:e1004

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    CAS  PubMed  Google Scholar 

  65. Kagan VE, Tyurin VA, Jiang J et al (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1:223–232

    CAS  PubMed  Google Scholar 

  66. Yuan S, Akey CW (2013) Apoptosome structure, assembly, and procaspase activation. Structure 21:501–515

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Twiddy D, Brown DG, Adrain C et al (2004) Pro-apoptotic proteins released from the mitochondria regulate the protein composition and caspase-processing activity of the native Apaf-1/caspase-9 apoptosome complex. J Biol Chem 279:19665–19682

    CAS  PubMed  Google Scholar 

  68. Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ (2004) Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J 23:2134–2145

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Yuan S, Topf M, Reubold TF, Eschenburg S, Akey CW (2013) Changes in apaf-1 conformation that drive apoptosome assembly. Biochemistry 52:2319–2327

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Malladi S, Challa-Malladi M, Fearnhead HO, Bratton SB (2009) The Apaf-1*procaspase-9 apoptosome complex functions as a proteolytic-based molecular timer. EMBO J 28:1916–1925

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Li P, Nijhawan D, Budihardjo I et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    CAS  PubMed  Google Scholar 

  72. Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y (1999) Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399:549–557

    CAS  PubMed  Google Scholar 

  73. Yuan S, Yu X, Topf M, Ludtke SJ, Wang X, Akey CW (2010) Structure of an apoptosome-procaspase-9 CARD complex. Structure 18:571–583

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Würstle ML, Laussmann MA, Rehm M (2012) The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Exp Cell Res 318:1213–1220

    PubMed  Google Scholar 

  75. Yuan S, Yu X, Asara JM, Heuser JE, Ludtke SJ, Akey CW (2011) The holo-apoptosome: activation of procaspase-9 and interactions with caspase-3. Structure 19:1084–1096

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Reubold TF, Eschenburg S (2012) A molecular view on signal transduction by the apoptosome. Cell Signal 24:1420–1425

    CAS  PubMed  Google Scholar 

  77. Hu Q, Wu D, Chen W, Yan Z, Shi Y (2013) Proteolytic processing of the caspase-9 zymogen is required for apoptosome-mediated activation of caspase-9. J Biol Chem 288:15142–15147

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Tinel A, Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304:843–846

    CAS  PubMed  Google Scholar 

  79. Bouchier-Hayes L, Oberst A, McStay GP et al (2009) Characterization of cytoplasmic caspase-2 activation by induced proximity. Mol Cell 35:830–840

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Jang TH, Zheng C, Wu H, Jeon JH, Park HH (2010) In vitro reconstitution of the interactions in the PIDDosome. Apoptosis 15:1444–1452

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Janssens S, Tinel A (2012) The PIDDosome, DNA-damage-induced apoptosis and beyond. Cell Death Differ 19:13–20

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Park HH, Logette E, Raunser S et al (2007) Death domain assembly mechanism revealed by crystal structure of the? Oligomeric PIDDosome core complex. Cell 128:533–546

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Janssens S, Tinel A, Lippens S, Tschopp J (2005) PIDD mediates NF-kappaB activation in response to DNA damage. Cell 123:1079–1092

    CAS  PubMed  Google Scholar 

  84. Tinel A, Janssens S, Lippens S et al (2007) Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-kappaB pathway. EMBO J 26:197–208

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Ando K, Kernan JL, Liu PH et al (2012) PIDD death-domain phosphorylation by ATM controls Prodeath versus prosurvival PIDDosome signaling. Mol Cell 47:681–693

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Manzl C, Krumschnabel G, Bock F et al (2009) Caspase-2 activation in the absence of PIDDosome formation. J Cell Biol 185:291–303

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Kim IR, Murakami K, Chen NJ et al (2009) DNA damage- and stress-induced apoptosis occurs independently of PIDD. Apoptosis 14:1039–1049

    CAS  PubMed  Google Scholar 

  88. Vakifahmetoglu H, Olsson M, Orrenius S, Zhivotovsky B (2006) Functional connection between p53 and caspase-2 is essential for apoptosis induced by DNA damage. Oncogene 25:5683–5692

    CAS  PubMed  Google Scholar 

  89. Imre G, Heering J, Takeda A-N et al (2012) Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis. EMBO J 31:2615–2628

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    CAS  PubMed  Google Scholar 

  91. Siegel RM, Frederiksen JK, Zacharias DA et al (2000) Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288:2354–2357

    CAS  PubMed  Google Scholar 

  92. Siegel RM, Chan FK, Chun HJ, Lenardo MJ (2000) The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 1:469–474

    CAS  PubMed  Google Scholar 

  93. O’Reilly LA, Tai L, Lee L et al (2009) Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461:659–663

    Google Scholar 

  94. Lavrik IN (2014) Systems biology of death receptor networks: live and let die. Cell Death Dis 5:e1259

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Yin XM, Wang K, Gross A et al (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400:886–891

    CAS  PubMed  Google Scholar 

  97. Vercammen D, Beyaert R, Denecker G et al (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187:1477–1485

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Holler N, Zaru R, Micheau O et al (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    CAS  PubMed  Google Scholar 

  99. Chan FK-M, Shisler J, Bixby JG et al (2003) A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278:51613–51621

    CAS  PubMed  Google Scholar 

  100. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    CAS  PubMed  Google Scholar 

  101. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63

    CAS  PubMed  Google Scholar 

  102. Gupta S, Kass GEN, Szegezdi E, Joseph B (2009) The mitochondrial death pathway: a promising therapeutic target in diseases. J Cell Mol Med 13:1004–1033

    CAS  PubMed  Google Scholar 

  103. Kulikov AV, Shilov ES, Mufazalov IA, Gogvadze V, Nedospasov SA, Zhivotovsky B (2012) Cytochrome c: the Achilles’ heel in apoptosis. Cell Mol Life Sci 69:1787–1797

    CAS  PubMed  Google Scholar 

  104. Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2:67–71

    CAS  PubMed  Google Scholar 

  105. Kerr JFR, Wyllie AH (1972) CAR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Akbari-Birgani S, Hosseinkhani S, Mollamohamadi S, Baharvand H (2014) Delay in apoptosome formation attenuates apoptosis in mouse. Embryonic stem cell differentiation. J Biol Chem 289:16905–16913

  107. D’Brot A, Chen P, Vaishnav M, Yuan S, Akey CW, Abrams JM (2013) Tango7 directs cellular remodeling by the Drosophila apoptosome. Genes Dev 27:1650–1655

    PubMed Central  PubMed  Google Scholar 

  108. Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V (2012) Role of apoptosis in disease. Aging (Albany NY) 4:330–349

    CAS  Google Scholar 

  109. Yu X, Deng Q, Bode AM, Dong Z, Cao Y (2013) The role of necroptosis, an alternative form of cell death, in cancer therapy. Expert Rev Anticancer Ther 13:883–893

    CAS  PubMed  Google Scholar 

  110. Bouralexis S, Findlay DM, Evdokiou A (2005) Death to the bad guys: targeting cancer via Apo2L/TRAIL. Apoptosis 10:35–51

    CAS  PubMed  Google Scholar 

  111. Humphreys RC, Halpern W (2008) Trail receptors: targets for cancer therapy. Adv Exp Med Biol 615:127–158

    CAS  PubMed  Google Scholar 

  112. Stegehuis JH, de Wilt LH, de Vries EGE, Groen HJ, de Jong S, Kruyt FE (2010) TRAIL receptor targeting therapies for non-small cell lung cancer: current status and perspectives. Drug Resist Update 13:2–15

    CAS  Google Scholar 

  113. Samali A, Szegezdi E, Mahalingham D et al (2009) Trail variants for treating cancer. WO2009077857-A2

  114. Rosen GD (2000) Combined therapy of diterpenoid triepoxides and trail for synergistic killing of tumor cells. WO2000048619-A1

  115. Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4:e532

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Kurokawa M, Kim J, Geradts J et al (2013) A network of substrates of the E3 ubiquitin ligases MDM2 and HUWE1 control apoptosis independently of p53. Sci Signal 6:ra32

    PubMed Central  PubMed  Google Scholar 

  117. Queudeville M, Seyfried F, Eckhoff SM et al (2012) Rapid engraftment of human ALL in NOD/SCID mice involves deficient apoptosis signaling. Cell Death Dis 3:e364

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Hector S, Conlon S, Schmid J et al (2012) Apoptosome-dependent caspase activation proteins as prognostic markers in Stage II and III colorectal cancer. Br J Cancer 106:1499–1505

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Chen W, Wang Q, Bai L et al (2014) RIP1 maintains DNA integrity and cell proliferation by regulating PGC-1α-mediated mitochondrial oxidative phosphorylation and glycolysis. Cell Death Differ 21:1061–1070

    CAS  PubMed  Google Scholar 

  120. Johansson B, Mertens F, Mitelman F (1993) Cytogenetic deletion maps of hematologic neoplasms: circumstantial evidence for tumor suppressor loci. Genes Chromosom Cancer 8:205–218

    CAS  PubMed  Google Scholar 

  121. Nam JY, Jong WL, Yun JK et al (2004) Loss of caspase-2, -6 and -7 expression in gastric cancers. APMIS 112:330–335

    PubMed  Google Scholar 

  122. Holleman A, Den Boer ML, Kazemier KM et al (2005) Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia. Blood 106:1817–1823

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in the authors group was supported by grants from the Russian Science Foundation (14-25-00056), Russian Foundation for Basic Research, Russian President Fund, Dynasty Foundation, as well as the Stockholm Cancer Societies, the Swedish Childhood Cancer Foundation, the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Zhivotovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamaraev, A.V., Kopeina, G.S., Zhivotovsky, B. et al. Cell death controlling complexes and their potential therapeutic role. Cell. Mol. Life Sci. 72, 505–517 (2015). https://doi.org/10.1007/s00018-014-1757-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1757-2

Keywords

Navigation